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Abstract

We study a unique hierarchical control problem for a two-stoke linear system, adjoint to an age and space
dependent population dynamics problem. Using Stackelberg’s method, we introduce two levels of control:
a boundary control to achieve optimal flow regulation and a distributed control for null controllability.
Our approach employs Carleman inequalities to address non-homogeneous Dirichlet boundary conditions,
leading to new insights in controlling invasive species populations. These results highlight the applicability of
hierarchical controls in ecological systems, providing a robust framework for future studies in control theory
and population dynamics.

Keywords: Hierarchical stackelberg; stroke linear system; leadership model.

2010 Mathematics Subject Classification: 35K05, 49J20, 93C05, 93B05.

1 Introduction

We consider a population with age dependence and spatial structure, and we assume that the population lives
in a bounded domain Ω ⊂ Rn, n ∈ N\ {0} with boundary Γ:= Γ0 ∪ Γ1 of class C2 verifying Γ0 ∩ Γ1 6= ∅ .
Let q = q(t, a, x) be the distribution of individuals of age a ∈ [0, A] at time t ∈ [0, T ] and location x ∈ Ω. Let
also A ≥ 0 be the life expectancy of an individual and the final time T ≥ 0. Let O and ω be a nonempty
subsets of Ω. We set Q = (0, T ) × (0, A) × Ω, ΩT = (0, T ) × Ω, ΩA = (0, A) × Ω, OTA = (0, T ) × (0, A) × O,
ωTA = (0, T )×(0, A)×ω, Σ = (0, T )×(0, A)×Γ and Σ1 = (0, T )×(0, A)×Γ1. We denote by µ = µ(t, a, x) ≥ 0, the
natural death rate of individuals of age a at time t and location x. Then, we consider the following linear system:


−∂q
∂t
− ∂q

∂a
−∆q + µq = h0χO + kχω in Q,

q(t, a, x) = vχΓ0 on Σ,
q(T, a, x) = 0 in ΩA,
q(t, A, x) = 0 in ΩT ,

(1.1)

where the controls v and k belong respectively to L2(ωTA2 ) and L2(Σ0), χX denotes the characteristic function
on the open set X. The function h0 is know and represents the supply of individuals. We make the following
assumptions 

µ(t, a, x) = µ0(a) + µ1(t, a, x) in Q,
µ1 ∈ L∞(Q); µ1(t, a, x) ≥ 0 for (t, a, x) in Q,

µ0 > 0, µ0 ∈ L1
loc(0, A), lima→A

∫ a
0
µ0(s)ds = +∞.

(1.2)

Under the above assumptions on the data, it is well known that system (1.1) has a unique solution q(v, k) =
q(t, a, x; v, k) ∈ H2,1(Q) where from now on

Hr,s((0, T )× (0, A)× X) = L2((0, T )× (0, A);Hr(X)) ∩Hs((0, T )× (0, A);L2(X)).

Moreover, there exist a positive constante C = C(T ) such that

‖q‖H2,1(Q) ≤ C
(
‖h0‖L2(OTA) + ‖v‖L2(Σ0) + ‖k‖L2(ωTA)

)
, (1.3)
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and it follows from the continuity of the trace that,

∥∥∥∥ ∂q∂ν
∥∥∥∥2

H
1
2
, 1
4 (Σ)

≤ C
(
‖h0‖L2(OTA) + ‖v‖L2(Σ0) + ‖k‖L2(ωTA)

)
. (1.4)

Remark 1.1. H
1
2
, 1
4 (Σ) is a Sobolev space, where the index 1

2
represents the spatial regularity on X and the index

1
4

represents the regularity with respect to time t and age a on the Σ boundary.

The system (1.1) can describe the adjoint of a dynamics problem of an invasive species considered as a threat
in a domain that can be materialised as a cornfield, where the supply of the invasive species is known, which
translates into the function h0. So, we want to drive the distribution of the invasive species to zero at the initial
time with appropriate control acting on a sub-domain of the cornfield, trying meanwhile to keep the flux of
the invasive species to zero with another control acting in another of boundary of the cornfield during the time
interval (0, T ). We thus consider the following problems.

Problem 1. (Optimal control problem) Let Ω be a bounded open set of Rn, n ∈ N∗ with bounary Γ:=
Γ0∪Γ1 of class C2 verifying Γ0∩Γ1 6= ∅ and ω be a non-empty subset of Ω. Given k ∈ L2(ωTA), find the control
u := u(k) ∈ L2(Σ0) such that

J(u) = inf
v∈L2(Σ0)

J(v), (1.5)

where

J(v) =

∥∥∥∥ ∂q∂ν (v, k)

∥∥∥∥2

L2(Σ1)

+ α‖v‖2L2(Σ0), (1.6)

with α > 0, ν is the unit exterior normal vector of Γ,
∂q

∂ν
is the normal derivated of q with respect to ν and

q(v, k) is solution of system (1.1).

Problem 2. (Null controllability problem) Let ω be a non empty subset of Ω. Let also u(k) be the optimal
control obtain in the Problem 1. Then, find a control k ∈ L2(ωTA) such that if q = q(t, a, x;u(k), k) is solution
of the system (1.1), then

q(0) = q(0, a, x;u(k), k) = 0 in ΩA. (1.7)

Remark 1.2. Note that from (1.4), the cost function defined by (1.6) is well defined.

The Stackelberg leadership model is a multiple-objective optimization approach proposed by H. Von Stackelberg
in [1]. This model involves two companies (controls) which compete on the market of the same product. The
first(leader) to act must integrate the reaction of the other firms (followers) in the choices it makes in the
amount of product that it decides to put on the market. From a mathematical point of view, more specifically
in the context of partial differential equations the Stackelberg strategy was introduced by J-L. Lions in [2, 3],
the author used respectively the Stackelberg strategy for the parabolic and wave equation and subjected to
two controls. M.Mercan et al. in [4] use the hierachical control for the adjoint of a dynamics problem with
costraint on the state. The authors used the hierarchic control which combine the controllability problem with
robustness. The follower was responsible for a null controllability problem, while the leader addressed an optimal
control problem. G. Mophou et al. studied in [5] the hierarchical control for a population dynamics model with
the distribution of newborns as unknown. The leader was in charge of a null controllability problem while the
follower solved an optimal control problem in presence of the missing data. Recently in 2022 [6], the authors
revisits the hierachical control for a degenerate parabolic equation with missing data. The authors use of the
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low-regret control to solve the associated optimal control problem. For more literature on stackelberg control,
we refer the reader to [7, 8, 9, 10, 11, 12, 13, 4, 14, 15, 16, 17, 18, 19, 20]. The authors used the hierarchic
control which combine the controllability problem with robustness.

In the literature on Stackelberg strategy, most controls are distributed. For what concerns boundary controls, we
can reference the works in [21, 22, 23, 24]. In [24], the authors present a Stackelberg-Nash strategy for the heat
equation combining the concepts of controllability with robustness: the main control (the leader) is in charge of
a null-controllability objective, while a secondary control (the follower) solves a robust control problem. First,
the authors consider the case with a boundary follower and a distributed leader, and secondly, the case with
a distributed follower and a boundary leader. Finally, they examine the possibility and limitations of placing
all the involved controls on the boundary. In [21], the authors revisit a Stackelberg-Nash strategy in [24] and
consider the case where all controls are boundary.

This work revisits the Stackelberg strategy used in [22, 24] and applies it to an adjoint population dynamics
problem. The leader, responsible for a null controllability problem, uses a distributed control, while the follower,
solving an optimal control problem, uses boundary control which consist in bringing the flow of two strok linear
system to zero. We obtain specific adjoint systems with non-homogeneous Dirichlet-type conditions. to solve the
null controllability problem, we use a Carleman-type observability inequality associated with a system of non-
homogeneous Dirichlet boundary conditions. Additionally, we apply the Poincaré inequality and the continuity
property of the trace operator to relate the boundary integral to a volume integral on Ω.

More precisely, we prove the following results.

2 Main Results

The result obtain when solving optimal control problem (Problem 1) is as follows

Theorem 2.1. Let Ω be a bounded open set of Rn, n ∈ N∗ with boundary Γ:= Γ0 ∪ Γ1 of class C2 verifying
Γ0 ∩ Γ1 6= ∅ and ω, O be a non-empty subset of Ω. Let also k ∈ L2(ωTA). Then, there exist p ∈ L2(Q) such
that the optimal control problem (1.5) has a unique solution u ∈ L2(Σ0) which is characterized by the following
optimality system: 

−∂q
∂t
− ∂q

∂a
−∆q + µq = h0χO + kχω in Q,

q(t, a, x) = uχΓ0 on Σ,
q(T, a, x) = 0 in ΩA,
q(t, A, x) = 0 in ΩT ,

(2.1)



∂p

∂t
+
∂p

∂a
−∆p+ µp = 0 in Q,

p(t, a, x) =
∂q

∂ν
χΓ1 on Σ,

p(0, a, x) = 0 in ΩA,
p(t, 0, x) = 0 in ΩT ,

(2.2)

and

u = −
∂p
∂ν

α
on Σ0. (2.3)

Moreover there exists a positif constant C = C(α, T ) such that

‖u‖L2(Σ0) ≤ C
(
‖h0‖L2(OTA) + ‖k‖L2(ωTA)

)
. (2.4)
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The result obtain when solving the null controlability problem (Problem2) is as follows

Theorem 2.2. Assume that the assumptions of Theorem 2.1 hold. Assume also that O and ω be nonempty
subsets of Ω are such that O ⊂ ω. Then there exists a positive weight function θ ∈ L∞(Q) to be define later by
(3.27) such that for any h0 ∈ L2(OTA) with θh0 ∈ L2(OTA). There exists a unique control k̂ ∈ L2(ωTA) such
that (k̂, q, p) is a solution of the null controllability problem (2.1)-(2.3). Moreover

k̂ = ρ̂ in ωTA, (2.5)

where ρ̂ satisfies 
∂ρ̂

∂t
+
∂ρ̂

∂a
−∆ρ̂+ µρ̂ = 0 in Q,

ρ̂(t, a, x) =
∂$̂

∂ν
χΓ1 on Σ,

ρ̂(t, 0, x) = 0 in ΩT ,

(2.6)

where $̂ solution of 
−∂$̂
∂t
− ∂$̂

∂a
−∆$̂ + µ$̂ = 0 in Q,

$̂(t, a, x) = −
∂ρ̂
∂ν

α
χΓ0 on Σ,

$̂(T, a, x) = 0 in ΩA,
$̂(t, A, x) = 0 in ΩT .

(2.7)

In addition, there exists a positif constant C = C(T ) such that

‖k̂‖L2(ωTA) ≤
√
C‖θh0‖L2(OTA). (2.8)

The rest of the work will be organized as follows. In Section 3, we proov the Main results. In Section 4, we
provide a discussion, which is optionally available, summarizing the implications of the findings. Finally, in
Section 5 we conclude.

3 Proof of Main Results

In this section, we are interested in the resolution of optimal control problem and null controllability problem

3.1 Proof of optimal control problem

we prove the existence and uniqueness of the optimal control solution, then we characterize it, and finally, we
provide an estimation of the optimal control

Proposition 3.1. For any k ∈ L2(ωTA), there exists a unique optimal control u := u(k) ∈ L2(Σ0) such that
(1.5) holds true.

Proof. It obtain that the fonctionnal J is coercive and strictly convex on L2(Σ0). The fonctionnal J is continuous
on L2(Σ0), Indeed we decompose the solution q(v; k) := q of the system (1.1) as follows:

q(v; k) = z(v) + τ(k), (3.1)

such that z(v) := z and τ(k) := τ are respectively solutions of the following systems:
−∂z
∂t
− ∂z

∂a
−∆z + µz = 0 in Q,

z(t, a, x) = vχΓ0 on Σ,
z(T, a, x) = 0 in ΩA,
z(t, A, x) = 0 in ΩT ,

(3.2)
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and 
−∂τ
∂t
− ∂τ

∂a
−∆τ + µτ = h0χO + kχω in Q,

τ(t, a, x) = 0 on Σ,
τ(T, a, x) = 0 in ΩA,
τ(t, A, x) = 0 in ΩT ,

(3.3)

Under the assumptions on the data, the systems (3.2) and (3.3) admit a unique solution in H2,1(Q). Moreover
we have the existence of a positive constant C = C(T ) such that the following estimates are verified:

‖z‖H2,1(Q) ≤ C‖v‖L2(Σ0), (3.4)

and

‖τ‖H2,1(Q) ≤ C‖h0χO + kχω‖L2(Q). (3.5)

Using the decomposition of q given by (3.1). We have that the cost fonction defined by (1.6) can be rewrittent
as

J(v) = P(v) + L(v), ∀ v ∈ L2(Σ0),

with

P(v) =

∥∥∥∥∂z(v)

∂ν

∥∥∥∥2

L2(Σ1)

+ α‖v‖2L2(Σ0),

and

L(v) = 2〈∂z(v)

∂ν
;
∂τ(k)

∂ν
〉L2(Σ1) +

∥∥∥∥∂τ(k)

∂ν

∥∥∥∥2

L2(Σ1)

.

It follows from the continuity of the trace and Scalar product , we have

v 7→ P(v),

and

v 7→ L(v),

are continuous on L2(Σ0). Hence v 7→ J(v) is continuous.

It then follows there exists a unique optimal control u = u(k) ∈ L2(Σ0) such that (1.5) holds. �

In order to characterize the optimal control u, we express the Euler Lagrange optimality conditions:

lim
λ→0

J(u+ λv)− J(u)

λ
= 0, ∀ v ∈ L2(Σ0). (3.6)
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Using the structure of the functional J given by (1.5), we have:

J(u+ λv) =

∥∥∥∥ ∂q∂ν (u+ λv)

∥∥∥∥2

L2(Σ1)

+ α‖u+ λv‖2L2(Σ0)

=

∥∥∥∥ ∂q∂ν (u+ λv)− ∂q

∂ν
(u) +

∂q

∂ν
(u)

∥∥∥∥2

L2(Σ1)

+ α‖u+ λv‖2L2(Σ0)

=

∥∥∥∥ ∂q∂ν (u+ λv)− ∂q

∂ν
(u)

∥∥∥∥2

L2(Σ1)

+

∥∥∥∥ ∂q∂ν (u)

∥∥∥∥2

L2(Σ1)

+ α‖u‖2L2(Σ0)

+ αλ2‖v‖2L2(Σ0) + 2

∫
Σ1

(
∂q

∂ν
(u+ λv)− ∂q

∂ν
(u)

)
∂q

∂ν
(u) dσdtda

+ 2αλ

∫
Σ0

uv dσdtda

Or

J(u+ λv)− J(u)

λ
= λ

∥∥∥∥∥ ∂q∂ν (u+ λv)− ∂q
∂ν

(u)

λ

∥∥∥∥∥
2

L2(Σ1)

+ αλ2‖v‖2L2(Σ0)

+ 2

∫
Σ1

( ∂q
∂ν

(u+ λv)− ∂q
∂ν

(u)

λ

)
∂q

∂ν
(u) dσdtda

+ 2α

∫
Σ0

uv dσdtda

Passing to the limit when λ→ 0 in the previous equation, we obtain∫
Σ1

∂z

∂ν

∂q

∂ν
dσdtda+ α

∫
Σ0

uv dσdtda = 0. (3.7)

Then z = z(v) ∈ H2,1(Q) is solution of (3.2). To interpret (3.7), we consider the adjoint state p solution of
(2.2). If we multiply the first equation of (3.2) by p and integrate by parts over Q, we obtain:∫

Σ1

∂z

∂ν

∂q

∂ν
dσdtda =

∫
Σ0

∂p

∂ν
v dσdtda.

Combining the previous relation with (3.7), we have∫
Σ0

(
∂p

∂ν
+ αu)v dσdtda = 0. ∀v ∈ L2(Σ0).

Therefor

u = −
∂p
∂ν

α
on Σ0.

Proposition 3.2. Let u ∈ L2(Σ0) be a solution of (1.6). Then we have the following estimate:

‖u‖L2(Σ0) ≤ C
(
‖h0‖L2(OTA) + ‖k‖L2(ωTA)

)
, (3.8)

where C = C(α, T ) > 0.
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Proof. In view of (3.7) and the decomposition of q given by (3.1), we have

0 =

∫
Σ1

∂z(v)

∂ν

∂q

∂ν
dσdtda+ α

∫
Σ0

uv dσdtda,

0 =

∫
Σ1

∂z(v)

∂ν

∂z(u)

∂ν
dσdtda+

∫
Σ1

∂z(v)

∂ν

∂τ(k)

∂ν
dσdtda+ α

∫
Σ0

uv dσdtda,

0 = a(v, u) +

∫
Σ1

∂z(u)

∂ν

∂τ(k)

∂ν
dσdtda ∀v ∈ L2(Σ0), (3.9)

where

a(v, u) =

∫
Σ1

∂z(v)

∂ν

∂z(u)

∂ν
dσdtda+ α

∫
Σ0

vw dσdtda ∀v, u ∈ L2(Σ0), (3.10)

is a bilinear form define on L2(Σ0)× L2(Σ0).

For any v ∈ L2(Σ0), the bilinear fom a(., .) is coercive because

a(u, u) =

∥∥∥∥∂z(u)

∂ν

∥∥∥∥2

L2(Σ1)

+ α‖u‖2L2(Σ0) ≥ α‖u‖
2
L2(Σ0).

Taking v = u in (3.9) and using the coercivity of a(., .), we deduce that

α‖u‖2L2(Σ0) ≤
∥∥∥∥∂z(u)

∂ν

∥∥∥∥2

L2(Σ1)

∥∥∥∥∂τ(k)

∂ν

∥∥∥∥2

L2(Σ1)

,

≤ C‖z(u)‖H2,1(Q)‖τ(k)‖H2,1(Q),

Which in view of (3.2) and (3.3), then there exists C = C(α, T ) > 0 such that

‖u‖L2(Σ0) ≤ C
(
‖h0‖L2(OTA) + ‖k‖L2(ωTA)

)
.

�

3.2 Proof of null controlability problem

In oder to solve the null controllability problem, we need an inequality called an appropriate Carleman observability
inequality associated with the adjoint of systems (2.1)-(2.3).

3.2.1 Carleman inequality

Carleman inequalities are employed to provide strong estimates that are vital for proving the controllability of
certain partial differential equations. In particular, they are used to establish an observability estimate, which
is essential for demonstrating that the system can be driven to a zero state. For this purpose, we define the
following weight functions.

Lemma 3.1. Let ω be an arbitrary non emphty open set of Ω. Then there exists ψ ∈ C2(Ω) such that:
ψ(x) > 0 ∀x ∈ Ω,

ψ(x) = 0 ∀x ∈ Γ,

∇ψ(x) 6= 0 ∀ x ∈ Ω− ω2.

(3.11)
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Let λ ≥ 0 a real number. For any (t, a, x) ∈ Q, we set:

ϕ(t, a, x) =
e2λ‖ψ‖∞ − eλψ(x)

t(T − t)a(A− a)
, (3.12)

η(t, a, x) =
eλψ(x)

t(T − t)a(A− a)
. (3.13)

Remark 3.1. For x ∈ Γ, we have ψ(x) = 0; therefore, the function ϕ and η defined respectively by (3.12) and
(3.13) depends on t and a, and we have

ϕ−1 ≤ C(T,A). (3.14)

Set

W (Q) =

{
z|z; ∂z

∂xi
∈ L2(Q), i = 1......n;

∂z

∂t
∈ L2((0, T )× (0, A);H−1(Ω))

}
.

We consider the following system {
Lz = f in Q,
z = g on Σ,

(3.15)

with
g ∈ H

1
2
, 1
4 (Σ).

We give now the global carleman inequality for system (3.15)

Proposition 3.3. [16] Let also ψ, ϕ and η be respectively defined by (3.11), (3.12) and (3.13). Let ω be a non
empty subset of Ω. Then there exists a positive constants λ0 ≥ 1 and s0 ≥ 1 and there exists a constant C1 > 0
independant of s ≥ s0 and λ ≥ λ0 such that for any s ≥ s0(λ) and λ ≥ λ0 and for z ∈W (Q) solution of (3.15),
we have

I(z) ≤ C1

(
s−

1
2 ‖ϕ−

1
4 ge−sη‖2

H
1
2
, 1
4 (Σ)

+ sλ2

∫ T

0

∫ A

0

∫
ω2

e−2sηϕ | z |2 dxdtda
)
, (3.16)

where

I(z) =

∫
Q

1

sϕ
e−2sη | ∇z |2 dxdtda+ sλ2

∫
Q

ϕe−2sη | z |2 dxdtda, (3.17)

and

s0(λ) = C
(
ψ)
TA

4
e2λ‖ψ‖∞

(
T 2A2

4
+ T 2A3 + T 3A2 + T +A

)
.

For any ρ0 ∈ L2(ΩA). We consider the following systems

∂ρ

∂t
+
∂ρ

∂a
−∆ρ+ µρ = 0 in Q,

ρ(t, a, x) =
∂$

∂ν
χΓ1 on Σ,

ρ(0, a, x) = ρ0 in ΩA,
ρ(t, 0, x) = 0 in ΩT ,

(3.18)

where $ solution of 
−∂$
∂t
− ∂$

∂a
−∆$ + µ$ = 0 in Q,

$(t, a, x) = −
∂ρ
∂ν

α
χΓ0 on Σ,

$(T, a, x) = 0 in ΩA,
$(t, A, x) = 0 in ΩT ,

(3.19)
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Using Proposition 3.3 we have following results:

Proposition 3.4. Under the assumption of the Proposition 3.3 are verified, there exists a constant C such that
the following estimate is verified for all ρ solution of (3.18) and (3.19)∫

Q

1

θ2
| ρ |2 dxdtda ≤ C(C1, α, T )‖ρ‖2L2(ωTA). (3.20)

Proof. Applying the inequality (3.16) for ρ solution of (3.18)-(3.19), we have that

I(ρ) ≤ C1

(
s−

1
2

∥∥∥∥ϕ− 1
4 e−sη

∂$

∂ν

∥∥∥∥2

H
1
2
, 1
4 (Σ)

+ sλ2

∫ T

0

∫ A

0

∫
ω

e−2sηϕ | ρ |2 dxdtda

)
. (3.21)

In view of the definition of ψ, ϕ and η given respectively by (3.11), (3.12), (3.13) and the continuity of the trace,
we have that there exists a positive constant C(T ) such that

∥∥∥∥(sϕ)−
1
4 e−sη

∂$

∂ν

∥∥∥∥2

H
1
2
, 1
4 (Σ)

≤ C(T )‖$‖2H2,1(Q). (3.22)

Using the oder hand that $ satisfies (3.19), (1.3) we deduce that

‖$‖2H2,1(Q) ≤ C(α, T )

∥∥∥∥∂ρ∂ν
∥∥∥∥2

H
1
2
, 1
4 (Σ0)

. (3.23)

On the one hand the fact that ∥∥∥∥∂ρ∂ν
∥∥∥∥2

H
1
2
, 1
4 (Σ0)

≤ C(T )‖ρ‖2H2,1(Q), (3.24)

Combinig (3.22) - (3.24), using the fact that ω ⊂ Ω, and the Poincaré inequality we have that∥∥∥∥(sϕ)−
1
4 e−sη

∂$

∂ν

∥∥∥∥2

H
1
2
, 1
4 (Σ)

≤ C(α, T )‖ρ‖2L2(ωTA). (3.25)

In view of (3.21) and the fact that s, λ ≥ 1 it follows from (3.25) that∫
Q

e−2sηϕ | ρ |2 dxdtda ≤ C(C1, α, T )‖ρ‖2L2(ωTA) + C1

∫ T

0

∫ A

0

∫
ω

e−2sηϕ | ρ |2 dxdtda.

Since e−2sηϕ ∈ L∞(Q), we deduce:∫
Q

e−2sηϕ | ρ |2 dxdtda ≤ C(C1, α, T )‖ρ‖2L2(ωTA). (3.26)

Set

1

θ2
= e−2sηϕ. (3.27)

Then according to the definition of η and ϕ, we have
1

θ2
∈ L∞(Q) and (3.26) can be rewritten∫

Q

1

θ2
| ρ |2 dxdtda ≤ C(C1, α, T )‖ρ‖2L2(ωTA).

�
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Now, we are interested in the following null controllability problem: Find a control k ∈ L2(ωTA) such that if
q = q(t, x;u(k), k) ∈ H2,1(Q) is solution of (2.1)-(2.3), then (1.7) hods true.

If we multipliy the first line in (2.1) by ρ solution of (3.18) and the first line in (2.2) by Ψ solution of (3.19),
and integrate by parts over Q, we obtain successively

∫
ΩA

q(0, ., .)ρ0dxda−
∫

Σ1

∂q

∂ν

∂$

∂ν
dσdtda− 1

α

∫
Σ0

∂p

∂ν

∂ρ

∂ν
dxdtda =∫ T

0

∫ A

0

∫
O
h0ρ dxdtda+

∫ T

0

∫ A

0

∫
ω

kρ dxdtda, (3.28)

and

∫
Σ1

∂q

∂ν

∂$

∂ν
dσdtda = − 1

α

∫
Σ0

∂p

∂ν

∂ρ

∂ν
dσdtda. (3.29)

Combining (3.28) and (3.29), we obtain

∫
ΩA

q(0, ., .)ρ0dxda =

∫ T

0

∫ A

0

∫
O
h0ρ dxdtda+

∫ T

0

∫ A

0

∫
ω

kρ dxdtda,

The null controllability property is equivalent to find a control k ∈ L2(ωTA) such that for any ρ0 ∈ L2(ΩA), we
have ∫ T

0

∫ A

0

∫
O
h0ρ dxdtda+

∫ T

0

∫ A

0

∫
ω

kρ dxdtda = 0. (3.30)

To find such a control, we consider for any ε > 0 and for any ρ0 ∈ L2(ΩA), the following functional:

Jε(ρ
0) =

1

2

∫ T

0

∫ A

0

∫
ω

| ρ |2 dxdtda+

∫ T

0

∫ A

0

∫
O
h0ρ dxdtda+ ε‖ρ0‖L2(ΩA). (3.31)

whre ρ and ψ are respectively solutions of (3.18) and (3.19). We need to prove that the functional has a minimun
in L2(ΩA) and then the controlability of (2.1)-(2.3)

Proposition 3.5. Assume that (1.2) and that ω be a non empty subsets of Ω. Let θ ∈ L∞(Q) a positive weight
function to be define by (3.27) and h0 ∈ L2(OTA) be such that θh0 ∈ L2(OTA). Then there exists a unique
ρ0
ε ∈ L2(ΩA) such that:

Jε(ρ
0
ε) = inf

ρ0∈L2(ΩA)
Jε(ρ

0). (3.32)

Moreover, if ρ0
ε 6= 0, we have the following optimality condition

0 =

∫ T

0

∫ A

0

∫
ω

ρερ dxdtda+

∫
OTA

h0ρ dxdtda+ ε

∫
ΩA

ρ0
ερ

0dxda

‖ρ0
ε‖L2(ΩA)

, ∀ρ0 ∈ L2(ΩA), (3.33)

where ρε and ψε are respective solutions to (3.18) and (3.19) corresponding to ρ0 = ρ0
ε . Moreover there exists a

positive constant C = C(C1, α, T ) independent of ε > 0 such that kε = ρε in ωTA2 satisfies

‖kε‖L2(ωTA2 ) ≤
√
C‖θh0‖L2(OTA). (3.34)
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Proof. It is clear that Jε is continuous and strictly convex and coercive on L2(ΩA), that threre exists a unique
point ρ0

ε ∈ L2(ΩA) where the fonctionnal Jε reaches its minimun.

Now, assume that ρ0
ε 6= 0. In order to prove (3.33). We write the Euler Lagrange conditions which characterise

the minimum ρ0
ε ∈ L2(ΩA) :

lim
λ→0

Jε(ρ
0
ε + λρ0)− Jε(ρ0

ε)

λ
= 0, ∀ρ0 in L2(ΩA) (3.35)

After somes calculations (3.35) yields (3.33).

Let ρ0
ε be the solution of (3.32) and ρε be the solution of (3.18)-(3.19) associated to ρ0

ε . Let also qε, pε be the
solution associated k = kε = ρε of systems (2.1) and (2.2) respectively:

−∂qε
∂t
− ∂qε
∂a
−∆qε + µqε = h0χO + kεχω in Q,

qε(t, a, x) = uεχΓ0 on Σ,
qε(T, a, x) = 0 in ΩA,
qε(t, A, x) = 0 in ΩT ,

(3.36)

and 

∂pε
∂t

+
∂pε
∂a
−∆pε + µpε = 0 in Q,

pε(t, a, x) =
∂qε
∂ν

χΓ1 on Σ,

pε(0, a, x) = 0 in ΩA,
pε(t, 0, x) = 0 in ΩT ,

(3.37)

with

uε = −
∂pε
∂ν

α
on Σ0, (3.38)

and

kε = ρε in ωTA. (3.39)

Multiplying the first equation of (3.37) and (3.38) respectively by ρ and $ respectively solution of (3.18) and
(3.19), and proceeding by integration by parts, we obtain successively

∫
ΩA

qε(0, ., .)ρ
0dxdtda−

∫
Σ1

∂qε
∂ν

∂$ε

∂ν
dxdtda− 1

α

∫
Σ0

∂pε
∂ν

∂ρ

∂ν
dxdtda = (3.40)∫ T

0

∫ A

0

∫
O
h0ρ dxdtda+

∫ T

0

∫ A

0

∫
ω

kρ dxdtda, (3.41)

and

∫
Σ1

∂qε
∂ν

∂$ε

∂ν
dσdtda = − 1

α

∫
Σ0

∂pε
∂ν

∂ρ

∂ν
dσdtda. (3.42)

Combining (3.40) and (3.42) and we use (3.33), we obtain

∫
ΩA

(
qε(0, ., .) + ε

ρ0
ε

‖ρ0
ε‖L2(ΩA)

)
ρ0dxda = 0.
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Hence

qε(0, ., .) = −ε ρ0
ε

‖ρ0
ε‖L2(ΩA)

.

Therefore

‖qε(0, ., .)‖L2(ΩA) = ε. (3.43)

Now, if we take ρ0 = ρ0
ε in (3.51), we obtain that:

‖kε‖2L2(ωTA2 ) =

∫ T

0

∫ A

0

∫
ω

| ρε |2 dxdtda = −
∫
OT A

h0ρ dxdtda− ε‖ρ0
ε‖L2(ΩA)

≤ ‖θh0‖L2(OTA) ≤
∥∥∥∥1

θ
ρε

∥∥∥∥
L2(Q)

.

It then folows from (3.19) that

‖kε‖L2(ωTA2 ) ≤
√
C‖θh0‖L2(OTA).

where C = C(C1, α, T ) > 0

�

3.2.2 Proof of theorem(2.2)

We proceed in three steps

Step 1. We give some a priori estimates on uε, qε and pε.

In view of (2.4) and (3.34), we have that

‖uε‖L2(Σ0) ≤ C
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
, (3.44)

where C(C1, α, T ) > 0. Since qε, pε satisfy

(3.36)-(3.37), using (3.34), (3.44), (1.3) and (1.4) , we prove that

‖qε‖H2,1(Q) ≤ C
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
, (3.45)∥∥∥∥∂qε∂ν

∥∥∥∥
L2(Σ1)

≤ C
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
, (3.46)

‖pε‖H2,1(Q) ≤ C
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
. (3.47)∥∥∥∥∂pε∂ν

∥∥∥∥
L2(Σ0)

≤ C
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
, (3.48)

where C(C1, α, T ) > 0.
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Step 2. We study the convergence when ε→ 0 of sequences (kε), (uε), (qε), (pε),

(
∂qε
∂ν

)
and

(
∂pε
∂ν

)
. In view

of (3.34), (3.43) and (3.44)-(3.48) we can extract sub-sequences still denoted (kε), (uε), (qε), (pε) and

(
∂qε
∂ν

)
such that when ε→ 0, we have:

kε ⇀ k̂ weakly in L2(ωTA), (3.49)

uε ⇀ u weakly in L2(Σ0), (3.50)

qε ⇀ q weakly in H2,1(Q), (3.51)

∂qε
∂ν

⇀ β1 weakly in L2(Σ1), (3.52)

pε ⇀ p weakly in L2(Q), (3.53)

∂pε
∂ν

⇀ β2 weakly in L2(Σ0), (3.54)

qε(0, ., .)→ 0 strongly in L2(ΩA). (3.55)

Moreover using the weak lower semi-continuity of the norm, we deduce from (3.44) and (3.50) that

‖u‖L2(Σ0) ≤ C(C1, α, T )
(
‖h0‖L2(OTA) + ‖θh0‖L2(OTA)

)
. (3.56)

Now, if we multiply the first equation in (3.36) and (3.37) respectively by ϕ ∈ D(Q) such that
∂ϕ

∂ν
= 0 on Σ

and ξ ∈ D(Q) integrate by parts over Q, then take the limit when ε → 0 while using (3.49), (3.51) and (3.53),
we obtain that ∫

Q

(
− ∂ϕ

∂t
−∆ϕ+ a0ϕ

)
q dxdtda =

∫
Q

(
h0χO + k̂χω

)
ϕ dxdtda,

∫
Q

(∂ξ
∂t
−∆ξ + a0ξ

)
p dxdtda = 0,

which after an integration by parts over Q, gives∫
Q

(∂q
∂t
−∆q + a0q

)
ϕ dxdtda =

∫
Q

(
h0χO + k̂χω

)
ϕ dxdtda,

∫
Q

(
− ∂p

∂t
−∆p+ a0p

)
ξ dxdtda = 0,

Hence, we deduce that

∂q

∂t
−∆q + a0q = h0χO + k̂χω in Q (3.57)

− ∂p

∂t
−∆p+ a0p = 0 in Q. (3.58)

Since q, p ∈ H2,1(Q) and ∆q,∆p ∈ H−1((0, T ) × (0, A); L2(Ω)), we deduce that q|Σ, p|Σ and
∂q

∂ν
|Σ,

∂p

∂ν
|Σ

exist and belong to H
3
2
, 3
4 (Σ) ⊂ L2(Σ) and H

1
2
, 1
4 (Σ) ⊂ L2(Σ) respectively. One the other and observing that

q, p ∈ L2((0, T )× (0, A);H2(Ω)) and
∂q

∂t
,
∂p

∂t
∈ L2((0, T )× (0, A);H−2(Ω)), we deduce that q(0, ., .), p(0, ., .) and

q(T, ., .), p(T, ., .) exist in H−1(ΩA) and q(., 0, .), p(., 0, .) and q(., A, .), p(., A, .) exist in H−1(ΩT ).
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So, if we multiply the first equation in (3.37) by ϕ ∈ C∞(Q̄) such that ϕ(., 0, .) = 0 in ΩT and ϕ = 0 respectively
on Σ \ Σ1, then integrate by parts over Q. And passing to the limit when ε tends towards zero, while using
(3.49)-(3.52) and (3.55), we obtain that

−
∫

Σ1

β1ξ dtdadσ +

∫
Σ0

∂ϕ

∂ν
u dσdtda

∫
Q

(∂ϕ
∂t
−∆ϕ+ a0ϕ

)
q dxdtda =∫

Q

(
h0χO + k̂χω

)
ϕ dxdtda. (3.59)

Integrating by parts this later equality (3.59), and we use (3.57), we obtain

∫
ΩA

ϕ(0, ., .)q(0, ., .)dxda+

∫
ΩA

ϕ(T, ., .)q(T, ., .)dxda+

∫
ΩT

ϕ(., A, .)q(., A, .)dxda− (3.60)∫
Σ1

( ∂q
∂ν
− β1

)
ϕ dσdtda+

∫
Σ0

(
u− q

)∂ϕ
∂ν

dσdtda = 0. (3.61)

Choosing successively in (3.60), ϕ(T, ., .) = 0 in Ω ϕ(., A, .) = 0 in ΩT , ϕ = 0 on Σ1 and
∂ϕ

∂ν
= 0 on Σ0, we

succesively get

q = u on Σ0. (3.62)

and

∂q

∂ν
= β1 on Σ1. (3.63)

q(.A., .) = 0 in ΩT . (3.64)

q(T, ., .) = 0 in ΩA. (3.65)

Finally, it follows from (3.60) that

q(0, ., .) = 0 in ΩA. (3.66)

Combining (3.52) and (3.63), we obtain

∂qε
∂ν

⇀
∂q

∂ν
= β1 on Σ1. (3.67)

Now, if we multiply the first equation in (3.37) by ξ ∈ C∞(Q̄) such that ξ(T, ., .) = 0 in ΩA, ξ(., A, .) = 0 in ΩT

and ξ = 0 on Σ \ Σ0, integrating by parts over Q. And passing to the limit when ε tends towards zero, while
using (3.53), (3.54) and (3.67), we obtain

∫
Σ1

∂ξ

∂ν

∂q

∂ν
dσdtda−

∫
Σ0

β2ξ dσdtda+

∫
Q

(∂ξ
∂t
−∆ξ + a0ξ

)
p dσdtda = 0, (3.68)

Integrating by parts this later equality (3.68), and we use (3.58), we obtain

∫
ΩA

ξ(0, ., .)p(0, ., .)dxda+

∫
ΩT

ξ(., 0, .)p(., 0, .)dxdt+

∫
Σ0

(∂p
∂ν
− β2

)
ξ dσdtda+ (3.69)∫

Σ1

( ∂q
∂ν
− p
) ∂ξ
∂ν

dσdtda = 0.

∀ξ ∈ C∞(Q̄) with ξ = 0 on Σ \ Σ0 , ξ(T, ., .) = 0 in ΩA and ξ(., A, .) = 0 in ΩT .
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Choosing successively in (3.69), ξ(0, ., .) = 0 in ΩA, ξ(., 0, .) = 0 in ΩT , ξ = 0 on Σ1 and
∂ξ

∂ν
= 0 on Σ0, we

succesively get

p =
∂q

∂ν
on Σ1. (3.70)

and

∂p

∂ν
= β2 on Σ0. (3.71)

Finally, it follows from (3.69) that

p(0, ., .) = 0 in ΩA. (3.72)

p(., 0, .) = 0 in ΩT . (3.73)

Combining (3.54) and (3.71), we have

∂pε
∂ν

⇀
∂p

∂ν
= β2 weakly in L2(Σ0). (3.74)

In view of (3.57), (3.58), (3.62), (3.64), (3.65), (3.70), (3.72) and (3.73) q and p satisfies respectively
−∂q
∂t
− ∂q

∂a
−∆q + µq = h0χO + k̂χω in Q,

q(t, a, x) = uχΓ0 on Σ,
q(T, a, x) = 0 in ΩA,
q(t, A, x) = 0 in ΩT ,

(3.75)



∂p

∂t
+
∂p

∂a
−∆p+ µp = 0 in Q,

p(t, a, x) =
∂q

∂ν
χΓ1 on Σ,

p(0, a, x) = 0 in ΩA,
p(t, 0, x) = 0 in ΩT ,

(3.76)

From (3.38), (3.50) and (3.74), we obtain

u = −
∂p
∂ν

α
on Σ0, (3.77)

Finally, using the weak-lower semi-continuity of the norm and (3.49), we deduce from (3.34) the estimate (2.8)

Step 3. Observing that kε = ρε in ω
TA, where ρε satisfies

∂ρε
∂t

+
∂ρε
∂a
−∆ρε + µρε = 0 in Q,

ρε(t, a, x) =
∂$ε

∂ν
χΓ1 on Σ,

ρε(0, a, x) = ρ0 in ΩA,

(3.78)

where $ε solution of


−∂$ε

∂t
− ∂$ε

∂a
−∆$ε + µ$ε = 0 in Q,

$ε(t, a, x) = −
∂ρε
∂ν

α
χΓ0 on Σ,

$ε(T, a, x) = 0 in ΩA,
$ε(t, A, x) = 0 in ΩT ,

(3.79)

Now, if we apply the carleman inequality (3.20) to ρε, we have
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∫
Q

1

θ2
| ρε |2 dxdtda ≤ C(C1, α, T )‖ρε‖2L2(ωTA). (3.80)

Using (3.80), (3.39) and (3.34), we deduce that∥∥∥∥1

θ
ρε

∥∥∥∥2

L2(Q)

≤ C(C1, α, T )‖θh0‖2L2(OTA). (3.81)

Hence, if we set L2( 1
θ
, Q) = {z ∈ L2(X),

∫
X

1
θ2
| z |2 dX < ∞}, we deduce from this latter inequality that ρε is

bounded in L2( 1
θ
, Q). Consequently, there exists ρ ∈ L2( 1

θ
, Q) and a subsequence of (ρε) still denoted (ρε) such

that

ρε ⇀ ρ̂ weakly in L2(
1

θ
,Q). (3.82)

If we refer to the definition of ψ, ϕ and η given by (3.11)-(3.13) and the definition of θ given by (3.27), we can
see that for all τ > 0,

ρε ⇀ ρ̂ weakly in L2([τ, T − τ ]× [τ, A− τ ]× Ω). (3.83)

This implies that

ρε ⇀ ρ̂ weakly in D′(Q). (3.84)

Where D′(Q) is the dual of D(Q). Therefore, it follows from (3.34), (3.39) and (3.49)

ρε ⇀ ρ̂ weakly in L2(ωTA), (3.85)

In view of (3.39), (3.49) and (3.85), we have

k̂ = ρ̂ in ωTA. (3.86)

It follows from (3.81) we deduce that

∥∥∥∥∂ρε∂ν
∥∥∥∥
H

1
2
, 1
4 (Σ0)

≤ C(C1, α, T )‖θh0‖L2(OTA). (3.87)

In view (3.79) and (1.3), we obtain

‖$ε‖H2,1(Q) ≤ C(C1, α, T )

∥∥∥∥∂ρε∂ν
∥∥∥∥
H

1
2
, 1
4 (Σ0)

.

It follows from the continuite of the trace, we obtain respectively

‖$ε‖H2,1(Q) ≤ C(C1, α, T )‖θh0‖L2(OTA), (3.88)

and

∥∥∥∥∂$ε

∂ν

∥∥∥∥
H

1
2
, 1
4 (Σ0)

≤ C(C1, α, T )‖θh0‖L2(OTA) (3.89)

Consequently, there exist $̂ ∈ H2,1(Q) and β3 ∈ L2(Σ0) such that

$ε ⇀ $̂ weakly in H2,1(Q), (3.90)
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∂ρε
∂ν

⇀ β3 weakly in L2(Σ0). (3.91)

∂$ε

∂ν
⇀ β4 weakly in L2(Σ1). (3.92)

Proceeding as for the convergence of qε and pε in Step 2, while passing to the limit in (3.78), we prove using
(3.91),(3.92) and (3.85), we prove that

∂ρε
∂ν

⇀
∂ρ̂

∂ν
= β3 weakly in L2(Σ0). (3.93)

ρ̂ = β4 on Σ1. (3.94)

Now, passing to the limit in (3.79), we prove using (3.90)- (3.92), $̂ is solution of (2.7) and

∂$̂

∂ν
= β4 on Σ1. (3.95)

Combining (3.92) and (3.95), we have

∂$ε

∂ν
⇀

∂$̂

∂ν
= β4 weakly in L2(Σ1). (3.96)

and

ρ̂ =
∂$̂

∂ν
on Σ1. (3.97)

We deduce that ρ̂ is a solution of (2.6). If we take (3.34) and (3.49), we deduce (2.5). In view of (3.66), (3.75)
- (3.77), we have that (k̂, q, p) is solution of the null controlability problems (2.1)-(2.3)

4 Discussion

The paper discusses a Stackelberg control problem applied to a two-stroke linear system, particularly related to
population dynamics with spatial and age structure. The system is managed by two hierarchical controls: the
follower, responsible for boundary control aimed at minimizing the system’s flow, and the leader, solving a null
controllability problem to bring the system’s state to zero at the initial time. The approach applies Carleman
inequalities to prove controllability and optimal control in systems described by partial differential equations.
The Stackelberg strategy is traditionally applied in economic contexts but adapted here to manage invasive
species in structured environments. This demonstrates the strategy’s flexibility beyond its traditional use. The
implications are profound for systems requiring hierarchical decision-making, such as ecological management and
biological systems, where spatial-temporal factors are vital. The novelty lies in using boundary and distributed
controls in an integrated manner to handle non-homogeneous Dirichlet conditions.

5 Conclusion and Future Work

Using hierarchical control, the system achieves null controllability in the Stackelberg sense, with well-defined
optimal controls. This paves the way for exploring more complex hierarchical control systems in future work.
Specifically, it aims to address a Stackelberg-Nash control problem, which introduces more complex dynamics
by involving multiple followers and a leader, each with distinct control objectives. This would further test the
robustness and applicability of the Stackelberg strategy in controlling systems governed by partial differential
equations. Future research aims to extend the Stackelberg approach to more complex systems, such as those
involving multiple agents or missing data, while continuing to integrate economic and ecological control
strategies.
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[5] Mophou G, Kéré M, Njoukoué LLD. Robust hierarchic control for a population dynamics model with
missing birth rate. Mathematics of Control, Signals, and Systems. 2020;32:209-239.

[6] Djomegne L, Kenne C, Tiomela RGF. Stackelberg strategy on a degenerate parabolic equation with missing
data. 2022;arXiv:2209.04441.

[7] Mercan M, Mophou G. Null controllability with state constraints of a linear backward population dynamics
problem. International Journal of Evolution Equations. 2014;9(1):99.

[8] Imanuvilov YO, Puel JP, Yamamoto M. Carleman estimates for second order non homogeneous parabolic
equations to appear; 2010.

[9] Imanuvilov YO, Puel JP, Yamamoto M. Carleman estimates for second order non homogeneous parabolic
equations to appear; 2010.

[10] Nakoulima O. Optimal control for distributed systems subject to null controllability. Application to
discriminating sentinels. ESAIM Control Optim. Calc. Var. 2007;13(4):623-638.

[11] Nakoulima O, Sawadogo S. Internal pollution and discriminating sentinel in population dynamics problem.
Int. J. Evol. Equ. 2007;2(1):29-46.

[12] Puel JP. Application of global Carleman inequalities to controllability and inverses problems. notes of
courses; 2008.

[13] Mercan M. Optimal control for distributed linear systems subjected to null-controllability. Applicable
Analysis. 2013;92(9):1928-1943.

148



Nikiema et al.; Asian Res. J. Math., vol. 20, no. 10, pp. 130-149, 2024; Article no.ARJOM.124088

[14] O. Nakoulima. Optimal control for distributed systems subject to null-controllability. Application to
discriminating sentinels. ESAIM: Control, Optimisation and Calculus of Variations, 2007;13(4):623-638.
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