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Abstract
As the development of atom scale devices transitions fromnovel, proof-of-concept demonstrations to
state-of-the-art commercial applications, automated assembly of such devicesmust be implemented.
Herewe present an automationmethod for the identification of defects prior to atomic fabrication via
hydrogen lithography using deep learning.We trained a convolutional neural network to locate and
differentiate between surface features of the technologically relevant hydrogen-terminated silicon
surface imaged using a scanning tunnelingmicroscope. Once the positions and types of surface
features are determined, the predefined atomic structures are patterned in a defect-free area. By
training the network to differentiate between common defects we are able to avoid charged defects as
well as edges of the patterning terraces. Augmentationwith previously developed autonomous tip
shaping and patterningmodules allows for atomic scale lithographywithminimal user intervention.

Introduction

With theminiaturization of complementarymetal-oxide-semiconductor technology approaching its
fundamental limit, attention has been focused on developing alternatives built at the atomic level [1–3]. If these
devices are to be commercially viable, theymust be built in away that allows parallelized and automated
fabrication. Scanning ProbeMicroscopy (SPM) has provided ameans for several different varieties of atom-scale
device fabrication includingmemory systems using a Cu/Cl system [4] or dangling bonds (DBs) on hydrogen-
terminated silicon (H–Si) [5], spin-based logic using Fe atoms on aCu(111) surface [6], single-atom transistors
using phosphorus dopants in silicon [7], and binary atomicwires and logic gates usingDBs on theH–Si surface
[8]. Despite the progressmade in the design of these and other device concepts [4, 9–11], reliable device
fabrication is usually limited by patterning accuracy or variability in the fabrication process. DBs on theH–Si
surface have been shown to be rewritable [5, 12, 13] aswell as stable at room temperature [14, 15]making them
an excellent candidate for atom scale devices.

TheH–Si surface has found applications in the study of surface chemistry including self-directed growth of
orderedmulti-molecular lines [16, 17] and reaction energetics [18]. The controllable desorption of hydrogen
from theH–Si(100)−2×1 surface using the probe tip of a scanning tunnelingmicroscope (STM) [19], allowed
formore precise studies of surface chemistry [20] including fabrication of rudimentary devices [21, 22].With the
continued study ofDBs onH–Si surfaces,more complex and functional devices have been developed; however,
complete automation of the hydrogen lithography process has been limited by threemajor factors. First, the
probe requires continuousmonitoring to ensure an atomically sharp patterning condition. This stepwas
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recently automated usingmachine learning [23]. Second is automated hydrogen lithography error detection and
correction through recently realized controlled hydrogen repassivation techniques [12, 13]. Third is the
automated characterization and localization of defects on theH–Si(100)−2×1 surface to assign an ideal
patterning area by avoiding certain charged and uncharged defects which is the subject of the present work.

Defects found on hydrogen-terminated samples can take the formof sub-surface or surface charge centers
which can affect the operation of nearby electric field sensitive atomic devices [24], or as non-charged surface
irregularities which limit the space available for patterning.Manually locating and characterizing defects is quite
labor intensive and depends on the randomdistribution of these defects and the cleanliness of the terminated
sample. Initial attempts to automate surface defect recognition relied on fast Fourier transforms [25]; however,
the characterization of defects was limited to a few ofmany different species.More recently,machine learning
has been applied to assist in classification and analysis of surface structures using SPM [26–30], but it has yet to
be applied to surface features of theH–Si(100)−2×1 surface. Here, we implement an encoder-decoder type
convolutional neural network (CNN) [31–33] to locate and classify features on the surface. By using semantic
segmentation [34, 35], the neural network is trained to recognize a variety of charged and uncharged defects
commonly found on theH–Si(100) surface. After implementing themodel with existing patterning [5], and
probe tip forming suites [23], full automation of the patterning process is achieved.

Crystalline silicon is tetravalent and forms a diamond lattice; each silicon atom shares four bonds, two above
and two below the atom. At the (100) surface, two of these bonds are unsatisfied so the crystal reorganizes to a
lower energy configuration. The addition of atomic hydrogen to the silicon surface during the annealing process
results in the formation of one of three possible phases. The likelihood of forming such phases can be controlled
by the annealing temperature at which the sample is prepared.On a silicon surfacewith (100) orientation, the
2×1 phase forms at∼377 °C, the 3×1 phase at∼127 °C, and the 1×1 phase below∼20 °C [14, 36, 37]. The
most commonly used forDBpatterning is the 2×1 reconstructionwhere each surface atompairs with a
neighboring surface atom to create a dimer pair. The dimer pairs are assembled in rowswhich run parallel to
each other across the surface. The unsatisfied bond of each silicon atom can either be terminatedwith hydrogen
or left vacant creating aDB. Although the preparation of theH–Si(100)−2×1 phase is well understood, some
surface defects decorate the otherwise perfectly clean, defect-free surface.We are able to image the defects as well
as cleanH–Si(100) using a STM.

In order to train theCNN to recognize these surface defects, theymust be labeled in a pixel-wisemanner in
the STM images. Our neural network is trainedwith seven different classes of defects. Thefirst is regular, clean
H–Si(100)−2×1 (figure 1(a)). There are two types of charged defects labeled ‘type 2’ [24, 38] (figure 1(b)), the
origin of which is yet to be confirmed, and ‘DB’ orDB [19, 39] (figure 1(c)). The remainder of the known surface
defects are understood to exist in a neutral charge state and consist of diversely reconstructedH–Si, adatoms,
and adsorbedmolecules. Figure 1(d) shows a ‘dihydride’ inwhich two silicon atoms each bind to 2 hydrogen
atoms instead of forming a dimer pair [40]. Figure 1(e) shows a ‘step-edge’which is a drop in the surface height
by one atomic layer. Dimer rows run perpendicular to the original direction above the step and the boundary of
the step edge is oftenmarkedwith 1× 1 or 3× 1 reconstruction [41–43]. Figures 1(f)–(j) show several different
defects that either appear too infrequently in our training data to properly train the neural network, or are found
too close to each other to properly segregate during data labeling (figure 1(k)). Defects of this typewere assigned
the label ‘clustered’. It is hoped that future implementations of the networkwill allow for further segregation of
the ‘clustered’ class into individual defect classes. Figure 1(l) shows thefinal label class, an adsorbed species,
molecule, or cluster of atoms of unknown origin labeled as ‘impurity’. These defects are thought to be something
other thanH–Si and can usually be reduced by eliminating any potential contaminants during sample
preparation. Further discussion on the origins and structure of these defects including an investigation of
individual defects of the ‘clustered’ class will be presented in a futurework [44].

Methods

All experiments were performed using anOmicron LowTemperature STMoperating at 4.5 K and ultrahigh
vacuum (4× 10–11 Torr). Tipswere electrochemically etched frompolycrystalline tungstenwire and resistively
heated in ultrahigh vacuum to remove surface adsorbates and oxide, and sharpened to a single atom apex using
field ionmicroscopy [45]. In situ tip processingwas performed by controlled tip contact with the surface
[13, 46, 47]. Tip shaping parameters were the same as in [23].

Samples usedwere highly arsenic doped (1.5× 1019 atoms cm−3) Si(100). Samples were prepared by
degassing at 600 °Covernight followed byflash annealing at 1250 °C.The samples were then terminatedwith
hydrogen by exposing them to atomic hydrogen gas at 330 °C. It should be noted that these sample preparation
guidelines were only loosely followed for all samples shown in this paper in order to ensure that a significant
number of surface defects were present on the sample.
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Image and data acquisitionwas done using aNanonis SPMcontroller and software. All training data was
acquired at an imaging bias of either 1.3 or 1.4Vwith a tunneling current of 50 pA. An empty states imaging bias
was exclusively used due to the enhanced contrast around certain defects. Specifically, distinctions between
charged and uncharged defects as well as dihydrides aremuch easier to notice when analyzing the empty states
rather than the filled states images as shown infigure S2. The patterning automation routinewas programmed in
Python and Labview using theNanonis programming interface library.

TheCNNwas implemented usingKeras (2.1.3)withTensorFlow backend. Data was labeled using LabelMe
software [48].

Results and discussion

Neural network achritecture
The architecture of theCNNwas implemented to support semantic segmentation of the images. Semantic
segmentation allows for both the localization and classification of objects in images. This can be used inmany
applications where the networkmustmake a distinction between different objects in an image including use in
self-driving cars [49–51] andmedical image analysis [52–54]. In our case, a distinction ismade between the
pixels thatmake up each of the labeled defects.We trained various CNNarchitectures (figure S6) and
implemented the one that shows the greatest performance in defect recognition (figure 2) (Labeledmodel 8 in
the SI). An encoder-decoder type architecture is usedwhich allows for higher order feature extractionwhile
minimizing the number of trainable parameters [31, 33, 55]. Each encoder layer consists of two sets of a
convolutional layer (3× 3 kernel), batch normalization layer, and a ‘relu’ activation layer followed by amax-
pooling layer (2× 2 kernel). The number of convolutional filters doubles with each encoder layer starting with
32filters reaching amaximumof 128filters. Following the encoder layers, a series of decoder layers are applied
to bring the output of the network to a size whichmatches the input. Each decoder layer consists of an up-
sampling layer (2× 2 kernel), convolutional layer (3× 3 kernel), batch normalization layer, another convolution
layer (3× 3 kernel) and batch normalization layer followed by a relu activation layer. Thefinal output layer
consists of a convolutional layer which uses 7filters (3× 3 kernel) followed by a softmax activationwhich
produces a one to onemapping of the surface for each of the labeled classes.

Figure 1.Defect classes: empty state images of various defects found on a typicalH–Si(100) surface labeledwith their appropriate class.
Each image is 4×4 nm2 takenwith a STMwith a sample bias of 1.4 V and a tunneling current of 50 pA. The colored bordersmatch
the assigned contour colors offigure 3. A normalized version is shown infigure S1, which is available online at stacks.iop.org/MLST/
1/025001/mmedia.
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Data set and training
The network training data set was compiled from28 images (100× 100 nm2with a resolution of 1024×1024).
Each of the 28 images were divided into 64 smaller images (128× 128). Each of the smaller images in the training
set were rotated by 90°, 180°, and 270° as well asflipped along its axis and subsequently rotated increasing our
training data by a factor of 8. Images were divided into training, testing, and validating images at a ratio of
∼2/3:1/6:1/6, respectively (corresponding to 9560:2384:2393 images). Although all images used in the training
set are of the same size, the networkwas designed to take images of varying sizes as inputs. The only restriction to
the input images is that they all have the same resolution of 1024 pixels/100 nm. This ensures that each
convolutionalfilter will extract the same feature profiles on a variety of STM images.We utilized theAdam
optimization algorithm [57]with learning rate of 0.01. Subsequentmodel retrainingwas done using a learning
rate of 0.001which very slightly improved network performance in this case. The networks were trained using a
categorical cross entropy loss function. The network quality was assessed using a soft Dice loss function, to
reduce the effect of the large class imbalance found in our training data [58].

Neural network performance
A subset of the outputs of our fully trainedmodel can be seen infigure 3. The cleanH–Si label was left out
because of overlapping boundaries with the defects.More examples of the predicted label outputs including
cleanH–Si can be seen infigures S3 and S4. The overall Dice score of themodel is recorded at 0.86whichwas
calculated as aweighted average of theDice score for each label. A full confusionmatrix showing all individual
Dice scores including other network architectures can be seen in figure S7. A large portion of the 0.14 inaccuracy
can be attributed to the fact that we hadmultiple users labeling data without a standardized defect size in place.
This effect can be seenwhen comparing the labeled test data set with the predicted labels (figure S5). The edges of
the labeled data are straight, while the predicted label edges show amuch rougher border. Onewould expect that

Figure 2.A representation of theCNNarchitecture used in this study. This architecture is selected by comparing the performance of
different CNNs (table S1) as well as traditionalmachine learningmethods (We include in the SI, our attempt at using SIFT features
[56] to classify surface defects.) It consists of 3 convolutional encoder layers followed by 3 convolutional decoder layers. The final set of
images is passed through onefinal convolutional layer followed by a softmax activation giving 7 separate images corresponding to each
of the 7 labels. The output displayed heremarks the cleanH–Si in black.
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if each of the defect types were tracedwith a constant label size, the predicted edges would better replicate the
labeled edges. This effect can be seen in the confusion tables (figure S7). Lower scores are observed for defects
with a high edge-to-surface pixel ratio (type 2,DBs, dihydrides) compared to defects with a lower edge-to-
surface pixel ratio (H–Si). For our purposes, this does not present an issue as the size of the defects aremuch
larger than the variation in the predicted defect edges.

Augmentationwith scanning probe lithography
With the successful development of the neural network, it was implemented in the automation of hydrogen
lithography. Figure 4 summarizes the current automation process. The user inputs a pre-designed pattern they
wish to create (inset offigure 4(b)) and scales the coordinates of the scannerwith the surface lattice parameters
such that theDBpattern alignswithH–Si atoms on the surface. The user initiates the program and the SPM
controller takes a scan of the samplewith a resolutionmatching the training data. The image is fed to the neural
network and an output image containing each of the defects is returned. In order to decrease the local
electrostatic interactions of local charge defects with theDBpattern [24], an effective radius of∼5 nm is applied
to all type 2 defects on the surface. This increased spacing does not need to be applied toDBs since they are now
routinely erasable. The same radius is applied to step-edges aswell to allow space to ensure all subsequentDB
patterns aremade on the same step terrace. The program then identifies the area on the sample furthest from any
defects that would support the pattern (white box infigure 4(a)). Once found, a smaller scan of the viable area is
taken to confirm the dimer directionmatches that of the pattern. If not, the pattern is alignedwith the next best
viable area until the dimer direction is correct. The smaller scan is then used to shift the pattern such that each
DB lies directly above their correspondingH–Si atomon the surface. The programbegins patterning by
positioning the tip above the specifiedH–Si atoms and applying an initial bias pulse of 1.8 Vwith a pulsewidth of
10ms. If theDB creation is unsuccessful, the pulse bias is increased by 0.1 V intervals (up to amax of 2.5 V) until

Figure 3.Traces of the predicted labels of theCNNand the original input images (constant current of 50 pA and 1.4V). Each image is
40× 40 nm2.
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theDB is created. The tip continues this process for all desiredDBs until the pattern is complete (figure 4(b)). Tip
shaping takes place if theDB is not successfully created after the bias pulse has reached itsmaximumvalue. A full
flow chart of the patterning program can be seen in the SI (figure S8) aswell as additional patterning examples
(figures S10–S13). The same procedure could be applied tomore complicated fabrication schemes.

Conclusion

Continuing on the path to fully develop atomically-precise fabrication tools, we have successfully implemented a
routine that can assess the quality of a sample, identify a suitable area that is free of defects, and execute a
hydrogen lithography procedure. The routine is based on aCNNwhich uses semantic segmentation to locate
and differentiate between certain charged and uncharged defects that inhibit themanufacturing process or
potentially alter the operation of patterned devices.We have demonstrated the applicability of our approach by
training the neural networkwith images of defects commonly found on theH–Si(100)-(2× 1) surface.
Hydrogen lithographywas shownby patterning an 8DB structure on theH–Si surface. It is envisioned that
defect-free regions adequate for fabrication of functional logic ormemory units comprised of roughly one
hundred atomswill exist and that interconnections between such units will be custom routed so as to avoid
defects. In this way, defect-free surface areas will be connected to form larger, effectively defect-free circuit
blocks. In addition to avoiding defects, erasure of certain defects identified using the neural network is expected
to become fully automated in futureworks. The techniques shownhere are applicable to any type of device
fabrication or lithography using any formof SPMaswell as subsets of semiconductor device fabricationwhere
the quality of thematerials usedmust be assessed to optimize the fabrication process.
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