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Abstract 
 

This article mainly divides into two parts. In the first part, We find a new system by using the plane wave 
transform and self-similar transform, then we give the exact solution by using the Cardan formula. In the 

second part, assuming the original equation exist weak solution, when 1 , it will tend to the weak 
solution of the limit equation, that is to say the original equation has the limiting behavior. 
 

 
Keywords: Compressible; exact solution; self-similar solution. 
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1 Introduction 
 
Now, we are discussion about the following 3-dimensional compressible isentropic Euler equations 
 

0 vvt 
                                                                                                             (1.1) 
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where   denotes the gradient respect to the space coordinates
 321 ,, xxxx 

,  xt,    denotes the 

density of the gas, vector
   txvvvvv ,,, 321 

is the velocity of the gas, and  P denotes pressure. 

In this article we only considering the equations under the polytropic pressure laws   1  ：律  
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                                                                                                                        (1.3) 
 

here 0c
 is the sound speed at density 0 . Many subsequent results extend with little or no change to 1  

or to general pressure laws. 
 
The compressible Euler equations have drawn great interest since the vital physical importance and many 
mathematical challenges (see Lions [1]). Yuen [2] obtained the analytically self-similar solutions with 
elliptic symmetry and drift phenomenon for the compressible Euler and Navier-Stokes equations in         

nR ( 2n ) by the separation method. Yang [3] given the proof of (I,J) similar solutions to Euler and 
Navier-Stokes equations. Song [4] also found that the Nonhomo geneous boundary value problem for (I,J) 
similar solutions of incompressible two-dimensional Euler equations. Ha [5] Nonlinear stability of spherical 
self-similar flows to the compressible Euler equations. 
 
Therefore its solutions are very meaningful in mathematical physics. Sideris [6] found that the smooth 
solutions to the three-dimensional Euler equations for a polytropic idea fluid must blow up in a finite time 
under some assumptions on the initial data. Godin [7] derived the asymptotic behavior of the lifespan of the 
smooth solution to three-dimensional spherically symmetric flows of ideal ploytropic gases with variable 
entropy, when the initial data is just perturbed from a constant state by smooth compactly supported 
functions. On the other hand, it is interesting that Grassin [8] showed that there exist global smooth solutions 
for ideal plolytropic fluids if the initial data can force the particles to spread out. In reference [9], the authors 
proved the global existence of the smooth solutions to the Cauchy problem for two-dimensional flow of 
Chaplygin gases under the assumption that the initial data is close to a constant stste and the vorticity of the 
initial velocity vanishes. 
 
Recently, Li and Wang [10] studied the blow up phenomena of solutions for the multi-dimensional 
compressible Euler equations by constructing some special explicit solutions with spherical symmetry. 
 
Yuen [11] succeeded in constructing some non-spherically symmetric solutions for the 1-dimensions 
compressible Euler equations by perturbing the linear fluid velocity with a drifting term. By this 
perturbations, Yuen [12] derived a new class of blow up or global solutions with elementary functions to the 
3-dimensional compressible or incompressible Euler and Navier-Stokes equations. Meanwhile Yeung and 
Yuen [13] constructed some self-similar blow-up solutions for the Navier-Stokes-Poisson equations with 
density-dependent viscosity and with pressure by the separation method. Most recently. Guo and Wang [14] 
given the the proof of the Cauchy problem for Davey Stewartson systems, it is very important meaning to 
our article. [15] Sahoo M R found the Limiting behavior of solutions for Euler equations of compressible 
fluid flow. 
 
In this paper, we mainly give the proof of explicit exact solutions and limiting behavior for the compressible 
Euler equations in three dimensions. This method is different from the study of above reference literature. 
Because the new system can be solved directly by using the plane wave transform and the Cardan formula. 
Finally, giving the proof of limit behavior. 
 
The paper is organized as follows. In Section 2, we give some definitions and lemma. The Section 3 is 
devoted to simplify the system, and give the explicit self-similar solution of 3-dimensional Eluer equation. In 
Section 4, give a simple proof of the limiting behavior. 
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2 Prliminaries 
            
Now, we first give same simpler definitions and lemma, which will be used in Section 3. 
 

Deftnition 2.1. (Plane wave) We say that a solution 
 ,u

 of Eluer equations (1.1)-(1.2) in the 3 +1 

variables 
   RtRxxxx ,,, 3

321  we having the form 
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is called a plane wave, where 
.2,1,3  iRyi  

 

Deftnition 2.2.(Self-similar solution) We say that a solution 
 ,u

of Eluer equations (1.1)-(1.2)in the 3 +1 

variables 
   RtRxxxx ,,, 3

321  we having the form 
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is called a self-similar solution, where
 ,,3Ryi  are constants. 

 
Lemma 2.3. (The Cardan formula) The general cubic equation over the field of complex numbers  
 

03  qpxx  
 
Any cubic equation can be reduced to the above form, the roots of the equation has the form: 
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3 Main Results 
    
In this part, we firstly get an equivalent system by using self-similar transform, and also find an explicit 
solutions of the new system. 
 

Deftnition 3.1. We define a 
C  function   as follows  
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where
    ,1,,0 

. 
 

Theorem 3.2. Let 1,0    and arbitrary . Then the Euler equations (1.1)-(1.2) can be simplified to 
the self-similar form 
 

,0 wdivuwuwyw                                                                                           (3.1) 
 

  0 wuuuy w
T 

                                                                                                 (3.2) 
 

where
3Ry . 

 
Proof.We seek the self-similar solutions by lemma 2.2, 
 
we can get 
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That is  
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                                                             (3.3) 
 

Suppose 01  , that is to say 
 

1                                                                                                                                       (3.4) 
 

we have 
 

0 wdivuwuwyw 
                                                                                         (3.5) 
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According to the definition 
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That is 
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Next we let 01   and 01  . 
 
Then 
 

1,0  
.                                                                                                                                (3.7) 

 
Substituting (3.7) into (3.3) and (3.6) respectively, and (3.1)-(3.2) follows. 
 
Next, we will solve the new system (3.1)-(3.2) by using the plane wave transform and the Cardan formula. 
 

Theorem 3.3 Let 
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
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Proof. We seek the plane wave of (3.1)-(3.2) with the following forms 
 

 zQw
                                                                                                                                    (3.10)    
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                                                                                                                                      (3.11)   

 

where
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Substituting (3.10)-(3.12) into (3.1)-(3.2), we have 
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That is 
 

    0332211332211  zzzzz vavavaQQvavavaQzQ
                        (3.13) 
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Let 2 , we have 
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According to (3.15), we get 
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That is 
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According to the idea of the Cardan formula, we suppose 
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and substitute (3.22) into (3.21), we have 
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9

729

4

427427

3

622
3

2
2

2
1

32
3

2
2

2
1

3

2

3

622
3

2
2

2
1

32
3

2
2

2
1

3

332211

z

zaaaMzaaaMz

z

zaaaMzaaaMz
vavava










 








 









 








 


      (3.24) 
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Substituting (3.24) into (3.18) and concludes the Theorem 3.3. 
 
Remark 3.4. The solution (3.8)-(3.9) are explicit, in view of (1.1)-(1.2), we can get the explicit and exact 
self-similar solution of 3-dimensional Eluer equations. 
 

Corollary 3.5. Let 2,1   .Then the new system (3.1)-(3.2) has the following special exact solution 
 

3
63

62

3

3

3

3

81

4

3672936729 b

z

b

M

b

z

b

M

b

z
w 



















 

.̂
9

2

81 2

2

e
b

z

wb

z
wu 










 
 

where
  1

0
2
0,1,1,1ˆ  QccMe

,with constant c , 
)( 321 yyybz 

 with constant b . 
 

Proof. Now we substitute (3.24) into (3.18).Let 0321 uvvv 
, then we can find that 321 aaa 

.Let 

.3,2,1,  ibai Then 
 

zbu
cQ




03

1

                                                                                                                        (3.25)  
 

 20

0
32

1

zbu
bMu




                                                                                                     (3.26) 
 
It follows (3.26) that 
 

021218 0
22

0
3
0

2  Mbuzuzbub
                                                                           (3.27) 

  
According to the idea of the Cardan formula, we suppose 
 

b

z
tu

9

2
0 

                                                                                                                                (3.28) 
 
Substituting (3.28) into (3.27), we have 
 

.0
18729

2

27 3

3

2

2
3 

b

M

b

z
t

b

z
t

                                                                                             (3.29) 
 
According to the idea of the Cardan formula again, we suppose 
 

wb

z
wt

2

2

18


                                                                                                                           (3.30) 
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and substitute it into (3.29), we have 
 

0
18729

2

81 3

3

363

6
3 

b

M

b

z

wb

z
w

 
 
that is to say 
 

0
81

)
18729

2
()(

63

6
3

3

3
23 

b

z
w

b

M

b

z
w

 
 

Thus 
 

63

62

3

3

3

3
3

81

4

36729
)

36729
(

b

z

b

M

b

z

b

M

b

z
w 










                                                      (3.31) 
 
Because (3.30), we have 
 

63

62

3

3

3

3
2

2

3
63

62

3

3

3

3

81

4

36729
)

36729
(81

81

4

36729
)

36729
(

b

z

b

M

b

z

b

M

b

z
b

z

b

z

b

M

b

z

b

M

b

z
t





















                                                 (3.32) 
 
In view of (3.32), we have 
 

b

z

b

z

b

M

b

z

b

M

b

z
b

z

b

z

b

M

b

z

b

M

b

z
u

9

2

81

4

36729
)

36729
(81

81

4

36729
)

36729
(

63

62

3

3

3

3
2

2

3
63

62

3

3

3

3

0























                                           (3.33) 
 

4 Limiting Behavior 
 
In this section, we mainly discuss the limit behavior of (1.1)-(1.2). In other words, we discuss whether the 

weak solution of (1.1)-(1.2) tend to the one of (4.3)-(4.4) when 
1

. 
 
Now, we lable equations (1.1)-(1.2) as follows 
 

0)( ***  vt 
                                                                                                                     (4.1) 
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       0*
3

1

*****  


 Pvvv
ixi

it

                                                                               (4.2) 
 

When 
1

 , the limit equation is 
 

0)(  vt 
                                                                                                                         (4.3) 

 

      02
0

3

1

 


 cvvv
ixi

it

                                                                                           (4.4) 
 

when equation(4.1), (4.3)and(4.2),(4.4)respectively to do bad, we can get 
 

0)()()( ***  vvtt 
                                                                                      (4.5) 

 

             02
0

*

11

*****  


 cpvvvvvv
ii x

d

i
i

x

d

i
itt

                      (4.6) 
 

Theorem 3.5. Let ],0[ TT  ,here  T0 and
3R .If  **,v an

 v,
is the weak solution 

of (4.1)-(4.2) and (4.3)-(4.4), satisfy the same boundery conditions, respectively. Then when
1

. 
 

 
 

0
2

2

** 








L

vv
L

. 
 

Proof. Let ,~,~ **   vvv it follows (4.5), (4.6) that 
 

    0~~~ *  vvt 
                                                                                                     (4.7) 

 

 

  0~~~

~~~~~~~~*
2
0

*)1*(1
0

2
0

**

*2*****




 


 ccvvvvv

vvvvvvvvvvvvv t

                     (4.8) 
 

Multiply (4.7) by
~

, we have 
 

  0~~~)~~(~~~ **  vvvvt 
                                                          (4.9) 

 

integrating over  , we have 
 

0~~~~~~
2

1~
2

1 **222

 


vvvv
dt

d


                                 (4.10) 
 

Similarly, multiplying (4.8) by  vv  ~~*  , and integrating over , we can get 
 

       

     

       

    0]~~[]~~[

]~~[~]~~[~~]~~[~

]~~[~]~~[~]~~[~

]~~[~]~~[~]~~[~~

2
0

)1(1
0

2
0

*

2







































































 vvcvvc

vvvvvvvvvvvvv

vvvvvvvvvvv

vvvvvvvvvvvv
t

    (4.11) 
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Due to 
 

           

      nvvvvvv
dt

d

nvvvvvvvvvvvv

t

tt

t





































~~~~~~
2

1

~~~~~~~~]~~[~~

2

  (4.12) 
 

Integraling over  ,0 with respect to t , where  ,0t ,we can get 
 

   

 

     

         

   

        )~~~~~~~~(

]~~[

]~~[~]~~[~]~~[~

]~~[~~~~

~~
2

1~~~~

~
2

1
]~~[~~~

2

1

*1
0

12
0

22

2

22
0

0

22







 



 





























 
















































 







 





















nvvvvvnvvvv

vvc

vvvvvvvvvvvv

vvvvvvvv

vvvvv

vvvcvv

tt

 

Suppose 
 

    2
2

0

~~~ 


  


 vvG

 
 

Because 
 

 
 




 







 


 

 0

1
1
0

1* 1

 
 

(there p is , q is 1



,and 1 ) 
 

we have 
 

   1
1~)~~(~~

0
0

22

0

22









  






  

CT
TT

eCvvv 





 
 

Therefore, we obtain that 
 

 
 

0
2

2

** 








L

vv
L
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5 Conclusions 
 
In this article, section one and two given the introduces of the present situation research, and put forward the 
question whether the equation has exact solution. We find there exist exact solution and in section three we 
have given the detailed process of proof. Then we have a question is the existence of weak solutions, 

Although this article did not give the existence of weak solutions, we find when 
1

, this equation have 
limiting behavior, in section four we have given detailed proof. Though only a small step has been taken, i 
have confidence to do better. 
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