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Abstract

This article mainly divides into two parts. In the first part, We find a new system by using the plane wave
transform and self-similar transform, then we give the exact solution by using the Cardan formula. In the
second part, assuming the original equation exist weak solution, when 7 1 it will tend to the weak
solution of the limit equation, that is to say the original equation has the limiting behavior.
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1 Introduction

Now, we are discussion about the following 3-dimensional compressible isentropic Euler equations

p,+Vpv+pV-v=0 (1

(o) + Y (pvy) +V(P(p)=0
(1.2)

*Corresponding author: E-mail: 2287347394(@qq.com;



Rong; JAMCS, 30(4): 1-14, 2019; Article no.JAMCS.46791

where ¥ denotes the gradient respect to the space coordinates = (xl »%2> x3) ,P=P (t’ x) denotes the

- (vl »V25 V3 ) - v(x, t)is the velocity of the gas, and Pp) denotes pressure.

(-1 6>1

. %
density of the gas, vector

In this article we only considering the equations under the polytropic pressure laws

rlo)-522( 2
Po (1.3)

here €0 is the sound speed at density Po . Many subsequent results extend with little or no change to o<1
or to general pressure laws.

The compressible Euler equations have drawn great interest since the vital physical importance and many
mathematical challenges (see Lions [1]). Yuen [2] obtained the analytically self-similar solutions with
elliptic symmetry and drift phenomenon for the compressible Euler and Navier-Stokes equations in

R” " 2 2) by the separation method. Yang [3] given the proof of (I,J) similar solutions to Euler and
Navier-Stokes equations. Song [4] also found that the Nonhomo geneous boundary value problem for (I,J)
similar solutions of incompressible two-dimensional Euler equations. Ha [5] Nonlinear stability of spherical
self-similar flows to the compressible Euler equations.

Therefore its solutions are very meaningful in mathematical physics. Sideris [6] found that the smooth
solutions to the three-dimensional Euler equations for a polytropic idea fluid must blow up in a finite time
under some assumptions on the initial data. Godin [7] derived the asymptotic behavior of the lifespan of the
smooth solution to three-dimensional spherically symmetric flows of ideal ploytropic gases with variable
entropy, when the initial data is just perturbed from a constant state by smooth compactly supported
functions. On the other hand, it is interesting that Grassin [8] showed that there exist global smooth solutions
for ideal plolytropic fluids if the initial data can force the particles to spread out. In reference [9], the authors
proved the global existence of the smooth solutions to the Cauchy problem for two-dimensional flow of
Chaplygin gases under the assumption that the initial data is close to a constant stste and the vorticity of the
initial velocity vanishes.

Recently, Li and Wang [10] studied the blow up phenomena of solutions for the multi-dimensional
compressible Euler equations by constructing some special explicit solutions with spherical symmetry.

Yuen [11] succeeded in constructing some non-spherically symmetric solutions for the 1-dimensions
compressible Euler equations by perturbing the linear fluid velocity with a drifting term. By this
perturbations, Yuen [12] derived a new class of blow up or global solutions with elementary functions to the
3-dimensional compressible or incompressible Euler and Navier-Stokes equations. Meanwhile Yeung and
Yuen [13] constructed some self-similar blow-up solutions for the Navier-Stokes-Poisson equations with
density-dependent viscosity and with pressure by the separation method. Most recently. Guo and Wang [14]
given the the proof of the Cauchy problem for Davey Stewartson systems, it is very important meaning to
our article. [15] Sahoo M R found the Limiting behavior of solutions for Euler equations of compressible
fluid flow.

In this paper, we mainly give the proof of explicit exact solutions and limiting behavior for the compressible
Euler equations in three dimensions. This method is different from the study of above reference literature.
Because the new system can be solved directly by using the plane wave transform and the Cardan formula.
Finally, giving the proof of limit behavior.

The paper is organized as follows. In Section 2, we give some definitions and lemma. The Section 3 is
devoted to simplify the system, and give the explicit self-similar solution of 3-dimensional Eluer equation. In
Section 4, give a simple proof of the limiting behavior.
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2 Prliminaries

Now, we first give same simpler definitions and lemma, which will be used in Section 3.

Deftnition 2.1. (Plane wave) We say that a solution (u’p ) of Eluer equations (1.1)-(1.2) in the 3 +1

x=(x,x,x,)e R’ teR*

variables we having the form

v(x,t)=f(y1x—0'1t),x=(x1,x2,x3)eR3,t eR’,
plx,1)=g(y,x—oyt)x=(x,,x,,x,) e R’,t € R,

y, eRi=12.

is called a plane wave, where

Deftnition 2.2.(Self-similar solution) We say that a solution (u’ P )of Eluer equations (1.1)-(1.2)in the 3 +1

x=(x,x,,x)eR’,teR"

variables we having the form

v, eR3,a,,3

is called a self-similar solution, where are constants.

Lemma 2.3. (The Cardan formula) The general cubic equation over the field of complex numbers
X+ px+qg=0

Any cubic equation can be reduced to the above form, the roots of the equation has the form:

2 3 2 3
x:}\/_cu la*, p +3\/_61_ ¢ v
2 4 27 2 4 27

3 Main Results

In this part, we firstly get an equivalent system by using self-similar transform, and also find an explicit
solutions of the new system.

Deftnition 3.1. We define a c function 7 as follows

-1
Po
7’7 > 19
alp)=ci-y  y-1
log ,0}7/ =1
Po
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wherep E(O’ oo),;/ € [1’ OO).

1

Theorem 3.2. Let ﬁ =0,a= and arbitraryy . Then the Euler equations (1.1)-(1.2) can be simplified to

the self-similar form

w+y-Vw—u-Vw—wdivu =0,

3.1
T f—
(y V)u u-Vu-r,Vw=0 (32)
erR’
where ¥ .
Proof.We seek the self-similar solutions by lemma 2.2,
we can get
3 3
/4 a 1 1 o
— t7+1 w— WZ w, X + Wz W, U, + W wdivu =0
i=1 i=
That is
1 1 .
—w—ay-Vw+——— Vw-u+Tﬂ_lwdzvu =0
t t (3.3)
Suppose ¢ +f-1=0 , that is to say
a+pf=1 (3.4)
we have
w+ay-Vw—u-Vw—wdivu =0 (3.5)
Similarly, we have
B a < 1 ;7 B
— u— prva ;uy’x,. +taTﬂu Viu+ S Vw=0
According to the definition
7(p)=n(w)
we have
B a 1 1 ,
tﬂﬁ”thﬂﬁZ(J"V)u — gV VW =0
i=1
That is
1 T 1
,Bu+a(y~V)u—a+—ﬁ4u~V u—mﬂwVW=0
t t (3.6)
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Nextweleta+ﬂ_1:0 and a—ﬂ—le.
Then

a=0,f=1 (3.7)

Substituting (3.7) into (3.3) and (3.6) respectively, and (3.1)-(3.2) follows.

Next, we will solve the new system (3.1)-(3.2) by using the plane wave transform and the Cardan formula.

Theorem 3.3 Let 7 — L,0=2 and arbitrary 7 Then the new system (3.1)-(3.2)has the following exact
solution
S SOE ’
3 Z a”M 3 Z a;M 6
z P z P 4z
w=s|—| —+EF— |+ || —+ -
27 4 27 4 729
(3.8)
-2M
MZ(N )2 (al,az,a3)
-z (3.9)
2 z¢ 2z
Meec? O ¢,z=) ay, . N=wi—+ T
where a 0 =0 with constant i=1 with constant ’, and 9w 3
Proof. We seek the plane wave of (3.1)-(3.2) with the following forms
w=0(z) (3.10)
u=z) (3.11)
WhereZ = alyl +a2y2 +a3y3ay = (ylayzay3)'
Then
Vw=w, = (Wm)vW(yz)»W(y;)): w,(a,,a,,a;). (3.12)

Substituting (3.10)-(3.12) into (3.1)-(3.2), we have

70+ (alyl t+a,y, +asy; )Qz - (alvl +a,v, +a,v; )Qz -0- (alvlz ta,v,, +asv;, ) =0

Where

0-2
w 1 _
o 2 1-0_ 62 2 1-6,6-2
”w_co(_J —=cw, W ~=¢0,"0
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That is
y-0+z-0.~(ay +a, +a)- 0. - 0- (. +av,. +ayv,.)=0 (3.13)
2 A1-0,0-2
Z'vz_(a1v1+azvz+a3v3)'vz_co' b QO 'Qz(al’a2’a3)20 (3.14)
Let‘g =2 , we have
[Z - (alvl Ta,v, +asv; )]Qz + [7’ - (alvlz TaV,. +a;v;, )]Q =0
[Z_(alvl +a,v, +a3v3)]vz —cé 'Qo_1 'Qz(al’az’as): 0
It follows that
0. - 7/_(a1V1z T AV, azvzz) -0
(alvl Ta,v, + a3v3) (3.15)
2 -l
v+ ¢ -0 -(a,0,,a5) 0.=0
(alvl a4, +a3V3)_Z (3.16)
According to (3.15), we get
_J'(al"lz""lz"zz"'asvzz)‘}’dz
Q =C-e (@ +ayv,+azvy -z
Let” = 1 , we have
1
Q:c'[(a1v1+a2v2+a3v3)—z] 1
(3.17)
According to (3.16), we know that
2 -l
v+ T '(alsaz’as) 0.=0
(ay, +ay, +a,)-z
2 -l
v+ ¢ O '(a13a25a3) .1_(a1V12+a2V22+a3V3z) 0
(e +ay, +ayy)-z  (ay, +ay, +a,)-z
2 -l
v =% O (al s, 4y )[(alvlz TAV,, a3v3z)_ 1]
: [(ay, +av, +av,)-z]
Thus
1
2 -l
v=c-cy O, (a1’a2»a3)
_2'[(alvl Ta,v, +a3v3)—z]2 (3.18)
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That is

1

2 -1
v =c-c, 0, a
: 0 =0 1—2-[(a1vl+a2v2+a3v3)—z]2

1
-2 '[(alvl +a,v, + a3v3)_ z]

_ 2 -l
v,=c-¢; 0y a, 2

1
-2 [(alv1 +a,v, +a,v, )— 2]2

—_— . 2. _1
vi=c-c; -0, a,

So we have

1

-2 [(alvl +a,v, +a;v, )_ Z]z

_ 2 Al 2
vira =c¢ -0 aq

1

v,-a =c-cz-Q’1a2
r e —2-[(a1v1+a2v2+a3v3)—z]2

1

-2 '[(alvl t+a,v, + a3v3)_ z]

_ 2 -l 2
Vyrdy =c-¢y -0y dy >

- 2.0 g
M=c-cy-0Q, and¥ =@V T @y tagvs,

Now, we assume that we have

M(al2 + a22 + af)
2i—z)

2

That is to say

~ ~ ~ 2 2 2
2u3—4zu2+222u+M(a1 +a,” +a, )zO

(3.19)
According to the idea of the Cardan formula, we suppose
~ 2z
u=t+—
3 (3.20)
and substitute (3.19) into (3.20), we have
2 3 2 2 2
z 2z7 Mla; +a;+a
£——t+—+ (0} +a; 3):0
3 27 2 (3.21)
According to the the idea of Cardan formula again, we suppose
22
t=w+—
Ow (3.22)
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and substitute (3.22) into (3.21), we have

W z¢ 27 M(a12+a§+a32):0
729W2 27 2 (3.23)
That is
3 2 2 2 6
(w3)2+[2Z +M(a1+a2+a3)] sy z ~0
27 2 729
Thus

3 _(23 +M(a12+a§+a32))+\/(z3 +M(af+azz+a32)j2_4z6

w=——=
27 4 27 4

In view of (3.22), we get

2
= _[2_3+M(af+a§+a§)Ji J(_ +M<a5+a;+a;)J =S

27 4 27 4 729
Zz
ol [Z M@ va+a)), [(2 Mlai+a+al)) 4z
27 4 27 4 729

Due to (3.20), we get

2
3 2 2 2 3 2 2 2 6
523_(Z_+M(al+a2+a3)ji\/(z_+M(al+a2+a3)] 4z N

27 4 27 4 729

2

3
93 _(23 +M(af+a22+a32)J+\/(z3 +M(a12+a22+a32)j2_4z6

27 4

we can get

2
z’ M(al2 +a; +a32) z’ M(al2 +a; +a32) 4z°
av, +a,v, +av, =3|— +——"L | 1 = S/ —— 4

27 4 27 4

27 4

93\/_(23+M(a12+a22+a32)j+\/[z3+M(a12+a22+a32)j2_426 3
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Substituting (3.24) into (3.18) and concludes the Theorem 3.3.

Remark 3.4. The solution (3.8)-(3.9) are explicit, in view of (1.1)-(1.2), we can get the explicit and exact
self-similar solution of 3-dimensional Eluer equations.

y=1,0=2

Corollary 3.5. Let .Then the new system (3.1)-(3.2) has the following special exact solution

z M z M 2 47°
w=3— T+ + T+ ——
7296° 36b 729b°  36b &b

z? 2z .
u= W+—2+— e.
81b"w 9b

e=LL1)M=c-c;-Q;'

z=b(y, +y,+y3)

where ,with constant € , with constant b .

Proof. Now we substitute (3.24) into (3.18).Let I =Y27 Y 7% then we can find that G =y =03 1o
a,=b,i=123. Then
1
O=c—
3bu,—z (3.25)
M-b !
uo — . . —2
—2(3bu, - z) 626
It follows (3.26) that
2 3 2 2 _
186" -uy —12b-z-uy +2-z'uy+ Mb =0 (327)
According to the idea of the Cardan formula, we suppose
2z
Uy =t+—
9b (3.28)
Substituting (3.28) into (3.27), we have
2 3
z 2z M
et ——+—=0.
27 7296°  18b (3.29)
According to the idea of the Cardan formula again, we suppose
2
[=W+—5—
18b°w (3.30)
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and substitute it into (3.29), we have

3 z® 2z° M

W+ +
8w’ 729 18b

that is to say

27’ M z°
W)+ +—)W + =0
) (729b3 18b) 81°h°

Thus

3 3 2 6
w3:—(z3+M)i Z3+M _432(,
729b°  36b 7296  36b 81°b

(3.31)
Because (3.30), we have
3 3 2 6
t:3—(z3+M)J_r Z3+M —4326+
7296 36b 7296 36b 81°b
22
3 3 2 6
81b2—(Z3+M)J_r Z3+M —4326
729b°  36b 729b°  36b 81°b
(3.32)
In view of (3.32), we have
P z’ +M)+ z’ +M2_426+
0 7290  36b° \\ 7296° 36b 81°h°
z* 2z
3 3 2 s 9b
gl (2 My, o= M —%
729b°  36b 729b°  36b 81°b (3.33)

4 Limiting Behavior

In this section, we mainly discuss the limit behavior of (1.1)-(1.2). In other words, we discuss whether the

weak solution of (1.1)-(1.2) tend to the one of (4.3)-(4.4) when y—1 .

Now, we lable equations (1.1)-(1.2) as follows

p:+V~(p*v*)=0 4.1)

10
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(p*v*), + IZ; (p*vi*v*)x +V (P (p*)): 0

y—1

When , the limit equation is

p+V-(pv)=0
(pv)r + Iz; (pviv) +V (CSP): 0

when equation(4.1), (4.3)and(4.2),(4.4)respectively to do bad, we can get
(o, —P)+V-(PV)=V-(p)=0

(v ) =G+ X (o) =3 () +V (6l )-vlein)-0

(4.2)

4.3)

4.4

(4.5)

(4.6)

Theorem 3.5. Let QT =Qx[0,T] ,hereo ST <+w andQ c R’ If (v P )an (,0, V) is the weak solution

of (4.1)-(4.2) and (4.3)-(4.4), satisfy the same boundery conditions, respectively. Then when

Vi—y —0

”'0* —p Q) +||

Q)
Proof. Let” ~V=VsP =P = Psit follows (4.5), (4.6) that
B, +V-(3v)+V-(p'7)=0

(P*V+vp), +Vp VT + p Vy T +Vp W+ Vp v+ p'Viv+v-pVy
2

+(ﬁv+§p*)v~v* + vV Y telps 7 p P Vp —ciVp=0

Multiply (4.7) by P , we have
PP+ P(Vp v+ PV v)+p(Vp T+ p'V-T)=0
integrating over €2, we have

1d

—— \5\2+ljv\5\2-v+j,52v-V+I5Vp*-5+jﬁp*vv:0
Zdtﬁ 2(2 Q Q Q

Similarly, multiplying (4.8) by ~ 2 (p W+ py ), and integrating over Q , wWe can get

J-(p*V + vﬁ)[—A(p*V + vﬁ)]+ IVp*v*V[—A(p*V + vﬁ)]+J-p*Vv*V[—A(p*V + vﬁ)]+
Q Q

Q t

JVp*vV[—A(p*V + vﬁ)]+JVﬁvz[—A(p*17 + vﬁ)]+ Ip*VVv[—A(p*V + vﬁ)]+
Q Q Q

Jv~,5Vv[—A(p*V+vﬁ)]+j(ﬁv+p*V)V -v*[—A(p*V+vﬁ)]+vaV -V[—A(p*17+v,5)]

Q
+ chp(')’yp*”’”Vp*[—A(p*V + vﬁ)]— IcéVp[—A(p*V + vﬁ)] =0
Q Q

(4.7)

(4.8)

(4.9)

(4.10)

@.11)

11
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Due to

- I (p*V + vf)) [A(p*V + vf))] = IV(p*V + vﬁ), -V(p*V + vﬁ)— I(p*V + vf))tV(p*V + vﬁ)- n

t Q oQ

:%%E[|V(p*3+vf)r —O_L(p*VJrvﬁ) .V(p*17+vf)).n .
t 4.12

O,T]

Integraling over [ with respect to t , where! € [0’ 3 ] ,we can get

—j J(‘ pv+vp] ‘ﬁ‘szrcéij[A(p*V+vﬁ)]+%fV‘ﬁ‘2.v+
Q, Q,

jf)’Vp v +IﬁpV‘V+lfV‘(ﬁv+p*17]z‘Av* =

Q, Q, 29,

_[ I‘V(ﬁv+p*712v V4 ﬂﬁ‘zv .v*]-i- _“V(p*v*)V[A(p*17+ﬁv)]
+J.V(p v)v[A(pv+pv)]+_[V v[A(pv+pv)]+_[va v[A (p v+pv)]+
¢ jp oV 1Al V+pV)]+

([l + ) -Vl +mv)n+ [(05+5) Vv V(o +pv) n)
o0, Q,

Suppose
G(r)= J.(:”V(p*\? + vﬁr +|8[*
Q
Because

*y(y-1) _
o <P I
4 vV

p*(y—l)

_r
(therepis}/,qis y-1 ,and7/21)

we have
[ (5[ + 5 )< [ (|V(p*17 +vp)| + |5|2) < C}/T_lgo'V(eCT -1)
Q Q
Therefore, we obtain that

—0

Q)

LI P

12
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5 Conclusions

In this article, section one and two given the introduces of the present situation research, and put forward the
question whether the equation has exact solution. We find there exist exact solution and in section three we
have given the detailed process of proof. Then we have a question is the existence of weak solutions,

Although this article did not give the existence of weak solutions, we find when y—1 , this equation have
limiting behavior, in section four we have given detailed proof. Though only a small step has been taken, i
have confidence to do better.
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