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Abstract 
 

Background: Sojourn time refers to the amount of time a HIV patient spends in each clinical state in a single 

stay before he/she makes a transition to another state.  HIV can be broken down into a number of intermediate 

states, based on CD4 counts. The four states of the Markov process of HIV are commonly defined as: S1: 

CD4 count > 500 cells/microlitre of blood; S2: 350 < CD4 count ≤ 500 cells/microlitre of blood; S3: 200 < 

CD4 count ≤ 350 cells/microlitre of blood; S4: CD4 count ≤ 200 cells/microliter of blood. 

Aims: The aim of the study was to estimate sojourn and transition between clinical states of patients under 

ART in Namibia using homogenous semi-Markov processes, on data obtained from MoHSS. 

Methods: A retrospective study design was used to obtain data on 2422 patients who were observed 11028 

times, during 2008 to 2017 follow up period. The four staged semi-Markov model was employed to estimate 

sojourn times and transition between clinical states.  
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Results: Results indicates that 1637 (67.6%) were female and 785 (32.41%) were male .657(27.13%) patients 

started ART in state 1, 683(28.19%) patients  started ART in state 2, 677(27.95%) patients  started ART in 

state 3 and 405(16.72%) patients started ART in state 4, at treatment commencement (t = 0). As expected, the 

probabilities of transiting from good to worse states increased with time. After 6 months, the probabilities of 

transiting from state 1 to 3, and from state 1 to 4 are 0.023 and 0.004 respectively. Whereas after 12 months, 

the probabilities of transiting from state 1 to 3, and from state 1 to 4 are 0.059 and 0.010 respectively. As time 

increased the probabilities to remain in the same state is decreasing (probabilities of remaining in state 1 after 

6, 12 and 18 months is 0.804, 0.698 and 0.633). Sojourn times for states 1, 2, 3 and 4 were 22, 8, 10 and 15 

months respectively.  

Conclusions: Sojourn time is of interest in HIV modeling, as it gives a signal of how HIV is progressing. 

Longer sojourn times indicates slow HIV progression and shorter sojourn times indicates rapid HIV 

progression. As time increases, transition probabilities from good states to worse states increases. 

 

 
Keywords: Stochastic; semi-Markov processes; multi-state model; CD4; progression. 

 

1 Introduction  
 

HIV disease is one of the leading causes of death in Namibia and worldwide [1]. HIV disease is not only one of 

the leading causes of disability and human misery, but it also has a significant negative economic impact due to 

lost productivity and increased healthcare costs. [2]. CD4 cell counts is important in understanding the transition 

from one clinical state to another. Depreciation of the CD4 cell counts leads to transiting to worst states.  The 

need to estimate the sojourn time and transition between clinical states prompted this study. 

 

The 4 states of the Markov process of HIV illness based on CD4 are commonly defined as: S1: CD4 count > 500 

cells/microlitre of blood; S2: 350 < CD4 count ≤ 500 cells/microlitre of blood; S3: 200 < CD4 count ≤ 350 

cells/microlitre of blood; S4: CD4 count ≤ 200 cells/microlitre of blood [3].  It is therefore important to 

understand the natural history and the amount of time a patient spent in each clinical state. As time spent in each 

state of the disease cannot be estimated based on clinical and immunological measures, this needs to be modeled 

by the semi-Markov stochastic process [3,4]. A semi-Markov process is defined as a stochastic process, which 

can be in any state. Each time it enters a state, it remains there for an unpredictable period of time before 

potentially moving forward or backward into another state [5]. 

 

Recent studies on HIV have estimated sojourn times and transition between clinical states, using homogenous 

semi-Markov processes. Dynamical models were used to model the progression of HIV [6-8]. Homogeneous 

semi-Markov processes have been used to estimate the proportion of individuals changing from one clinical 

state to another [9-11].  Semi-Markov models were applied to HIV disease evolution and compared sojourn time 

distributions, exponential and Weibull probability distributions [12]. Moreover, other authors applied 

the homogenous Markov process to HIV disease under a combination treatment therapy [13]. Whiles, there is 

some progress made towards HIV progression, there is still much to be done, due to sojourn time and transition 

between clinical states of HIV patients hence the import of this study. 

 

The aim of the study was to estimate sojourn and transition between clinical states of patients under ART in 

Namibia using four staged homogenous semi-Markov processes.  

 

The next section explores the materials and methods of Markov modeling and an illustrative case study on 

sojourn time and transition between HIV clinical states. In this section, data used in the analysis is described and 

formulation of the model based on the data is explained. This is followed by a section on the results and 

discussions. The final section concludes on the findings.  

 

2 Materials and Methods   
 

2.1 Study area, design and data collection    
 

This retrospective cohort study was conducted in Namibia, from January 2008- January 2012 to December 

2017. All registered patients who were infected with HIV and whose CD4 counts were measured at least once, 
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were included in this study. The study involved the observation of 2422 patients, who were seen 11028 times in 

total. The semi-Markov model was employed to predict transitional probabilities and sojourn times. At 

treatment commencement (t = 0), 657(27.13%) patients started ART in state 1, 683(28.19%) patients  started 

ART in state 2, 677(27.95%) patients  started ART in state 3 and 405(16.72%) patients started ART in state 4. 

Fig. 1 indicates the 4 states an HIV infected patient may go through.  The arrows in Fig. 1 represents 

communication between states. All states are inter-related. 

 

 
 

Fig. 1. Transition diagram 

 

2.2 Modelling homogenous semi-Markov processes 
 

Markov chain is described as follows:  there exist a set of state, 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}. The processes start in one of 

this state and make a transition from one state to another state. If the chain is in state 𝑠𝑖𝑗  then it move to state 𝑠𝑗 

with the probability of 𝑝𝑖𝑗 or stay in the same state with the probability of 𝑝𝑖𝑖  [14].  

 

One of the Markov assumptions is that future development only depends on the current state, not on the 

previous states and the current state should include all relevant history [15]. This assumption imposes 

restrictions on the distribution of the sojourn time in a state, which should be exponentially distributed, in case 

of continuous-time Markov process and geometrically distributed, in case of a discrete-time Markov process 

[16].  

 

To overcome this, the Markov assumption must be relaxed in order to allow exponential distributed sojourn 

times in any state and still have the Markov assumption, but in a more flexible manner, since this paper deal 

with continuous semi-Markov the distribution of sojourn time is exponential [17]. The resultant process based 

on these properties, is known as a semi-Markov process. A semi-Markov process is concerned with the random 

variables, that describe the state of the process at some time and it is a generalization of the Markov process.  

 

A semi-Markov process is that makes transitions from state to state like a Markov process. However, the amount 

of time spent in each state before a transition to the next state, occurs is an arbitrary random variable [18]. In this 

study, a homogenous semi-Markov was adopted for predicting sojourn times and transition matrix using 

longitudinal CD count measurements. 

 

Homogeneous semi-Markov processes (HSMP) were introduced in the 1950s, independently, with the objective 

of generalizing Markov processes [19,20]. A homogenous semi-Markov process (HSMP) model is define as 

follows [13]: 

 

Let 𝑋𝑛 ∶  Ω → 𝑆 be a stochastic process with state space 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} 𝑎𝑛𝑑 𝑇𝑛 ∶ Ω → ℝ be the time of the 

𝑛𝑡ℎ transition, with Ω domain of the process and ℝ set of real numbers. At this point the time is a random 

variable. The kernel 𝑄 = [𝑄𝑖𝑗] associated with the process and the transition probability 𝑃𝑖𝑗  of the embedded 

Markov chain are defined as follows: 
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𝑄𝑖𝑗(𝑡) = 𝑃[𝑇𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖]                                 (2.2.1) 

 

The probability of moving from state i to state j is given by 

  

𝑃𝑖𝑗 = lim𝑡⟶∞ 𝑄𝑖𝑗(𝑡)                                                                                                                 (2.2.2) 

 

Define the probability that the process will leave a state i in a time t as 

 

𝐻𝑖(𝑡) = 𝑃[𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖] = ∑ 𝑄𝑖𝑗(𝑡)  𝑚
𝑗=1                                                                       (2.2.3) 

 

The distribution of waiting time in each state i, given that the state j is subsequently occupied is  

 

𝐺𝑖𝑗(𝑡) = 𝑃[𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖, 𝑋𝑛+1 = 𝑗],                                                                                        (2.2.4) 

 

which can be computed as: 

 

𝐺𝑖𝑗(𝑡) = {

𝑄𝑖𝑗(𝑡)

𝑃𝑖𝑗
,    𝑖𝑓𝑃𝑖𝑗 ≠ 0

1,        𝑖𝑓𝑃𝑖𝑗 = 0
                          (2.2.5) 

 
For any homogenous semi-Markov process {𝑋(𝑡), 𝑡 ≥ 0}, the transition probabilities are given by equation 

(2.3.6), for which the solution should be obtained, using the progression equation (2.3.7). 

 
∅(𝑖𝑗)(𝑡) = 𝑃[𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖],                                                                                                             (2.2.6) 

 

∅𝑖𝑗(𝑡) = (1 − 𝐻𝑖(𝑡))𝛿𝑖𝑗 + ∑ ∫ 𝑄𝑖𝑙
𝑡

0
(𝜏)𝜙𝑙𝑗(𝑡 − 𝜏)𝑚

𝑙=1 𝑑𝜏                                                                   (2.2.7) 

 
At this point 𝛿𝑖𝑗 represents the Kronecker delta 𝛿. An approximate solution of equation (2.3.7) can be obtained 

using the general numerical integration formula given in [21]. In the same paper, they proved that the numerical 

solution of the process converges to the discrete time HSMP described as an infinite countable linear system: 

 

𝜙𝑖𝑗
ℎ (𝑘ℎ) = 𝑑𝑖𝑗

ℎ (𝑘ℎ) + ∑ ∑ 𝑣𝑖𝑗
ℎ (𝜏ℎ)𝜙𝑖𝑗

ℎ ((𝑘 − 𝜏)ℎ)𝑘
τ=1

𝑚
𝑖=1                                           (2.2.8) 

 
where h stands for the step measure of the approximation and 

 

   𝑑𝑖𝑗
ℎ (𝑘ℎ) = {

0               𝑖𝑓 𝑖 ≠ 𝑗,

1 − 𝐻𝑖
ℎ(𝑘ℎ),    𝑖𝑓 𝑖 = 𝑗,

                                           (2.2.9) 

 

𝑣𝑖𝑗
ℎ (𝑘ℎ) = {

0,                                                   𝑖𝑓 𝑖 ≠ 𝑗

𝜚𝑖𝑗
ℎ (𝑘ℎ) − 𝜚𝑖𝑗

ℎ ((𝑘 − 1)ℎ), 𝑖𝑓 𝑖 = 𝑗 
               (2.2.10) 

 

⟹ Φℎ(𝑘ℎ) − ∑ 𝑣(𝜏ℎ)Φℎ((𝑘 − 𝜏)ℎ) = 𝐷ℎ(𝑘ℎ)𝑘
𝜏=1                (2.2.11) 

 

The fact that the matrix Φℎ(𝑘ℎ)is stochastic is already proved in [21,22]. For solving the progression equation 

proposed an algorithm with suggested matrix form [21]: 

 

𝑉𝑇Φ𝑇 = 𝐷𝑇                                                            (2.2.12) 

 
The variables involved are the following: 

 
m= number of states of HSMP, which is 4 in this case. 

T = number of periods to be examined for the transient analysis of HSMP. 

P = matrix of order m of the embedded Markov chain in HSMP. 



 

 
 

 

Kashihalwa et al.; Asian J. Prob. Stat., vol. 21, no. 4, pp. 1-13, 2023; Article no.AJPAS.97022 
 

 

 
5 

 

𝐺𝑇= square lower-triangular block matrix order T +1 whose blocks are of order m.  

Q
T
 = kernel of SMP.  

Φ
T
 = block vector of order T + 1 where the blocks are square matrices of order m.  

D
T
 = block vector of order T + 1 where the blocks are the diagonal square matrix of order m.  

V 
T
 = square lower-triangular block matrix order T + 1 whose blocks are of order m.  

 S
T
 = block vector of order T+1 the block which are the diagonal square matrix of order m. The diagonal 

element of each block t are 𝑠𝑖𝑖 = ∑ 𝑄𝑖𝑗(𝑡)𝑚
𝑗=1 . 

 
Given an epoch T is fixed, matrices G and P, the algorithm solves the linear system (2.3.12) for the unknown 

matrix Φ𝑇 by means of a purely iterative procedure. 

 

3 Results  
 

3.1 Descriptive statistics  
 
This study used data from MoHSS, with 2422 HIV patients on anti-retroviral therapy (ART), who were 

observed 11028 times (Table 2). Table 1. shows that 1637 (67.6%) were female and 785 (32.41%) were male 

.657(27.13%) patients started ART in state 1, 683(28.19%) patients  started ART in state 2, 677(27.95%) 

patients  started ART in state 3 and 405(16.72%) patients started ART in state 4, at treatment commencement 

(t = 0). Table 2. shows that the highest observation were recorded in the age category of 25-49. Female had the 

highest observation in all states, except for state 4. Data analysis was done in msm (multi-state model) 

developed by Jackson
 
(2011), the “R package msm”, contains numerous functions for fitting continuous-time 

Markov to longitudinal data. The msm package provides several numerical outputs such as sojourn time and 

transition probabilities. 

 
Table 1. Proportion of male and female patients at the commencement of ART 

 

State                        Sex, n (%) Total   

Male Female 

1 124 (5.12) 533 (22.01) 657 (27.13) 

2 220 (9.08) 463 (19.11) 683 (28.19) 

3 246 (10.16) 431 (17.79) 677 (27.95) 

4 195 (8.05) 210 (8.67) 405 (16.72) 

 

3.2 Results of semi-Markov for predicting the transitional probabilities  
 

Table 3 shows the estimated transition probability matrix, patient from state 1, 2 and 3 transit to state 4 with 

probability p<0.001, p<0.001 and 0.018, respectively. Patients show recovery from state 4 to; state 3, state 2 and 

state 1 with probability of 0.060, 0.002 and p<0.001.  

 

Patients showed recovery from state 3 to 2, from state 3 to 1 and from state 2 to 1 with probability 0.070, 0.003 

and 0.071, respectively. The solution of the evolution equation is presented for a specific month in Table 4. It 

represents the probability that an HIV positive patient being at time 0 in state i will be after t months, in the state 

j. The conditional probability of a patient starting from state 4 at time zero, and transiting to state 3, 2 and 1 after 

2 years is 0.328, 0.227 and 0.162 respectively. A patient being in state 4 at time zero, stayed in same state after 2 

years, with 0.288 probability.  

 

The likelihood of direct transition from state 1 to state 2, state 2 to state 3 and state 3 to state 4 after 4 years, are 

estimated to be 0.284, 0.172 and 0.077 respectively. As t increases, the probability of the patient transiting to the 

next worst state is increasing, while the probability to remain in the same state is decreasing. Table 4 indicates 

the probability of staying in the same state. The conditional probability that a patient stays in state one, two , 

three and four for at least 42 months are 0.528, 0.287 , 0.211 and  0.149  respectively. It is decreases with 

increasing time. 
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Table 2. Variable description 

 

Variable State, n = 11028 (%) Total (n) 

1 2 3 4 

Age*   

<25 135 (50.0) 62 (23.0) 41(15.2) 32(11.9) 270 

25-49 3985 (40.3) 2928 (29.6) 2135 (21.6) 837 (8.5) 9885 

=>50 253 (29.0) 240 (27.5) 241 (27.6) 139 (15.9) 873 

Sex   

Male 887 (25.1) 1105 (31.2) 1037 (29.3) 510 (14.4) 3539 

Female 3486 (46.5) 2125 (28.4) 1380 (18.4) 498 (6.6) 7489 
Note: n is the number of observations. 

 

Table 3. Estimated transition probability matrix 

 

 

Table 4. The solution of the evolution equation for month t 

 

Transition Month=6 Month=12 Month=18 Month=24 Month=30 Month=36 Month=42 Months=48 

1→1 0.804 0.698 0.633 0.592 0.563 0.543 0.528 0.518 

1→2 0.168 0.233 0.260 0.273 0.278 0.281 0.283 0.284 

1→3 0.023 0.059 0.089 0.118 0.128 0.139 0.148 0.154 

1→4 0.004 0.010 0.017 0.024 0.030 0.036 0.040 0.044 

2→1 0.292 0.405 0.451 0.471 0.479 0.484 0.486 0.486 

2→2 0.547 0.387 0.328 0.304 0.293 0.289 0.287 0.286 

2→3 0.150 0.183 0.184 0.180 0.177 0.174 0.173 0.172 

2→4 0.011 0.026 0.037 0.045 0.049 0.053 0.054 0.056 

3→1 0.065 0.168 0.254 0.318 0.363 0.396 0.419 0.436 

3→2 0.255 0.309 0.311 0.303 0.295 0.29 0.288 0.286 

3→3 0.606 0.425 0.332 0.279 0.247 0.225 0.211 0.201 

3→4 0.007 0.098 0.103 0.283 0.094 0.088 0.082 0.077 

4→1 0.008 0.045 0.100 0.162 0.220 0.272 0.317 0.353 

4→2 0.054 0.130 0.189 0.227 0.251 0.264 0.272 0.277 

4→3 0.246 0.327 0.341 0.328 0.306 0.283 0.262 0.243 

4→4 0.069 0.497 0.369 0.288 0.222 0.179 0.149 0.127 

 

3.3 Sojourn time 
 

Sojourn time refers to the time a HIV patient spends in each state in a single stay before he/she makes a 

transition to another state [23]. Table 5 shows estimates of sojourn time, the standard error (SE), the lower 

bound (L) and the upper bound (U) for each of the transient state i. From the results, if an individual is in state 4 

he/she spends 15 months in that state, before making transitioning to other states. While a patient spends 22 

months in state 1, before transiting to other states.  

 

These two states have the highest sojourn times, mainly because patients in state one have high CD4 count level 

and the CD4 counts take time to decline. While in state 4, the CD4 count will take time to improve due to time 

taken by patients, to respond to treatment as state 4 is the worst state, in HIV progression. 

 

Table 5. Sojourn time 

 

 Estimates in months SE 95%CI 

State 1 22.225 0.996 (20.356, 24.266) 

State 2 8.133 0.262 (7.636, 8.663) 

State 3 10.276 0.415 (9.494, 11.1237) 

State 4 15.397 0.958 (13.630, 17.393)  

  State 1 State 2 State 3 State 4 

State 1 0.957 0.040 p<0.001 p<0.001 

State 2 0.070 0.887 0.041 p<0.001 

State 3 0.003 0.071 0.909 0.018 

State 4 p<0.001 0.002 0.060 0.937 
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3.4 Prediction of clinical states in individual patient 
 

The probability that a patient starting from state i  ∈{1,2,3,4} at time 0 enters state j ∈{1,2,3,4} after month t is 

plotted in Fig. 2. Fig. 2A displays the probability that a patient starting from state 1 at time 0, after month t 

enters to state j ∈ {1, 2, 3, 4}. The probability of remaining in state 1 is higher compared to others, but becomes 

constant after 75 months.  
 

The probability of a patient starting from state 1 at time zero, enters  state j ∈{1,2,3 ,4} after 108 months, are 

estimated to be 0.5, 0.4, 0.17 and 0.02 respectively. The conditional probability that a patient starting from state 

1 at time zero, enters to state j ∈{1,2,3,4} after 120 month, are estimated to be 0.5, 0.3, 0.1 and 0.02 

respectively. 
 

Fig. 2B shows the probability that a patient starting from state 2 at time 0, after month t enters state  𝑗 ∈
{1, 2, 3, 4}. The probability of remaining in state 2 is high compared to other states for the first 8 months, 

compared to  9 months.  The probability of a patient starting from state 2, at time zero and  enters state 𝑗 ∈
{1,2,3 ,4} after 108 months, are estimated to be 0.5, 0.28, 0.11 and 0.5 respectively.  The conditional probability 

that a patient starting from state 1 at time zero and  enters state j ∈ {1,2, 3, 4} after 120 month, is  estimated to 

be 0.5, 0.28, 0.18 and 0.04 respectively.  
 

Fig. 2C shows the probability that a patient starts from state 3 at time 0, after month t and enters  stage j ∈ {1, 2, 

3, 4}. The probability of remaining in state 3 is high compared to other states for the first 20 months, and 

declined subsequently. The probability of a patient starting from state 3 at time zero and  enters  state j ∈ {1, 2, 

3, 4} after 108 months, is estimated to be 0.5, 0.3, 0.2 and 0.04 respectively. The conditional probability that a 

patient starting from state 3 at time zero and  enters  state j ∈{1,2,3,4} after 120 month, is estimated to be 0.5, 

0.3, 0.2 and 0.04 respectively. Fig. 2D shows the probability that a patient starts from state 4 at time 0, after 

month t and enters stage j ∈ {1, 2, 3, 4}. The probability of remaining in state 4 is high, compared to other states 

for the first 12 months, and declined thereafter until month 85, when it started to increase until month 105, when 

it started to decrease subsequently. The probability of a patient starting from state 4 at time zero and  enters  

state j ∈ {1, 2, 3, 4} after 108 months, is estimated to be 0.5, 0.29, 0.3 and 0.04 respectively. The conditional 

probability that a patient starting from state 4, at time zero and  enters  state j ∈{1,2,3,4} after 120 months, is 

estimated to be 0.5, 0.29, 0.3 and 0.04 respectively. The peak influx into State 4 from all other states could be at 

100 months, possibly due to adherence to treatment. 
 

 
 

A 

 
 

B 

 
C 

 
 

D 

 

Fig. 2. Conditional probabilities for each state 
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4 Discussion  
 

It is essential to state that during the follow-up period, no death was recorded and this could be attributed to 

intensive efforts by the government and various stakeholders. Namibia is the first African country to have 

reached and exceeded the UNAIDS 2020 goal, to have at least 73% of HIV positive adults viral load 

suppressed. This slowed down the disease progression and reduced mortality. In terms of 90-90-90 targets, this 

represents 86% of people with HIV, who knew  their status; 96.4% of those on ART and 91.3% of those on 

treatment, whose viral load was  suppressed to <1000 copies/Ml [24]. 

 

This paper estimated sojourn times and predicted the transition between clinical states of HIV patients, under 

ART follow-up in Namibia. Consequently, different plots were produced from the semi-Markov model. 

 

The estimated sojourn times for states 1, 2, 3 and 4 are, 22, 8, 10, and 15 months respectively. If an individual is 

in state 1, then he/she spends more time in that state, before making a transition to other states. States 1 and 4 

have the highest sojourn times, mainly because patients in state one have high CD4 count level and the CD4 

counts will take time to decline.  

 

While in state 4 the CD4 count will take time to improve, due to the time it takes for patients to respond to 

treatment as state 4 is the worst state in HIV progression. Based on these results, policy makers should introduce 

a policy which compel all patients to be tested for HIV and commence treatment immediately (if they test 

HIV+), in order to reduce transition probabilities, from  state 1, 2 and 3 (good states) to  state 4 (worse state). 

This will also allow patients to spend more time in good states than in worse state.  

 

If an individual is in state 4 then he/she spends more time in that state, before making a transition to other states. 

This could be due the time taken by an individual, to respond to treatment as state 4 is the worst state, in HIV 

progression. From a comparable study in South Africa, an author estimated the sojourn time for states one, two, 

three and four as , 0.88, 0.88, 1.24, 1.20 and 1.57 years respectively [13]. The sojourn time is very important in 

disease modeling because it state how slowly or fast the disease is progressing. 

  

The conditional probability that a patient starting from state 1 at time zero and enters state 𝑗 ∈ {1, 2, 3, 4} after 

120 months, is estimated to be 0.5, 0.3, 0.1 and 0.02 respectively. The conditional probability that a patient goes 

from state 1 to 2, from state 2 to 3 and from state 3 to 4 120 months later is 0.3, 0.19 and 0.04 respectively. A 

similar study in Ethiopia, (Shebeshi), based on data obtained from the antiretroviral therapy unit of Jimma 

University Specialized Hospital, revealed that the conditional probability that a patient goes from state 1 to 2, 

from state 2 to 3 and from state 3 to stage 4, occurred 200 months later at  0.27, 0.07 and 0.04 respectively [25].  

 

The probability values are very small; which indicates that as time increases, the conditional probability of 

transiting to the next worst state is minimal. 

 

The conditional probability that a patient stays in state one, state two, state three and state four after 24 months, 

are 0.7, 0.39, 0.42 and 0.5 respectively. A similar study by Goshu and Dessie (2013), [6] estimated the 

probabilities that a patient stays in state 1, 2, 3 and 4 after 24 months are  0.14, 0.0.19, 0.21 and 0.24 

respectively. We note that this probability increases with the cumulative and worsening of the illness. 

 

5 Conclusion and Recommendations 
 

Estimating sojourn time and future clinical states is important in understanding HIV progression. The semi-

Markov process model is applied, to capture the HIV progression of a patient. The model considers the 

randomness of the time that a patient spends in a given state of the disease. The sojourn time for state 1, 2, 3 and 

4 were estimated. If an HIV patient is in state 1, then he/she spends more time in that state, before making a 

transition to other states. If an HIV patient is in state 4 then he/she spends more time in that state, before making 

a transition to other states.  

 

Sojourn time is of interest in HIV modeling, as it gives a signal of how rapidly HIV is progressing. Longer 

sojourn times, indicates slow HIV progression and shorter sojourn times indicates rapid HIV progression. As 

time increases, transition probabilities from good states to worse states increases. Without ART, the progression 
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of HIV will be devastating. It is recommended to stick to ongoing ART treatment, with cautions to patients’ 

recent disease status. 

 

Consent  
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Appendix 
 

Appendix. R codes  

 

library(foreign) 

library(msm) 

library(minqa) 

#data=as.data.frame(read.csv("C:\\MSc Biostatistics Thesis\\Katutura HIV data.csv")) 

data<-read.table("file:///C:/MSc Biostatistics Thesis/Data/Final HIV data.csv", header=TRUE, sep=",") 

P=pmatrix.msm(cav.msm, t = 42, ci = "normal") 

PE=round(P$estimates,3) 

PL=round(P$L,6) 

PU=round(P$U,6) 

P 

PE 

PL 

PU 

P=pmatrix.msm(cav.msm, t=48, ci = "normal") 

S=sojourn.msm(cav.msm) 

# predicting future state plot 

P=pmatrix.msm(cav.msm, t = 1, ci = "normal") 

PE0=P$estimates-P$estimates 

 

for (i in c(1,6,12,18,24,30,36,42,48)) 

{ 

P=pmatrix.msm(cav.msm, t = i, ci = "normal") 

PE=P$estimates 

PE0=cbind(PE0,PE) 

} 

#PLOTS FROM STATE1 TO STATES 

Month=as.data.frame(c(1,6,12,18,24,30,36,42,48)) 

T1=as.data.frame(PE0[1,c(5,9,13,17,21,25,29,33,37)]) 

T2=as.data.frame(PE0[1,c(6,10,14,18,22,26,30,34,38)]) 

T3=as.data.frame(PE0[1,c(7,11,15,19,23,27,31,35,39)]) 

T4=as.data.frame(PE0[1,c(8,12,16,20,24,28,29,36,40)]) 

 

plot(Month$`c(1,6,12,18,24,30,36,42,48)`, 

     T1$`PE0[1, c(5, 9, 13, 17, 21, 25, 29, 33, 37)]`, 

     type = "b",col=6,lwd=2,ylim=c(0,1),pch=16,xlab="Months",ylab="Probability", 

     main = "From state 1") 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

     T2$`PE0[1, c(6, 10, 14, 18, 22, 26, 30, 34, 38)]`, 

     type = "b",col=3,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T3$`PE0[1, c(7, 11, 15, 19, 23, 27, 31, 35, 39)]`, 

      type = "b",col=4,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T4$`PE0[1, c(8, 12, 16, 20, 24, 28, 29, 36, 40)]`, 

      type = "b",col=2,lwd=2,pch=16) 

 

legend(40, 1, legend=c("To state 1", "To state 2","To state 3","To state 4"), 

       col=c(6,3,4,2), lty=1:2, cex=0.8) 

#PLOTS FROM STATE2 TO STATES 

Month=as.data.frame(c(1,6,12,18,24,30,36,42,48)) 
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T1=as.data.frame(PE0[2,c(5,9,13,17,21,25,29,33,37)]) 

T2=as.data.frame(PE0[2,c(6,10,14,18,22,26,30,34,38)]) 

T3=as.data.frame(PE0[2,c(7,11,15,19,23,27,31,35,39)]) 

T4=as.data.frame(PE0[2,c(8,12,16,20,24,28,29,36,40)]) 

 

plot(Month$`c(1,6,12,18,24,30,36,42,48)`, 

     T1$`PE0[2, c(5, 9, 13, 17, 21, 25, 29, 33, 37)]`, 

     type = "b",col=6,lwd=2,ylim=c(0,1),pch=16,xlab="Months",ylab="Probability", 

     main = "From state 2") 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T2$`PE0[2, c(6, 10, 14, 18, 22, 26, 30, 34, 38)]`, 

      type = "b",col=3,lwd=2,pch=16) 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T3$`PE0[2, c(7, 11, 15, 19, 23, 27, 31, 35, 39)]`, 

      type = "b",col=4,lwd=2,pch=16) 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T4$`PE0[2, c(8, 12, 16, 20, 24, 28, 29, 36, 40)]`, 

      type = "b",col=2,lwd=2,pch=16) 

legend(40, 1, legend=c("To state 1", "To state 2","To state 3","To state 4"), 

       col=c(6,3,4,2), lty=1:2, cex=0.8) 

#PLOTS FROM STATE3 TO STATES 

Month=as.data.frame(c(1,6,12,18,24,30,36,42,48)) 

T1=as.data.frame(PE0[3,c(5,9,13,17,21,25,29,33,37)]) 

T2=as.data.frame(PE0[3,c(6,10,14,18,22,26,30,34,38)]) 

T3=as.data.frame(PE0[3,c(7,11,15,19,23,27,31,35,39)]) 

T4=as.data.frame(PE0[3,c(8,12,16,20,24,28,29,36,40)]) 

 

plot(Month$`c(1,6,12,18,24,30,36,42,48)`, 

     T1$`PE0[3, c(5, 9, 13, 17, 21, 25, 29, 33, 37)]`, 

     type = "b",col=6,lwd=2,ylim=c(0,1),pch=16,xlab="Months",ylab="Probability", 

     main = "From state 3") 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T2$`PE0[3, c(6, 10, 14, 18, 22, 26, 30, 34, 38)]`, 

      type = "b",col=3,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T3$`PE0[3, c(7, 11, 15, 19, 23, 27, 31, 35, 39)]`, 

      type = "b",col=4,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T4$`PE0[3, c(8, 12, 16, 20, 24, 28, 29, 36, 40)]`, 

      type = "b",col=2,lwd=2,pch=16) 

 

legend(40, 1, legend=c("To state 1", "To state 2","To state 3","To state 4"), 

       col=c(6,3,4,2), lty=1:2, cex=0.8) 

 

 

#PLOTS FROM STATE4 TO STATES 

Month=as.data.frame(c(1,6,12,18,24,30,36,42,48)) 

 

T1=as.data.frame(PE0[4,c(5,9,13,17,21,25,29,33,37)]) 

T2=as.data.frame(PE0[4,c(6,10,14,18,22,26,30,34,38)]) 

T3=as.data.frame(PE0[4,c(7,11,15,19,23,27,31,35,39)]) 

T4=as.data.frame(PE0[4,c(8,12,16,20,24,28,29,36,40)]) 
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plot(Month$`c(1,6,12,18,24,30,36,42,48)`, 

 

     T1$`PE0[4, c(5, 9, 13, 17, 21, 25, 29, 33, 37)]`, 

     type = "b",col=6,lwd=2,ylim=c(0,1),pch=16,xlab="Months",ylab="Probability", 

     main = "From state 4") 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T2$`PE0[4, c(6, 10, 14, 18, 22, 26, 30, 34, 38)]`, 

      type = "b",col=3,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T3$`PE0[4, c(7, 11, 15, 19, 23, 27, 31, 35, 39)]`, 

      type = "b",col=4,lwd=2,pch=16) 

 

lines(Month$`c(1,6,12,18,24,30,36,42,48)`, 

      T4$`PE0[4, c(8, 12, 16, 20, 24, 28, 29, 36, 40)]`, 

      type = "b",col=2,lwd=2,pch=16) 

 

legend(40, 1, legend=c("To state 1", "To state 2","To state 3","To state 4"), 

       col=c(6,3,4,2), lty=1:2, cex=0.8) 
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