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Abstract

Let A be a 3D symmetric elasticity tensor not necessary isotropic. If µ is an invariant measure

on SO(3), then µ is a convex combinaison of the Haar measure. The nearest isotropic elasticity

tensor is obtained by integrating the tensor A on the rotation group SO(3). For the numerical

approach, we integrate the elasticity tensor on the unit ordinary ball B(0, 1).
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1 Introduction

In linear elasticity, the stress tensor and the strain tensor of a material are connected at a given
temperature, by Hooke’s law. Thus, each material is characterized by its elasticity tensor A, but
this correspondence is not unique. Indeed, given the explicit component of A depends on the choice
of an orthonormal basis in which are expressed tensor components. A change of orthonormal basis
induces an action of the rotation group SO(3) on the space of elasticity tensors (Ela). Therefore,
from the viewpoint of linear elasticity, describing all materials is to describe the orbits of the action
of the rotation group SO(3) on Ela.

Chandwick et al. [1] proved that there are eight classes which can be put into correspondence with
the eight classical symmetry groups as described by Forte and Vianello [2]: triclinic, monoclinic,
tetragonal, trigonal, orthotropic, transversely isotropic, cubic and isotropic materials. We are
interested here on the isotropic elasticity tensors.

LetA0 be a raw elasticity tensor (because of the experimental errors) determined by any experimental
method, e.g., the acoustical one presented by François et al. [3,4].

In the literature the least squares method is applied to research the nearest isotropic law. François
et al. [4,5] propose an intrinsic function that creates from the raw tensor A0 and the arbitrary base
B a tensor Ab which has the chosen symmetric group G. This function calculates the average of
A0 on its orbit according to GB related to the base B. The natural symmetry base Bs is the one
for which the relative discrepancy D(B) between Ab and A0 can be called the distance from A0

to As; in other words the distance to the symmetric group G.

This approach was also developped by M. Vianello in [6] where he minimizes the distance between
the raw elasticity tensor measured and its invariants polynomial decomposition.

There are also some methods of parameterization of SO(3) to determine the elasticity tensor.
A. Boná et al.[7] propose a parametrization of the twenty-one-dimensional space of elasticity tensors
by eighteen parameters and three Euler angles in such a way that Euler angles determine the
orientation of a natural coordinate system. Six of these parameters represent the rigidity moduli of
the elasticity tensor, an-other twelve parameters determine the six orthonormal eigentensors with
respect to the three orthonormal eigenvectors.

Sandra Forte et al. [8] propose a decomposition based on the Haar integral. Using the property of
the left and right invariance of the Haar integral, they calcultate the restricted invariants on the
space of elasticity tensors. The linear elasticity tensor is a linear combinaison of elements of the
orbit centered at the origin.

The aim of this article is that we (effectively) calculated numerically the average on the group of
SO(3) by performing (by the parameterization of Olinde Rodrigues) the integration on a three-
dimensional unit ball (discretized by finite elements).

The validation example is a numerical simulation (noisy isotropic law) and not an experimental
measurement of the elastic coefficients of a real material.

All vector spaces, matrices, ect., considered in this paper are real.

Latin indices vary in the set {1, 2, 3}, save when they are used for indexing sequences, and sommation
convention with respect to repeated indices is systematically used in conjunction with this rule.

Spaces of functions, vector fields, and symmetric matrix fields, defined over an open subset are
respectivelly denoted by italic capitals, boldface Romain, and spacial Roman capitals.
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2 Numerical Integration on SO(3)

2.1 Hooke’s Law

Chandwick et al. [1] : in relation to some orthogonal basis, the components of the stress and strain
tensors are σij and ϵij , respectively and Hooke’s law takes the form σij = Aijklϵkl where Aijkl are
the components of the fourth-order elasticity tensor A. The components of A satisfy the symmetry
relations Aijkl = Ajikl = Aijlk = Aklij , due to the symmetry of the stress and strain tensors and
the requierement that no net work be done by an elastic material in a closed loading cycle.

2.2 Classical Determining of the Tensor A

Let A be an elasticity tensor. We are looking for the nearest isotropic elasticity tensor.
Let us define the linar mapping : H(ϵ) = λtr(ϵ)I + 2µϵ = Aϵ. Hence, λ and µ are the unkown
parameters since the 21 coefficients of A are given.

For the classical method, the problem leads to minimize P(λ, µ) = 1
2
tr
[
(A−H)2

]
. P is a second

degree polynomial since H and A are explicited in Voigt normalized basis:

E1 =

1 0 0
0 0 0
0 0 0

 ; E2 =

0 0 0
0 1 0
0 0 0

 ; E3 =

0 0 0
0 0 0
0 0 1

 ;

E4 =
1√
2

0 1 0
1 0 0
0 0 0

 ; E5 =
1√
2

0 0 1
0 0 0
1 0 0

 ; E6 =
1√
2

0 0 0
0 0 1
0 1 0


For the isotropic material, the elasticity tensor is written in Voigt basis:

A =


λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0 0
0 0 0 µ 0
0 0 0 0 0 µ


One can explicit H and A on the basis constituted of five deviatorics and a spherical matrices:

H =


2µ (0)

(0)
. . . 0

2µ
0T 3λ+ 2µ

 and A =

(
S v
vT α

)

where S is a 5× 5 symmetric matrix, v ∈ R5 and α ∈ R.

Let I5 be the 5× 5 identity matrix, then the polynomial P(λ, µ) is written

P(λ, µ) =
1

2
[α− (3λ+ 2µ)]2 + 10µ2 − 2µtr

[
(S− 2µI5)

2]+ vTv.

For the classical approach, one has:

3λ+ 2µ = α and 2µ =
1

5
trS.

This choice is justified by the fact that the elasticity tensor is diagonal in this basis and calculations
are more simple.

Let us develop a new approach inspired from Sourriau [9].
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2.3 Integration on the Rotation Group SO(3)

SO(3) is a semisimple Lie group or unimodular group.

Let R be the 3 × 3 rotation matrix. We define the Haar positive left invariant measure dµ. Since
SO(3) is unimodular group, this meausure is also right invariant (see [10]).

First, we will parametrize rotation matrices with Rodrigues coefficients.

2.4 Rotation Parameterization

Consider a rotation with the angle θ around the unit vector u, the Gibbs formula is given by:

R = cos(θ)I3 + sin(θ)j(u) + (1− cos(θ))u⊗ u, θ ∈ [0, π],

where we define the matrix j(u) =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

.

The Rodrigues coefficients are:

m0 = cos

(
θ

2

)
; mi = sin

(
θ

2

)
ui, i = 1, 2, 3.

If we denote m = (m1,m2,m3)
T , we can rewrite the Gibbs formula:

R =
(
2m2

0 − 1
)
I3 + 2m0j(m) + 2m⊗m.

This expression is second degree respect to the parameters.

Since 0 ≤ θ ≤ π, the real m0 ∈ [0, 1]. From m0 ≥ 0 and (m0)
2 + (m1)

2 + (m2)
2 + (m3)

2 = 1, one
has: m0 =

√
1−m.m. Therefore the vector m is an element of the unit compact ball B(0, 1), and

consequently SO(3) is compact and we can parametrize SO(3) by the Rodrigues parameters m1,
m2 and m3 [11,12].

Proposition 2.1. The unique Haar measure is

dµ =
1

π2

dm1dm2dm3

m0
. (2.1)

Comments Instead of integrating on SO(3) one integrates on the unit ordinary ball B(0,1) :∫
SO(3)

f(R)dµ =

∫
B(0,1)

f(R(m))
1

π2

dm1dm2dm3√
1−m.m

.

Let us verify that
∫
B(0,1)

dm1dm2dm3
m0

= π2.∫
B(0,1)

dm1dm2dm3√
1−m.m

=

∫ 1

0

S(r)√
1− r2

dr S(r) is the sphere surface

= 4π

∫ 1

0

r2dr√
1− r2

= π

∫ π

0

(1− cos θ) dθ = π2.

Proof. of the proposition : We seek the Haar measure in density measure form

dµ = ρ(m)dm1dm2dm3.
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Let us prove that the left-invariance imposes that

ρ(m) =
C√

1− (m1)2 − (m2)2 − (m3)2

where C is a constant.

One can verify that the right-invariance leads to the same conclusion.

The definition R′ = ΩR, Ω ∈ SO(3) leads to [12]{
n′
0 = m0n0 −m.n

m′ = m0n+m ∧ n.

The invarianbility of the Haar measure dµ = ρ(m)dm is equivalent to the condition

ρ(m′)dm′ = ρ(m)dm. (2.2)

Let the matrix J be the jacobean of the mapping which transforms m to m′. Haar measure imposes
that for all n, ρ(m′)detJ = ρ(m).

Now, let us calculate the jacobean J.
First, we verify that (m′

0)
2
+m′.m = 1.

Indeed,(
m′

0

m′

)
=

(
n0 −nT

n n0I3 − j(n)

)(
m0

m

)
where j(n) =

 0 −n3 n2

n3 0 −n1

−n2 n1 0



= n0I4 + n1


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

+ n2


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

+ n3


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


The product (

n0 −nT

−n n0I3 + j(n)

)(
n0 −nT

n n0I3 − j(n)

)
is the 4× 4 identity matrix.

Secondly, to calculate the jacobean one can write(
δm′

0

δm′

)
=

(
n0 −nT

n n0I3 − j(n)

)(
δm′

0

δm′

)
Since one has δm0 = − 1

m0
m.δm and δm0 = 1

m′
0
m′.δm′, therefore(

δm′
0

δm′

)
=

(
−mT

m0

I3

)
δm.

Finaly, the jacobean matrix is the 3× 3 matrix

J =

0
0 I3
0

(n0 −nT

n n0I3 − j(n)

)(
−mT

m0

I3

)
.

Once we calculate J, one realizes, due to the compatibility conditions, that the condition (2.2) is
only possible if ρ(m) = constant

m0
.
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2.5 Rotation Group Action on the Elasticity Tensor

Let Ela be a 3D strain space. This space is Euclidean space if we consider the scalar product:

E × E −→ R
(ϵ, ϵ′) 7−→ tr(ϵϵ′)

An elasticity tensor is a self-adjoint linear mapping.

We define a SO(3) group action on the six-dimensional vectorial space of elasticity tensors by:

∀ ϵ ∈ E, ∀ R ∈ SO(3) : AR(ϵ) = RA(R−1ϵR)R−1.

We denote by R(A) = AR this action. For two rotations R1 and R2 we can verify that

(R1R2)(A)(ϵ) = R1R2A
(
R−1

2 R−1
1 ϵR1R2

)
R−1

2 R−1
1 = R1 (R2 (A)) (ϵ).

Then, for the elasticity tensors, the action satisfies the group action law

(R1R2)(A) = R1(R2(A)).

if A is isotropic, therefore R(A) = A for all R. If due to steps approximation, the tensor A is not
isotropic, one can take the combination of R on the SO(3) group

H =

∫
SO(3)

R(A)dµ.

Proposition 2.2. This combination of R on the SO(3) group is isotropic.

Remark 2.1. For the numerical implementation, we use the Rodrigues coefficients to integrate:

H =
1

π2

∫
B(0,1)

R(m)A
dm

m0
. (2.3)

We calculate H by the finite element method.

Proposition 2.3.
∫
SO(3)

R(A)dµ is the solution of the minimization problem of the classical

method.

Proof. this proposition is due from the fact that SO(3) preserves the lengths.
Let us prove that

3µ′ + 2λ′ = α and 2µ′ =
1

5
trS

For the first assertion, one has R(A) = RA
(
R−1ϵR

)
R−1.

Let ϵ = I3, we obtain R(A) = RA(I3)R
−1.

We can rewrite A = α I3√
3
⊗ I3√

3
; therefore AI3 = α I3

3
and tr [I3 (R(A)I3)] = tr [I3A(I3)] = α.

Furthermore, from the formula H(A) = 1
π2

∫
B(0,1)

R(m)A dm
m0

, we conclude

tr [I3H(I3)] = 3λ′ + 2µ′ =
1

π2
α

∫
B(0,1)

dm

m0
= α.

For the second one, we rewrite

H(A)− α
I3√
3
⊗ I3√

3
=

1

π2

∫
B(0,1)

R(m)

[
A− α

I3√
3
⊗ I3√

3

]
dm

m0

Let us use this lemma:
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Lemma 2.1. The group action conserves the trace.

So, if we take the trace of both members, we get

10µ′ =
1

π2
trS

∫
B(0,1)

dm

m0
= trS.

Proof. of the lemma : we must prove that R(A) and A have the same trace.

One can take R(A) = e−θMAeθM with Mϵ = ϵj(α)− j(α)ϵ.
Then,

trH =

∫
SO(3)

tr(A)dµ = trA

∫
SO(3)

dµ = trA.

3 Numerical Example

Instead of analytically integrating Eq. 2.3, a numerical approach is applied. The unit ordinary
ball B(0, 1) is discretized into 270424 tetrahedral elements, as shown in Figure (1). Initial values

Figure 1: Discretized ball with 270424 elements

of material constants are chosen as: λ = 50 MPa, µ = 10 MPa. A perturbation is applied to the
elasticity tensor A by

Aijkl = A0
ijkl + 0.01[1 + (i− 1)(j − 1)− 0.32(k − 1)(l − 1)] (3.1)
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For numerical purpose, it is more convenient to write the elasticity tensor in a symmetric matrix
form based on Voigt’s representation:

[A]o =


70.01 50.0068 49.9972 0.01 0.0036 0.01

70.0168 50.0072 0.02 0.0136 0.02
70.0372 0.05 0.0436 0.05

10.01 0.0036 0.01
10.0236 0.0036

10.01

 (3.2)

After integration, we obtain new material constants as: λ = 46.9757 MPa, µ = 9.4004 MPa. The
elasticity matrix becomes:

[A]n =


65.7766 46.9757 46.9758 −0.000482 −0.000257 −0.000589

65.7765 46.9757 −0.000264 −0.000381 −0.000297
65.7762 −0.000223 −0.000085 −0.000118

9.40039 −0.000364 −0.000146
9.40026 −0.000306

9.40038

 (3.3)

We remark that the two coefficients of Lamé are determined with good accuracy: the first coefficient
λ is determined with 6% accuracy, and the second µ is determined with 3% accuracy.

4 Conclusion

Based on the Souriau variational approach, we established that the nearest isotropic elasticity tensor
of a measured elasticity tensor can be determined by integration on the rotation group SO(3).
The rotation matrices parametrization within Rodrigues coefficients leads to integrate on the unit
ordinary ball B(0, 1). The unit ball is discretized by the finite element approach. The numerical
results confirm the approach developped. The accuracies obtained on the Lamé’s coefficients are
very good.

In this work, the elasticity tensor was identified. We propose in the future to extend this approach
to other symmetry group and this work is being undertaken.
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