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Abstract

This paper presents a fourth-order nonlinear conjugate gradient method in equality constrained
optimization. The idea is to transform the constrained problem into unconstrained type through the
Lagrange multipliers scheme. Using four terms of Taylor series development, we approximate the
transformed function (augmented Lagrange function). Lastly, we employ the new fourth-order nonlinear
conjugate gradient method in equality constrained optimization to solve the optimization problem. We
present the algorithm in steps and some properties of the gradients are proved, using classical results.
Also, the convergence analysis has been proved under classical and known assumptions. Furthermore, we
present the obtained numerical results and compare them to some existing results. The analysis of results
confirms that the new method is accurate.

Keywords: Fourth-order conjugate gradient method,; equality constrained optimization; objective function;
nonlinear polynomial approximation, Lagrange multipliers scheme.

Mathematical subject classification (2010): 65K10.

1 Introduction

The equality constrained optimization of a smooth function, (J, in many variables remains an important

problem in optimization theory. This is true since many scientists seek to solve this class of problems, in real
life applications. Every equality constrained optimization problem [1] could be put in the form
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Optimize Q(x) (1)

subject to
w,(x)=b,, i=1,2,..,m,

where Q(x) € R, W,(x) e R" and b, € R. The general approach is to transform the problem into

unconstrained type by Lagrange multipliers scheme and solve the zeros of the function gradient since the
local minima occur at stationary points. A fourth-order nonlinear conjugate gradient method in equality
constrained optimization finds the global minimum of the transformed function. The new method is
characterized by the following. Consider the transformed case of problem (1):

min /(%) ()

xeR”"

where f is a differentiable function. We note that max f'(x) = min(—f(x)). In order to solve this
xeR” xeR"

unconstrained problem, we need to design a special algorithm that reduces the high storage and computation

cost of some computed matrices [2]. Various types of conjugate gradient method have been used to solve

unconstrained minimization problems [3]. Usually, a function F is constructed to approximate f'. If the

objective function is not quadratic or the inexact line search is used, some of the conjugate gradient methods
fail to converge globally [4,5]. The process of minimizing a non-quadratic objective function through the
conjugate gradient method is called the nonlinear conjugate gradient method [6,7]. Many scholars have
published their findings on this method [8,9,10]. New algorithms on nonlinear conjugate gradient method are
available [11,12,13,14,15]. Every conjugate gradient method is an iterative scheme of the form

Xpo =X, +a,d,, k=0,1,2,.. 3)

where x; is an initial point, ¢, is a step size and the search direction

-g.,k=0,
do={ °* 4)
-g,+pd. k>0.

g, =Vf(x,)and B, specifies the choice of conjugate gradient method [15]. It could take any of the
following forms.

T
B - lg I* (5], ﬂPRP:ng(gk—gk_]) (17], ﬂ”szw [18,19],

g, I? lge I d (g, —8gi1)
ﬂw:_M [15], ﬂ“y:ﬂ [19], ,B”=—w 20]
dk—lrgk—l dk—lT(gk _gk—l) dk—lrgk—l

and

Many of these conjugate gradient methods use inexact line search technique [21]. Others use exact line
search approach [22]. Stoer [23] studied the conjugate gradient method on a subspace and obtained a variant
of the method with an inexact line search approach. The search for a reliable and accurate scheme motivated
this work on a fourth-order nonlinear conjugate gradient method (FONCGM) in equality constrained
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optimization. This method is presented in seven sections. Sections (two and three) discuss the transcription
of the equality constrained problem to unconstrained type and FONCGM, respectively. In section four, we
give the convergence analysis. Section five presents some test problems. Section six explains the numerical
results while section seven ends this work with a conclusion.

2 Transcription of Equality Constrained Optimization Problem
We transform the constrained problem (1) into unconstrained problem of the form

Optimize f'(x, A) )
xeRY, e R"and [ is the Lagrange’s function defined by
f(x,A) = Q(x)+le. (b, =W,(x)). A, i =1, 2... m are the Lagrange multipliers. A solution to
i1

problem (1) can then be found by solving problem (5) if there exists a vector

/1:(11,12,'4', ﬂ,m) such that

3
Yo h) o> A ©
6)(1 axz a)CN
and
3
ACO NNy NNC (G YO R ™
oA, oA, oA,

Equations (6) and (7) will generate a set of N + m equations in /N 4+ m unknowns to be solved. As the
dimensionality of the problem increases, we have many equations to solve simultaneously. The problem
computation becomes very tedious, if analytic method is employed. Thus, we develop and apply the fourth-
order nonlinear conjugate gradient method where the objective function is the augmented Lagrange function
defined by

SO A tt) = Q)+ Y 4,6, T, “”*%i w(b, —W,(x))’ @®)

M is a scalar called the penalty parameter. The multipliers updates usually take the form
Ai = A + p(b; =W (x)) ©)

Our approach is to choose initial vectors x,, A, , a parameter £, and use the new fourth-order nonlinear

conjugate gradient method to optimize f(x,A,u,) over RY . The scalars Hos My .oy i, could be

determined on the basis of results obtained during iteration process. The new fourth-order nonlinear
conjugate gradient method in equality constrained optimization follows.
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3 The Fourth-Order Nonlinear Conjugate Gradient Method (FONCGM)

The fourth-order nonlinear conjugate gradient method is based on four terms Taylor series representation of
f by F'.This representation is expected to be a better approximation of f than the usual representation.

The following is the representation of F" at point x I

F(x)=f(xk)+df(xk)+%dzf(xk)%ff(xk)%d“f(xk)a (10)
where

4 f) =33 S b, ) h eRYih =x-x, 2<n<4
f(xk)—ZZ'"Z . i”m,x,xk, i, ERTh =x—x, 2<n<4.

h h Iy

Using a vector /= x—x, and 4, =V ’f(xk ), in equation (10), we have

1 1 1
F)= f )+ h a4 b b+ ih’(hTAJz)-r Zh’(h’AJ;)h

1 2 2
=f(x,)+h"4 +2!hT{A2 +{31A3 +4!A4h}h}h~ (11)

Using tensor notations presented in [24], we have

2 2 S =
L!A3+4!A4h}h—{2,!4 h }h

-5 [e(x) +32(x)] )

Ui+ ]
where g(x) denotes the gradient of f, at point x, li[ Wi hTh [” j ! 7 =T2 and

= P
oo m) (n-m)!m!

T denotes transpose. It follows that

F(x)=f(x,)+h" 4, +%hTH(x)h (13)

where

H(x) =4, +112 (200 +3g()] 1
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Similarly,
VF(x)= A, + A,h" +%hTA3h+%hT(hTA4h)
s
A [T
p
_1 .
25 _1)'2( 1) ( m]g[xk +{(j -1~ m}h]

=+ Llo(r, +3m) + 3g(x, + )~ 4g(x,)]

-’

-
:'ZZ:

A+ é [6Gx—2x,) +3g(x) - 4g(x,)]

(14)
VF(x,,)=A4, + é [¢(3x,., —2x,) +3g(x,.,) — 4g(x,)] (15)
VF(x,)= A, = g(x,). (16)
VF(r,) =VFG) ¢ [gG, ~200) + 3gr) - 4]

— [~ 25+ 3g(5,) ~ 4(5,) + 625,

~ [ -2 + 383 + 20)] a7)

Using G,,, =VF(x,,,), we present a fourth-order nonlinear conjugate gradient algorithm in which the

directions of search, D,,D,,.., D, are H conjugate. That is,

Di,H, D, =0 (18)
From the classical results, it follows that

G, =G, +a,H,,, D, (19)

With a given x,,, &, is computed such that

F(x, +a,D,)< F(x,), 20)
-G, k=0

Dk+1 _ Gk+1
-G+ BD,, k>0

and
X=X, +a, D, k=0,1,..

From equations (12) and (15),
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[-G,.,+8.D,] H,.,D, =0; B.DIH,..D, =G H,. D,. From equation (19),

_ Gan (Gk+l _Gk)

(21)
DkT (Gk+l - Gk )

B

The algorithm is described below.

Algorithm 1. (FONCGM)

Step 1: Select x, e RY, N >2, | .| is Euclidean norm, A, x, and & > 0 (a small number: 0.000001).
Set G, = Vf, (x4, 40, 4, ) » Dy ==Gyandk =0.
Step 2: If | G, ||< &, stop. Choose x, , otherwise go to step 3.

Step 3: Compute &, such that F(x, + a,D,) < F(x,) and go to step 4.
Step 4: Compute

G = é[g(sxk” ~2x) +3g(x.) + 28(x)} B, = (é,K((g__GG)) Dy, ==G, +f,D,.
Xpy =X, +a,D,.
Go to step 5.
Step 5: Check for optimality of G
IfG, =0and |A,,, -, |>¢, gotostep6If G,,, =0and |4, -4, |< &, gotostep 7.
Step 6: Update A as follows.
Ai= At M (b, =Wi(x,))

Choose g,,, > p, suchas g, , =, +0.1%0.27; j<1000; 4, =0
Set k =k +1. Go to step 2.

Step 7: Stop iteration. X, is the final optimal point found

i+l

Remark: Dai and Yuan [12] presented a nonlinear conjugate gradient algorithm for solving unconstrained
optimization problems. Below is Dai-Yuan’s algorithm for problem (1).

Algorithm 2. (Nonlinear conjugate gradient method)
Step 1: Select x, e RY,N>2and &> 0.Set d, = —g,and k =0.
Step 2: If || g, |€ &, , stop. Take x, . Otherwise go to step 3.
Step 3: Compute ¢, such that f(x, + «,d,) < f(x,),go to step 4.
2
Step 4: Compute B, = g, | ,dea =—8c tBd, and x,,, =x, +a,d,.

dk—lT(gk —&i1)
Step 5: Set k=k+1. Go to step 2.
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4 Convergence Analysis

We employ the convergence results of algorithm (2), as contained in the following lemma and theorem, to
establish the convergence of algorithm (1). We assume that the objective function satisfies the following
conditions.

4.1 Assumptions

L f is bounded below in R " and is four times continuously differentiable in a neighborhood Z
= ) N <

of the level setL {x eRT S0 f(x")}

IL. The gradient, g(x), is Lipschitz continuous in Z, namely, there exists a constant Lc¢ > 0 such
tat 1 V)=V < Lellx=yl, x,yeZ.

III.  The extended hessian matrix H (X) is positive definite.

4.2 Lemma
L. Suppose that x, is a starting point for which the above assumptions are satisfied. Consider any
method of the form (2), where D, , a vector, is the descent direction and ¢, satisfies the standard
Wolfe conditions [18], then
v)
(/D)

> <
iz | Dy |l

IL Suppose that x, is a starting point for which the above assumptions are satisfied. Let
{xk k=12, "'}be generated by algorithm (1). Then, the algorithm either terminates at a
stationary point or converges in the sense that
liminf || G(x,) [|= 0
k—o0

II1.

Theorem 1. Suppose that f is continuously differentiable, bounded below and the norm of the Hessian

matrix is bounded. The iteration {x B } is generated by algorithm (2) satisfies x, — x * as k — oo and the

Hessian matrix of f is positive definite. Let &, be the relative error in the truncated conjugate gradient

method and the algorithm. If &, — oo then {x % } converges, that is,

X x|

lim “7*:

o 1% =X |
Proof (Lemma (i)):

2
Dai and Yuan proved this lemma for algorithm (2): Z (g ‘ d,() < oo, Similar proof is presented for algorithm

2
im0 [1d; |l

(1), since G, = G(x,) = VF(x,) = g(x,)) and the search directions d, and D, have same definition. This
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is obvious on using the assumptions of lemma (i), Dai and Yuan’s proof and & in place of k +1in equation

(17).

670} s fer 20043800528 I D,

_ 36
Dy I DI
1 2
e - 20 e300 w20 0T 0l
= 5 s dk = Dk
I d;ll
1
g{(g@xk - 2xk71)rdk )+ S(g(xk)rdk)}z
= ERE ,e(x,_)'d, =0 (by choice of a,)
k
1 o
A er 27T 0(e ) w6leGr - 25 ) +6(at a ) |
<
Id,II?
_ 1 (g(3xk _2xk—1)rdk)z +9 (g(xk)rdk)z +6 (g(3xk _2xk71)rdk)z +6 (g(xk)rdk)z
36 Id,|I* I d, I Id, I* I d, I

Z (GkTDk)z <1{z (g(3xk_2xk71)Tdk)Z +92 (g(xk)rdk)z +

= 1D 736 |5 Id, I° = ld

62 (g(3xk _Zxk—l)Tdk)z +6Z (g(xk)Tdk)Z}< .

= Ild, | = ld

Thus,
2
> M < oo asrequired.
= 1D
Proof (Lemma (ii)):

Dai and Yuan proved this lemma for algorithm (2). The proof is same since, from equation (16),
G, =G(x,)=VF(x,)=g(x,).It follows that

lim inf | G, ||:,l(im | g, II=0. This is true since
- |
fim inf || G 1= fim inf - | {g(3x,., =2x,)+3g(x) + 28 ()} |

< fim inf = | ¢(3r,., ~2x,) | + lim inf | 3g(r,.) |-+ liminf < | 2(x,) =

lim inf | G,., [<0-But || G,., |0 implies that lim inf | G, =0 ©F lim inf || G, |=0

as required.

Proof of theorem (1): The proof is available in many literatures. Noting that
G, =G(x,)=VF(x,)=g(x,), the proof is same since the assumptions on algorithm (1) meet the
requirements of this theorem. Using M >m 20, &, = x, —x* and the results from NMC [25], we

have
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T
[ xXpp —x* ”2 = (xk+1 _X*) (xk+1 —-X *)

= (xk+l _x*)T(xk +ta,d, _X*)

2(k+1) 2(k+1)

M(1-R M(1-R

e o L R i o I B b B
n \I+R n \I+R M

(k+1)
M(1-R
Xpy —X* <4 —| —= x, —x*
e =x* <4~ (1+Rj [ xy —x*||
% (k+1)
lim [ X —x* | — 0, since |y %[I—RJ o,
koo || x, —x*]| koo \ n \1+R

End of proof.

5 Numerical Consideration

To illustrate the behavior of the algorithm proposed in this paper, we wrote MATLAB codes for solving the
following problems and ran them on a PC with Windows 7. The gradient tolerance is 0.000001. The

problems are of the form (1) with the following expressions for (J(X) and the constraints.
Problem 1 (HS48 [26])
O(x)=(x, =) +(x, —x3)> +(x, —x5)°
such that x, +x, +x; +x, +x;=5=0
X, +2(x, +x5)+3=0
x,=03,5-3,2,-2); x*=(1,11/3,11/3,-5/3,-5/3); f(x*) =0
Problem 2 (HS51 [26])
0(x)=(x; —x,) 2 +(x, +x3-2)" +(x, = D> + (x5 —1)°
such that x, +3x, -4 =0
X,+x,—2x,=0
X, —x;=0
x,=(2.5,05,2,-1,0.5); x*=(,1,L,1,1); f(x*)=0
Problem 3 (HS50 [26])
0(x)=(x, —x,)" +(x; =D> +(x, = D* + (x5 -1)°
such that x +x, +x; +4x, —7=0
X, +5x,-6=0

x,=(10,7,2,-3,0.8); x*=(1,1,1,1,1); f(x*) =0.
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Problem 4 [27], problem (11)

100
O(x) = ix;
i=1
i+1 i
such that ¢, (x) =) x; “1g =0 = L2 20,
Jj=1

x, =(0.25,0.25, ..., 0.25); x* = (0.0557, 0.0443, ..., —0.0011, — 0.0011); f(x*) = 0.0228.

Problem 5 [28], problem (394)
20
O(x) =D i(x] +x}')
i=1

20
such that ¢, (x) = lez -1=0

i=1

x,=0(2,2,2,...,2); x*=(0.91287, 0.408268, — 0.000017, ..., —0.0000014); f(x*)=1.91667.

Problem 6 [29], problem 8
1 k=2 4
Q(X) = E Z (xk+i+l T X g )
i=1

suchthat x,,, —x,, +x, =i, i=1,2,.., k1.
xo=0,2,..,k,2,3,....k); k=3; f(x*)=0.

Problem 7 [29], problem 8
1 k=2 .
O(x) = 5 z (Xpsirr = Xpas)
i=1

suchthat x,,, —x,,, +x, =i, i=1,2,..., k—-1.

xo=01,2,...,k,2,3,.., k); k=10; f(x*) =0.

Problem 8 [29], problem 10
O(x) = cos® (27, sin(xr / 20))
i=1
suchthat x, —x,,, =04, i=1,2,...,n-1.

%, =(1,0.6,0.2,..,1-04((—-1)); n=3; f(x*)=0.

10
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Problem 9 [29], problem 10

O(x) = cos® (27, sin(rr / 20))
i=1
suchthat x, —x,,, =04, i=1,2,...,n-1.
x, =(1,0.6,0.2,..,1-0.4((i —1)); n=10; f(x*)=0.

Problem 10 [29], problem 9
k=2 s R
Q(X) = Z 100(xk+i+1 - 'xk+i ) + (1 - xk+i )
i=1

suchthat x,,, —x,,, +x, =i, i=1,2,..., k1.
xo=0,2,..,k,2,3,.., k), k=3; f(x*)=0.

Problem 11 [29], problem 9

k=2
O(x) = Zloo(xk+i+1 —x) +(1-x,,,)’?

i=1
suchthat x,,, —x,,, +x, =i, i=1,2,..., k1.
xo=0,2,..,k,2,3,.., k); k=10; f(x*)=0.

Problem 12 [30], Problem 4

Q(x) — ex1x2x3x4x5
such that x; +x; +x; +x; +x; —10=0

X,xy =5x,x,,=0

x;+x; +1=0

X =(-2,2,2,-1,-1); f(x*)=0.05395

The numerical results obtained for the new method vis-a-vis some classical methods (FOCGM,
FR, DY, PRP) are presented in Table 1, (P: Problem; ITE: Number of iterations; TIME: Computer execution

time (s); FN.: Function value at the end of iterations). The stopping criterion is || g(x, )|< 0.000001
while the maximum number of iterations is 1000.

Performance profiles have been introduced by Dolan and More’ [31]. The main idea is to show, graphically,
the performance of various solvers on a given set of problems. That is, the curves are used to compare the

efficiency of a set S of solvers on a set P of test problems. ¢ s denotes the performance of a solver s

(based on the number of iterations, function evaluations, gradient evaluations or execution time) on the
problem p. r  denotes the relative performance of a solver s on a problem p and

11
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t
Vs = 22 . Our assumption is that r,s SW,WE ‘R, for all solvers s on the problems p.
’ mm%tp’s :seS} ’
r,, =wif solver s cannot solve problem p.The performance profile of the solver s is the function
n({p eP:r, < t}) n({p e P:log,(r,,)< t})
v, :[1, w] = [0, 1] such that y (t) = or y (1) = ,
n(P) n(P)

where 7(.) denotes the number of elements of a set. The performance profiles of the methods discussed in

this paper are shown below.

Nwaeze et al’s [32] line search method was used in all the computations since it satisfies the standard Wolfe
conditions [19].

Table 1. Number of iterations and CPU time in seconds

P FONCGM FR DY PRP
ITE TIM FN. ITE TIM FN. ITE TI FN. ITE TIM FN.

1 10 0.07 1.15E- 9 0.06 1.97E-12 3 0.04 2.02E-15 3 0.04 1.33E-12
2 5 0.04 6.59E- 20 0.05 1.57E-15 12 0.05 2.69E-14 20 0.04  5.16E-16
3 5 0.24 1.17E-9 20 0.35 8.86E-11 2 03 6.35E-10 2 029  4.61E-9
4 330 20.10 0.02281 336 20.56 0.02281 336  20.5 0.02281 336  20.57 0.02281
5 138 2.15 191666 180  2.95 191666 180 3.08 191666 175  2.55 1.91666
6 2 0.09 6.89E- 4 0.13 2.39E-10 4 0.11 2.39E-10 19 0.16 1.12E-10
7 600 3.17 2.9E-9 900  4.26 8.69E-9 900 334 1.78E-9 900 3.5 6.14E-10
8 761 0.86 0.29354 100 1.03 0.29354 100 094 0.29354 100 1.1 0.29354
9 100 46 1.93998 100 141 430065 100 273 1.67661 100 28 4.11381
1 171 0.30 1.58E- 900  0.37 2.54E-14 501  0.08 9.55E-13 900 0.34  2.33E-15
1 202 274 2.47E- 304 2.43 3.08E-13 323 2.81 239E-13 120 1.67 1.43E-12
1 9 0.35 0.05395 10 0.21 0.05395 10 0.21 0.05395 10 0.20  0.05395

6 Discussions on Numerical Results

Table 1 contains the numerical results obtained through the new method vis-a-vis some existing methods.
Table 2 displays the convergence trend of algorithm (1) on problem (12). These results indicate that the new
method compares favorably well with the other methods. The execution time depends on various methods
used for evaluating the step lengths and the speed of computer processing unit. We observed that the new
method is relatively faster in some of the iterations recorded for the tested problems. In confirmation, Figs. 1
and 2 shows that the new method is fast and less costly as the number of function iterations per computed
problem is relatively low. Finally, we saw that the results are accurate.

Table 2. Solution of problem (12) by algorithm (1)

Iteration f( x) Sum of constraints
1 0.900335462627903 4.000000000000000
2 0.059832098605313 0.068911047490848
3 0.054326438636889 0.004569764836374
4 0.053979357005701 0.000052498245927
5 0.053952294603960 0.000093989215249
6 0.053950054179953 0.000036636879952
7 0.053949865266059 0.000011504805313
8 0.053949849268435 0.000004014424548
9 0.053949847897123 0.000000713781098

12
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Fig. 2. Performance profiles on execution time

7 Conclusions

We hereby present a fourth-order nonlinear conjugate gradient method in equality constrained optimization
to scientists and engineers. Some of the basic properties of the method have been explored and exploited.
Numerical results show that the method is highly efficient and reliable.

13
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