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Abstract 
 

A new dynamic model for the malaria disease has been developed for areas where the whole populace is 
at risk and exposure to the malaria infection is continuous throughout the year.  In this model, the two 
vulnerable groups that is, infectious people those under 5years and pregnant women have been given 
separate compartments. The model has two equilibria, that is, disease-free and endemic equilibrium 
points. The basic reproduction number   ( �� )  for the model has been derived using the next-generation 
matrix approach. The local stability of two equilibria is investigated using matrix elementary row 
operations. However, global stability of disease-free equilibrium is investigated using theorem by 
Castillo-Chavez et.al (2002) and that of the endemic equilibrium is also investigated using Lyapunov’s 
function. It is proven that disease-free equilibrium is locally asymptotically stable if   ��   < 1  and the 
endemic equilibrium exists if    ��   > 1  .  The endemic equilibrium is locally asymptotically stable when 
  Α�Α�Φ � > �Φ �

���  and    ������ > ������  .  Sensitivity analysis has proved that malaria can be 
controlled or eliminated if the following parameters such as biting rates, recruitment rate and density-
dependent natural mortality rate for mosquitoes and clinical recovery rates for humans are controlled. 
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1 Introduction 
 
Malaria is a life-threatening disease widely found in tropical and subtropical regions, especially in Africa, 
Asia, Latin America, the Middle East and some parts of Europe [1,2,3,4,5]. More than two hundred million 
people suffer the malaria disease yearly, and more than four hundred thousand die from it. Nearly 70 percent 
of malaria deaths are in children under five [6]. According to the World Health Organization (WHO), the 
African Region continues to bear 90% of malaria cases and 91% of malaria deaths worldwide [7]. Nigeria, 
the most populous country in Africa, accounted for 27% of malaria cases and 24% of malaria deaths globally 
in 2016 [7]. Bill Gates, a leading funder of antimalaria efforts, has said that the cost of controlling malaria 
"endlessly" is not financially sustainable, therefore he is calling for eradication instead. However, eradicating 
malaria by 2040 would cost between $90 billion and $120 billion, according to the Gates Foundation [6]. 
Malaria cost can be measured in lives lost, the time spent ill with the fever, and at the macroeconomic level, 
national malaria burden reduces economic development [8]. In this article, humans under 5years are known 
as Infants. 
 

2 Malaria 
 
Malaria is caused by parasites of the species Plasmodium [9,1,4,10]. Four species of the parasite that 
produce human malaria disease are Plasmodium falciparum (also called malignant tertian 
malaria), Plasmodium vivax (also called tertian malaria), Plasmodium malariae (also called quartan malaria) 
and Plasmodium ovale [11,8,12,13]. Plasmodium falciparum is the most common form of the malaria 
parasite in sub-Saharan Africa, is responsible for the most deaths worldwide; Plasmodium vivax is the most 
common malaria parasite outside of sub-Saharan Africa. The parasites are transmitted to humans through the 
bites of infected female Anopheles mosquitos (vectors) [1,6,14,4,5]. After entering a human, the parasites 
travel through the infected person’s blood to the liver, where they grow, multiply, and then spread 
throughout the body’s red blood cells, destroying them in the process. When the parasites are 
fully developed into infectious forms(gametocytes), then they are transmitted to a new mosquito that bites 
the infectious person. After approximately 10 to 15 days when the infectious mosquito takes her next blood 
meal, the parasites are matured in the mosquito to infect a new person. After a human gets bitten the 
symptoms appear in about 9 to 14 days [1]. The most common symptoms are a headache, fever, and 
vomiting [15]. If the infected human does not get antimalarial drugs the infection can progress and become 
life-threatening [1]. Humans with weaker immune systems, particularly children under five, are the most 
vulnerable. Pregnant women are also at high risk for becoming sick and passing the disease to the fetus (the 
parasites take hold in the nonimmune placenta), and malaria contracted during pregnancy is thought to 
contribute to low birth weights that result in a hundred thousand infant deaths each year [6,7]. 
 

3 Previous Work 
 
The mathematical modeling of malaria began in 1911 with Sir Ronald Ross [9,1,8,16,10,17], who was 
awarded the Nobel prize for his work. Ross’s model was two-dimensional with one variable representing 
humans and the other representing mosquitoes [18]. Major extension of the Ross model was formulated by 
George Macdonald in 1957 by adding Exposed compartment to the mosquito population. This was followed 
by Anderson and May in 1991, they also added Exposed compartment to the human population [19]. Further 
work was done by Dietz, Molineux, and Thomas by proposing acquired immunity to the human population. 
Further work on acquired immunity in malaria was conducted by Aron and Bailey [20]. Aron and May, 
Koella and Nedelman, also did good work on mathematical modelling of malaria. Some recent papers in 
malaria included environmental effects and resistance to antimalarial drugs [20].  Ngwa and Shu and Ngwa 
proposed an ordinary differential equation (ODE) compartmental for the transmission of malaria with a 
susceptible-exposed-infectious-recovered-susceptible (SEIRS) pattern for humans and susceptible-exposed-
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infectious (SEI) pattern for mosquitoes. In a Ph.D. dissertation, Chitnis analysed a similar model for malaria 
transmission [21]. In 2012, Addawe and Lope proposed an Age-structured malaria transmission model in an 
article [22]. In another Ph.D. dissertation by Mwamtobe in 2014, proposed that a future work in malaria 
which will include the vulnerable groups, that is, children under the age of five years and pregnant women 
could shed more light on which intervention strategy to prioritize to the specific groups [18].  Therefore, in 
this paper, we extend the Ross model to include compartments for children under five years and pregnant 
women. 
 

4 Model Description and Formulation  
 
A Flow Chart (Fig. 1) is a new Flow Chart describing the transmission dynamics of Plasmodium falciparum 
malaria disease in its endemic areas of the word, where the whole populace is at risk. It is similar to the Flow 
Chart (Fig. 1) in the article ‘Analysis of age-structured malaria transmission model’ by Addawe and Lope 
[22]. However, in Fig. 1 in this article, an infectious compartment for pregnant women has been added to 
study the effect of the disease during pregnancy.  There is no recovered compartment in Fig. 1 as it is in 
Addawe and Lope’s model since people who recover completely from the malaria infection through clinical 
treatment do not have any long-lasting immunity, unlike the HIV disease.  It is assumed that each infectious 
person fully recovers after a one-time period. Therefore, the model in this paper is based on the susceptible-
infectives (SIS) models of infectious disease epidemiology.  Parameters of the model   ( 1 )   will be 
estimated from clinical Malaria data. 
 
The Fig. 1 entails humans and only adult female Anopheles mosquitoes and divides each population into 
smaller groups called compartments depending on their infectious status of the malaria parasite.  And for 
humans, age and pregnancy have been factored into the compartmental divisions.  The human population is 
partitioned into four compartments: susceptible  ( ��  ) , infectious under 5years   ( �� ) , infectious over 
5years   ( ��)  and infectious pregnant women ( �� )  ,  since the data for these compartments are always 
available at the health directorates of the various malaria endemic countries. The susceptible  ( ��)  are both 
immune and non-immune individuals with gametocyte free status and are susceptible to the malaria disease. 
Gametocytes are one of the developmental stages of the Plasmodium falciparum malaria parasite that can 
infect the female Anopheles mosquito when it takes a blood meal from an infectious person, therefore only 
people with gametocytes in their blood can transmit the malaria parasite to mosquitoes. In this article, it is 
assumed that a clinically treated person is someone with gametocyte free status (that is, the gametocytes 
have been cleared from the person’s blood system by antimalarial drugs). Malaria immune people are 
individuals who have developed partial immunity to the malaria disease due to many years of repeated 
infections; the immunity is fractional in light of the fact that nobody is completely immune to the disease 
[2,17].  The immunity can be lost through interruption of exposure, that is, if an immune person migrates to 
a non- endemic malaria region where the exposure to the disease is not available, then he or she 
automatically loses their immunity. The immunity can be restored through numerous years of repeated 
infections, therefore a person living in malaria endemic area cannot lose his or her immunity as long as they 
continue to stay in the area and the exposure to the disease continues. The advantage of those with malaria 
immunity is that frequency of the malaria infections is delayed, which could delay the frequency of malaria 
infections in the adults [23]. 
 
Newborns have malaria immunity up to the first 3–6 months of their lives due to passive transfer of maternal 
antibodies through the placenta. After these months, they are vulnerable to clinical malaria episodes until 
they develop their own immunity [20,17].  People enter the human population through the susceptible 
 ( �� )  compartment at per capita recruitment rate (  Ζ� ) . When the malaria infection begins in humans, the 
individuals under 5years move to   ��   compartment, over 5years who are not pregnant move to   ��   
compartment and pregnant women move to   ��   compartment. Those in infectious compartments   ��  and  
��   and  ��     are clinically treated (that is, gametocytes are completely cleared) at the rates  Λ�  , Λ� and Λ�   
respectively, before they return to  ��   compartment for re-infection.  Also, the infectious individuals can 
exit the human population through disease-induced deaths at the rates  (� �) , (� �)   and  (� �)  respectively.  
The infectious under 5years can join the infectious over 5years at the rate (�)  when they attain aged 5 and 
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also infectious over 5years can join the infectious pregnant women compartment at the rate  (Ω)  when the 
become pregnant. It is assumed that infectious pregnant women cannot join the infectious over 5years 
compartment since most infectious pregnant women are clinically treated before they give birth. Humans can 
also exit their population through density-dependent mortality rate (  μ�) in each compartment.  
 
The mosquito populace is divided into two compartments namely: susceptible  ( �� ) and infectious ( �� )  . 
The adult female Anopheles mosquito becomes infectious when it bites gametocyte carriers (that is, 
infectious humans) and ingests the gametocytes.  The mosquito in the   ��  compartment becomes infectious 
and moves to the   ��  compartment only when the malaria parasites becomes mature and moves to the 
mosquito’s salivary glands and remains in the infectious status for life. The mosquito exits its population 
through density-dependent mortality at the rate  (��) or mortality due to insecticides but cannot die directly 
from the malaria parasite infection [9].  Female mosquitoes enter their population through the susceptible 
compartment at per capita recruitment rate  (  Ζ� ) . It is assumed that there is no immigration of infectious 
individuals in the human population. 
 
The Flow Chart for malaria transmission dynamics is given below as Fig. 1.  
 

 

 
 

 
Fig. 1. Flow chart for the malaria transmission dynamics 

 
The flow chart demonstrates the interactions between human and mosquito populations and the movement of 
individuals from one compartment to another. The solid arrows show progression of individuals from one 
compartment to another and the dotted arrows show how the humans and mosquitoes interact and infect each 
other.  Susceptible humans in  ��   get infected when infectious mosquitoes from   ��  bite them. They then 
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progress to  ��  , �� and  ��  when they are infectious.  Humans in   ��  , �� and  ��   move to   ��  compartment 
for re-infection after clinical treatment. Susceptible mosquitoes in  ��  get infected when they bite humans in 
  ��  , �� and  ��  compartments and then move to  �� when they are infectious. Mosquitoes remain in  ��  
until they die through density-dependent mortality or insecticide. Humans exit their population through 
density-dependent mortality and disease-induced mortality.  Mosquitoes enter their population at per capita 
recruitment rate and Humans enter through birth or immigration. 
 
Detailed description of the symbols in Fig. 1 is given in Table 1 and Table 2. 
 

Table 1. The state variables for the model 1 
 

State variables Description 

��(�) Number of susceptible humans at time  � . 

��(�) Number of infectious infants at time  �. 

��(�) Number of infectious adults at time  �. 

��(�) Number of infectious pregnant women at time  �. 

��(�) Number of susceptible mosquitoes at time  �. 

��(�) Number of infectious mosquitoes at time  � . 

��(�) Total human population at time  � . 

��(�) Total mosquito population at time  � .  
 

Table 2. The parameters for the model 1 
 

Parameter Description 

Ζ� Recruitment for the human population.  Dimension: Humans × Time-1 

Ζ� Recruitment rate for mosquitoes. Dimensions: Time-1 

�� Density-dependent natural mortality rate for humans. Dimensions: Time-1 

�� Density-dependent natural mortality rate for adult female Anopheles mosquitoes. 
Dimensions: Time-1 

�� Per capita disease-induced mortality rate for people under 5 years.  

Dimensions: Time-1 

�� Per capita disease-induced mortality rate for people over 5 years  

Dimensions: Time-1 

�� Per capita disease-induced mortality rate for pregnant women Dimensions: Time-1 

Λ�  Clinical recovery rate for people under 5 years. Dimensions: Time-1 

Λ� Clinical recovery rate for people over 5 years. Dimensions: Time-1 

Λ� Clinical recovery rate for the pregnant women. Dimensions: Time-1 

Φ � Number of bites on people under 5 years per female mosquito per unit time.  Dimensions: 
Time-1 

Φ � Number of bites on people over 5 years per female mosquito per unit time.  Dimensions: 
Time-1 

Φ � Number of bites on pregnant women per female mosquito per unit time.  

Dimensions: Time-1 

��� Fraction of bites that successfully infect humans 

��� Fraction of bites that successfully infect mosquitoes.   

� Rate of progression from   ��  to   ��  compartment.  Dimensions: Humans ×  Time-1 

Ω  Rate of progression from   ��  to   ��  compartment.  Dimensions: Humans ×  Time-1 
 
Putting the assumptions and the ideas together, the malaria model is given by a system of six (6) differential 
equations as stated in  (  1  )    below.   
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�

���

��
= Ζ�  + Λ��� + Λ��� + Λ��� − ���� − ����− ���� − ����      

  
���

��
=  ���� −  Λ��� −  (�� + ��)�� −  ���                                                  

  
���

��
=  ���� + ��� −  (�� + ��)�� − Λ��� −  Ω��                                

 
 

���

��
=  ���� + Ω�� −  (�� + ��)��  − Λ���             

                               

   
���

��
= Ζ�  −  ���� −  ����

 
                                                                      

 

���

��
 =   ���� − �� ��                                                                                   

       

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                                  (  1 )   

 
Applying the definitions of the force of infections as stated in the model of Addawe and Lope [22] the force 
of infections for infants, adults and pregnant women are 
 

�� =  
Φ ������

��

�

 ,  �� =   
Φ ������

��

  and   �� =
Φ ������

��

   .                                                            ( 2 ) 

 
The force of infection for mosquitoes is 
 

�� =
(Φ ��� + Φ ��� + Φ ���)���

��

   .                                                                                                           ( 3 ) 

 
Substituting     ( 2 )    and      ( 3 )    into    (   1 )  , leads to   (   4 ) . 
 

�

���

��
= Ζ�  + Λ��� + Λ��� + Λ��� −

(Φ � + Φ � + Φ �)�������

��

− ���� 
  

���

��
=  

Φ ��������

��

−  (�� + �� + Λ� + �)��                                                  
  

���

��
=  

Φ ��������

��

+ ��� −  (�� + �� + Λ� + Ω)��                                   
 
 

���

��
=  

Φ ��������

��

+ Ω�� − (�� + �� + Λ�)��             
                              

   
���

��
= Ζ�  −  

(Φ ��� + Φ ��� + Φ ���)�����

��

−  ����

 
                               

 

���

��
 =   

(Φ ��� + Φ ��� + Φ ���)�����

��
− �� ��                                           

       

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                              ( 4 ) 

 
where the initial values are  ��(0) = ��� ≥ 0   ,   ��(0) = ��� ≥ 0   ,     ��(0)= ��� ≥ 0   ,   

 ��(0) = ��� ≥ 0 ,   ��(0) = ��� ≥ 0   and   ��(0)= ��� ≥ 0                                                                      
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5 Invariant Region 
 
The invariant region is a region where solutions of the model  ( 4  ) exist biologically. 
 
Biological entities cannot be negative, therefore all the solutions of the model  ( 4 ) are positive for all time 
 � ≥ 0  . [14] 
 

The total population sizes   ��  and   ��  can be defined by   �� = �� +  �� + ��  + ��   and  �� = �� + ��  . 
 

In absence of the malaria disease, the differential equation for   ��  is given as  
 

���

��
  ≤ �� − ����                                                                                                                                        ( 5 ) 

 
The differential equation for   ��  is also given as  
 

���

��
 <  ��  −  ����                                                                                                                                    ( 6 ) 

 
Lemma 1. The model   ( 4 )  has feasible solutions which are contained in the proper subset 
 

    Ψ = Ψ � × Ψ �  . 
 
Proof 
 
Let      (  �� , �� , �� ,   �� , �� , ��   )∈  ��

�      be any solution of the system with non-
negative initial conditions. Using  (  5  )   
 

���

��
≤ �� − ����    ⟹ � �(����� ) ≤ �� � ��� � �� 

 

�� ≤
��

��

+ ���� −
��

��

��� �� �                                                                                                                     ( 7 ) 

 

Therefore, as     � ⟶  ∞   , the human population   ��  approaches   
��

��
  and it follows that  

 

  lim
   � ⟶  �  

sup ��(�) ≤
��

��

   and   lim
   � ⟶  �  

sup ��(�)≤
��

��

   . 

 
Therefore, the feasible solution set for the model   (   4 )   is given by 
 

Ψ =

⎩
⎪
⎨

⎪
⎧

    

(  �� , �� , �� ,   �� , �� , ��   ) ∈  ��
�  ∶  ( ��  ,   �� ) > 0   

 
 

(  �� , �� , ��  ,   ��  )≥ 0  ;   �� + �� + �� +   �� ≤
��

��
   ;  �� + �� ≤

��

��

 
  

⎭
⎪
⎬

⎪
⎫

 

 

6 Positivity of State Variables 
 
Lemma 2. Let the initial data be  
 

{ ( ��(0)  ,   ��(0) ) > 0  ,   ( ��(0)  ,   ��(0)  ,   ��(0)  ,   ��(0) )≥ 0  }∈  Ψ      .   
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Then the solution set   { �� ,   ��  ,   ��   ,   ��  ,   �� ,   ��  }(�)   of the system   ( 4 )   is positive for all   � > 0 . 
 
Proof 
 
From the first equation in the model  ( 1 ),  
 

���

��
= ��  + Λ��� + Λ��� + Λ��� − (�� + �� + �� + ��)��  

 

                            ≥ − (�� + �� + �� + ��)��    ⟹
���

��
≥ − (�� + �� + �� + ��)��  

 

Therefore       ��   ≥   ��(0)�� (����� ��� ��� )�                                                                
 
Similarly, it can be proved that the remaining equations of the model   ( 1 )  are also true for  
 
all  � > 0  , because �� > 0  for all   � ∈ � . 
 

7 Disease-Free Equilibrium Point 
 
Definition 1 A disease-free equilibrium point   ( DFE )  is a steady state solution of the model for which 
there is no malaria disease in the population. 
 
Lemma 3 For all DFE points on   Ψ ∩ ��

�   ,    �� = �� = �� = �� = 0       
 
Proof  
 
We need to show that for an equilibrium point in   Ψ     ,  if any one of the classes is zero, all the rest are also 
equal to zero. We first define the conditions [21]: 
 

N1 ∶     �� = 0                                                                            
 

N2 ∶   �� = 0                                                                            
 

N3  ∶   �� = 0                                                                           
 

N4  ∶   �� = 0                                                                          
 

N5 ∶  N1    ,     N2    and    N3                                                

 

 
We show by setting the right-hand side of    (  4  )  equal to   0  , that if any one of the above statements is 

true, all the others are true. For    
���

��
= 0   , ( � 1)  is true if and only if    (� 4)  is true. Similarly, if for 

   
���

��
= 0   , ( � 2)  is true if and only if     (� 1)    and      (� 4)      are true. Thus, from  

���

��
= 0   ,   we can see 

that if    (� 3)    is true, then     (� 2)   and (� 4)  are true.  Finally, for    
���

��
= 0   ,(� 4)  is true if and only if 

(� 5)  is true. 
 
Theorem 1. The malaria model   ( 4 )  has exactly one DFE point in   Ψ ∩ ��

�   which is represented by  
 

E� =   �  
Ζ�   

��

 ,   0  ,    0   , 0  ,   
Ζ�   

��

  ,   0  � 
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Proof 
 
We know from lemma 3 that on    Ψ ∩ ��

�   ,    �� = �� = �� = �� = 0      .  
 

 For    �� = �� = �� = �� = 0     , from ( 4 .4a  )   �� =  
Ζ�   

��

   ���   when  (� 5)  is true,       

 then from  ( 4 .4e  )  ,   �� =  
Ζ�   

��

   .                                                                                                           

 
This completes the proof that    E�  is unique in  Ψ  . 
 

8 The Basic Reproduction Number  � �     
 
The basic reproduction number   �� , is defined as the expected number of secondary infection cases 
produced by a single infectious individual in a completely susceptible population. The next generation 
method is used to derived the basic reproduction number [22,24]. 
 
The basic reproduction number is 
 

�� = �
��������Ζ���Ω Φ �Φ � + ��ΩΦ �Φ � + ���Φ �Φ � + Α�Α�Φ �

� + ����Φ �
� + ����Φ �

��

Α�Α�Α���
� Ζ�

 

 
Theorem 2 
  

i. If     �� <   1 , then the disease-free equilibrium point (DFE) for the model   (  4  .4  )   is locally 
asymptotically stable (LAS). 

ii. If  �� > 1  , then the disease-free equilibrium point is unstable and the endemic equilibrium point is 
locally asymptotically stable (LAS). 

 
Proof: 
 

At the disease-free equilibrium    �  
��    

��
 ,   0  ,   0  ,   0   ,     

��    

��
  ,   0  �, the Jacobian matrix is given by 

 

�=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

− A� 0
  �
0

−
Φ ������Ζ�

��Ζ�

− A�

  Ω

−
Φ ������Ζ�

��Ζ�

   
Φ ������Ζ�

��Ζ�
  
Φ ������Ζ�

��Ζ�

0 0   Φ ����

0
− A�

−
Φ ������Ζ�

��Ζ�

0
0

−    ��

  Φ ����

  Φ ����

0

  
Φ ������Ζ�

��Ζ�

  0 −   �� 
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                               ( 8 ) 

 
where  Α� = (�� + �� + Λ� + �)  ,   Α� = (�� + �� + Λ� + Ω)   and   Α� = (�� + �� + Λ�)     

 
Since the fourth column contains only the diagonal term, this diagonal term forms one eigenvalue of the 
Jacobian matrix:   �� = − ��  . 
 
Hence, excluding this column and its corresponding row, the remaining 4 eigenvalues can be obtained using 
the following matrix: 
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If    � =  

⎣
⎢
⎢
⎢
⎡

− A�                       0
�                    − A�

              
0            Φ ����

0             Φ ����

0        Ω
Φ ������Ζ�

��Ζ�

       
Φ ������Ζ�

��Ζ�

− A� Φ ����

Φ ������Ζ�

��Ζ�

− �� ⎦
⎥
⎥
⎥
⎤

                                             ( 9 ) 

 
Theorem 3 
 
If   �  is a square matrix, then    det(�) = det( �� )   .  
 
Lemma 3 
 
A   � × � matrix   �  and its transpose  ��   have the same eigenvalues. 
 
Now applying theorem 3 and lemma 3 to     (  9  )   , we can compute its eigenvalues. We have the transpose 
of the matrix   (  9  ) as   ��   .  
 

Hence     �� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ − A� �      0

Φ ������Ζ�

��Ζ�

0
 
 
0

− A�

 
 
0

Ω
 
 

− A�

Φ ������Ζ�

��Ζ�

Φ ������Ζ�

��Ζ�

Φ ����  Φ ���� Φ ���� − �� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Using matrix elementary row operations on  ��  , leads to the matrix below 
 

�� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡− A� �    0

Φ ������Ζ�

��Ζ�

0
 
 
0

− A�

 
 
0

Ω
 
 

− A�

Φ ������Ζ�

��Ζ�

Φ ������Ζ�

��Ζ�

0  0      0 �� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

            

 
where    A� = − A�A�A���[1 − ��

�]                                                                                             
 
Therefore, the eigenvalues are       �� = − A� < 0     ,    �� = − A� < 0      ,      �� = − A� < 0       
 
and  �� = A� = − A�A�A���[1 − ��

�]                                                                                   
 
Hence   �� < 0  if   �� < 1   , this implies that all the eigenvalues of the Jacobian matrix have negative real 
parts. Therefore, the disease-free equilibrium   (  �� )  is locally asymptotically stable when  �� < 1   . 
 

9 Global Asymptotic Stability of Disease-Free Equilibrium  ( �� )  
 
The global asymptotic stability (GAS) of the disease-free equilibrium will be investigated using a theorem 
by Castillo -Chavez et al.    
 
Let begin by dividing the model   ( 4 )  into two submodels, that is, 
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�

���

��
= � �(  �� ,   ��  )                                          

 
���

��
= � �(  �� ,   ��  )   ,   � �(  �� ,   0  ) = 0 

⎭
⎪
⎬

⎪
⎫

    where   �� ∈  ��
�   ,   �� ∈  ��

�    .                         ( 10 ) 

 
where  �� =  (  ��  ,   �� )  denotes uninfected population and  �� =  (  ��  ,   �� ,��  ,   �� )  denotes the 
infectious population. 
 
The conditions in    (  11  )   must be met to guarantee a global asymptotic stability: 
 

�

���

��
= � �(  �� ,   0  ) ,   ��

∗  is globally asymptotically  stable (GAS)                              
  

W �(  T� ,   T�  ) = HY − ���(  T� ,   T�  )   ,   ���(  T� ,   T�  )> 0  for (  T� ,   T�  ) ∈ Ψ  

 �             ( 11 ) 

 
where  � = ���

 � �(  ��
∗ ,   0 )  is an   � − matrix (the off-diagonal elements of   H  are non-negative) and  

 Ψ   is the region where the model makes biological sense. If the model   (  10  )  satisfies the conditions of 
(  11  )   then the theorem below holds  
 
Theorem 4. 
  
The fixed point  E� =  (   ��

∗ , 0   )   is a globally asymptotically stable (GAS) equilibrium of the   ( 10 )   
provided   R�  <   1     and the assumptions in    ( 11 )  are satisfied. 
 
Proof 
 
Then the two vector-valued functions are   
 

� �(  �� ,   ��  ) =

⎣
⎢
⎢
⎢
⎡

  

Ζ�  + Λ��� + Λ��� + Λ��� −
(Φ � + Φ � + Φ �)�������

��

− ���� 
 

  ,   Ζ�  −  
(Φ ��� + Φ ��� + Φ ���)�����

��

−  ����

 

⎦
⎥
⎥
⎥
⎤

�

 

�

 

� �(  �� ,   ��  )=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

Φ ��������

��

−  (�� + �� + Λ� + �)��  ,
 

 
Φ ��������

��

+ ��� −  (�� + �� + Λ� + Ω)��   ,
 

Φ ��������

��

+ Ω�� − (�� + �� + Λ�)��     ,
 

 
(Φ ��� + Φ ��� + Φ ���)�����

��

− �� �� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

    

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

 

where   �  denotes the transpose. Now consider the reduced model:   
���

��
= � �(  �� ,   0  )   is given by  

 

 �

���

��
= Ζ�  − ����                                 

 
 

���

��
= Ζ�  −  ����                             ⎭

⎪
⎬

⎪
⎫

                                                                                                  ( 12 ) 
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and   ��
∗ = �   

Ζ�

��

,
Ζ�

��

  �   is a global asymptotically stable equilibrium  point for  

 

the reduced model    
���

��
= � �(  �� ,   0  )  . To see this,    ( 12 )   is solved by integration  

���

��
= Ζ�  − ���� ⟹ � �[����� �]= � Ζ���� ��� ⟹ �� =

Ζ�

��

+ ���(0)−
Ζ�

��

��� �� �          

 

Similarly  ,    
���

��
= Ζ�  −  ����  ⟹ �� =

Ζ�

��

+ ���(0)−
Ζ�

��

��� �� � 

 

Therefore    �� =
Ζ�

��

+ ���(0)−
Ζ�

��

��� �� �   approaches    
Ζ�

��

   ��  � ⟶ ∞      ���   

 

�� =
Ζ�

��

+ ���(0)−
Ζ�

��

��� �� �   also approaches   
Ζ�

��

   ��  � ⟶ ∞       

 
This asymptotic dynamics is independent of initial conditions in   Ψ   . Hence, the convergence of 
solutions of  ( 12 )  is global in in    Ψ  .                                                                                                                                
 
Next    W �(  T� ,   T�  ) = HY − ���(  T� ,   T�  )     ,      ���(  T� ,   T�  )> 0  for (  T� ,   T�  ) ∈ Ψ   , where  
 

� = ���
 � �(  ��

∗ ,   0 )= �

− �� 0
� − ��

0      0
0      0

  
0       Ω
0       0

− �� 0
0 − ��

�     and  

���(  T� ,   T�  )=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

   

Φ ������ �1 −
��

��
�

 

Φ ������ �1 −
��

��

�
 

Φ ������ �1 −
��

��

�
  

 (Φ ��� + Φ ��� + Φ ���)��� �
��Ζ�

��Ζ�

−
��

��

�

   

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

       

 
The matrix    �   is an  �   -matrix since all its off-diagonal elements are non-negative, but to establish the 
result of global stability of    ��  ,  there is the need to prove that 
 
���(  T� ,   T�  )  ≥ 0  ,  but it can be seen that  ���(  T� ,   T�  )  ≥ 0   , since    �� =  ��   at the disease-free 

equilibrium point and     
�� ��

�� ��
≥

��

� �
   .  Therefore, the disease-free equilibrium point may be globally 

asymptotically stable if   �� ≤ 1  . 
 

10 Endemic Equilibrium and Its Stability 
 
The endemic equilibrium point is steady state solution where the disease is present in the population.  The 
endemic equilibrium point is given by   
 

�∗ = (  ��
∗ , ��

∗ , ��
∗ , ��

∗ , ��
∗ , ��

∗   )  ,   which leads to  theorem 5. 
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Theorem 5 
 
The malaria model   ( 4 )  has a unique endemic equilibrium   ( �∗ )  in   Ψ   if   �� > 1  . 
 
Proof 
 
To derive   �∗ , model   ( 4 )  is solved by equating it to zero. The procedure for obtaining the expression �∗   
is given below. The model   (  4 )  is set to zero,  
 

�

���

��
= Ζ�  + Λ��� + Λ��� + Λ��� −

(Φ � + Φ � + Φ �)�������

��

− ���� = 0    
  

���

��
=  

Φ ��������

��

−  (�� + �� + Λ� + �)��  = 0                                                   
  

���

��
=  

Φ ��������

��

+ ��� −  (�� + �� + Λ� + Ω)��  = 0                                    
 
 

���

��
=  

Φ ��������

��

+ Ω�� − (�� + �� + Λ�)��   = 0           
                                

   
���

��
= Ζ�  −  

(Φ ��� + Φ ��� + Φ ���)�����

��
−  ����

 
  = 0                               

���

��
 =   

(Φ ��� + Φ ��� + Φ ���)�����

��

− �� ��  = 0                                           
⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                        ( 13 ) 

Let    Α� = (�� + �� + Λ� + �)   ,   Α� = (�� + �� + Λ� + Ω)   ,  Α� = (�� + �� + Λ�) 
 
It is assumed that the initial conditions are such that the total population size is at equilibrium, 
 

�� + �� + �� + �� = �� = ��
∗ =

��

��
 

�

Ζ�  + Λ���
∗ + Λ���

∗ + Λ���
∗ −

(Φ � + Φ � + Φ �)�������
∗ ��

∗

��

− ���� = 0

��Φ ������
∗ ��

∗

��

−  Α���
∗  = 0

��Φ ������
∗ ��

∗

��

+ ���
∗ −  Α���

∗  = 0             

��Φ ������
∗ ��

∗

��
+ Ω��

∗ − Α���
∗   = 0        

 

Ζ�  −  
(Φ ���

∗ + Φ ���
∗ + Φ ���

∗)�������
∗

��

−  ����
∗

 
  = 0

 
(Φ ���

∗ + Φ ���
∗ + Φ ���

∗)�������
∗

��

− �� ��
∗  = 0                          

     

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎫

                                ( 13 ) 

 
Solving for the state variables from    ( 13 )   , we have:   
 
The endemic equilibrium point is given by 
 

   �∗ = (  ��
∗ , ��

∗ , ��
∗ , ��

∗ , ��
∗ , ��

∗   ) 
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where 
 

��
∗ =

��(��
���Ζ� + Α�Ζ����)

��
���(Α����Ζ�  + ��Ζ�)

                                                                                                                    

��
∗ =

Φ ����Ζ�Ζ�(��
�  − 1)

Α���
�(Α����Ζ�  + ��Ζ�)

                                                                                                                

��
∗ =

���Ζ�Ζ�(Α�Φ �+ �Φ �)(��
�  − 1)

Α�Α���
�(Α����Ζ�  + ��Ζ�)

                                                                                                          

��
∗ =

���Ζ�Ζ�(Α�Α�Φ � + Α�Φ �Ω+ Ω�Φ �)(��
�  − 1)

Α�Α�Α���
�(Α����Ζ�  + ��Ζ�)

                                                                            

��
∗ =

Ζ�(Α����Ζ�  + ��Ζ�)

��(��
���Ζ� + Α�Ζ����)

                                                                                                          

��
∗ =

 
Ζ�Ζ�(��

�  − 1)

��
���Ζ� + Α�Ζ����

 

 

                                                                                                                            

 
It is clear that if   �� > 1  , then there exists a unique endemic equilibrium point. 
  
Theorem 6 
 
The model    ( 4 )  is locally asymptotically stable at the endemic equilibrium point   ( �∗ )  if all the 
eigenvalues of the Jacobian matrix at   ( �∗ )  have negative real parts when   �� > 1  . 
 
Proof  
 
At the endemic equilibrium point, the Jacob matrix    ( 4 )  is given as: 

 

J( �∗ ) =

⎣
⎢
⎢
⎢
⎢
⎡
          

− ��         Λ�   Λ�     
    ��          − Α�   0 

��      �     − Α�     

       Λ�          0 − ��

        0          0    ��

         0           0       ��  
           ��          0       Ω

        0        − ��    − ���

        0             ��        ���

   

− Α�   0 ��

− ���  − ��� 0
��� ��� − �� ⎦

⎥
⎥
⎥
⎥
⎤

                              ( 14 ) 

 
where     �� = (Π� + Π� + Π�)��

∗ + ��   ,   �� = (Π� + Π� + Π�)��
∗  ,   �� = Π���

∗   ,    
 �� = Π���

∗ ,   �� = Π���
∗ ,    �� = Π���

∗  ,�� = Π���
∗   ,   �� = Π���

∗  ,  
 �� = Σ���

∗    ,     ��� = Σ���
∗        ��� = Σ���

∗    , ��� =  ��� +  ��  , 
 ��� = Σ���

∗ + Σ���
∗ + Σ���

∗     
 
Applying matrix elementary row operations to   ( 14)  , gives    ( 15)    
 

J( �∗ )=

⎣
⎢
⎢
⎢
⎢
⎡
− ��   Λ� Λ�

0 − Α��� − Ω��

0 0 − ���

Λ�  0  − ��

Α���  0      0
− ���   − ���   �����

0        0         0 
0   0    0
0  0  0

− ���    − ���    �����

0     − ��� − ���

0     0  − ��� ⎦
⎥
⎥
⎥
⎥
⎤

                                                     ( 15 )   

 
where  ��� = ��� + Α���  ,   ��� = Ω�� + Α���  ,   ��� = ����� + � �����  

,   ��� =
���

���Ζ�Α�Φ � + Ζ����(Α�Α�Φ � − �Φ �
� ��)(��

�  − 1)�Φ ���������
� ��

∗ ��

(��
���Ζ� + Α�Ζ����)��

�  

���  > 0   if    Α�Α�Φ � > �Φ �
� ��    
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  ,   ��� = � �����  ,   ��� = Ω����� + Α�Α�����   ,   ��� = Α� �����   ,   
��� = Α����� + ������   ��� =  ������  ,   ��� =  ������   ,  

  ��� = ������ − ������ > 0   if   ������ > ������ 
��� = ������  ,   ��� = ������   ,   ��� = ������+ E�����   ,   ��� = ������ 

��� = ������ + ������   ,   ��� = ��������  ,   ��� = ��(��� + ���) 
 
The eigenvalues of the Jacobian matrix    ( 15)  are the solutions of the characteristic equation 
 

|�− �I| = 0 
 

�

�

− (�� + �)   Λ� Λ�

0 − (Α��� + �) − Ω��

0 0 − (��� + �)

Λ�                0              − ��

Α���               0                0
− ���                − ���              �����

0               0                  0 
    0                    0                   0

 0           0             0
    

− (��� + �)  − ���     �����

0 − (��� + �) − ���

0  0  − ( ��� + �)

�

�

= 0 

⟹ (�� + �)(Α��� + �)(��� + �)(��� + �)(��� + �)( ��� + �) = 0 
�� + �� = 0 ⟹ �� = − �� 

Α��� + �� = 0   ⟹ �� = − Α��� 
��� + �� = 0 ⟹ �� = − ��� 
��� + �� = 0 ⟹ �� = − ��� 

��� + �� = 0    ⟹    �� = − ��� 
 ��� + �� = 0 ⟹ �� = −  ��� 

 
All the eigenvalues of the Jacobian matrix   J( �∗ )  are negatives if     Α�Α�Φ � > �Φ �

���   and  
 ������ > ������   are true.  Hence, it can be concluded that the endemic equilibrium     �∗  of the model 
   ( 4 )  is locally asymptotically stable if   �� > 1    .  
 
This concludes the proof. 
 
Theorem 7 
 
If    �� > 1  the endemic equilibrium point   �∗  of model    (  4 )  is globally asymptotically stable in the 
interior of     Ψ    . 
 
Proof 
 
The global stability of the endemic equilibrium can be determined by constructing a a common quadratic 
Lyapunov function   �(�)  of the form  
 

�(�� ,�� ,�� ,��,   �� ,�� ) =
1

2
[(�� − ��

∗)+ (�� − ��
∗)+ (�� − ��

∗)+ (�� − ��
∗)]� 

+
1

2
[(�� − ��

∗ )+ (�� − ��
∗ )]�                                                                ( 16) 

 

Therefore   
��

��
= − [�� ��

� + ����
�]≤ 0          

 
where   �� = �� − ��

∗  ,   �� = �� − ��
∗  ,   �� = �� − ��

∗  ,   �� = �� − ��
∗  ,   �� = �� − ��

∗    , 

 �� = �� − ��
∗   ,   �� = (�� + ��)  ,   �� = (�� + ��)  ,   �� = ��� + ��� ,    

�� = �� + �� + �� + ��  and  �� =  �� + ��  
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It can be seen that     
��

��
= 0  if and only if  �� = ��

∗  ,   �� = ��
∗  ,   �� = ��

∗  ,   �� = ��
∗  ,   

 �� = ��
∗   and   �� = ��

∗  .    This leads to theorem  8 .                                                   
 

Theorem 8  
 

If a function    �(�)  is positive definite on the entire state space and has the additional property 
that  |�(�)| ⟶ ∞    as     ‖�‖   ⟶ ∞  , and if its derivative   �  is negative definite on the entire state space, 
then the equilibrium point at the origin is globally asymptotically stable.  
 

Therefore,    
��

��
≤ 0  and by the LaSalle’s Extension (LaSalle’s 1976), it implies that the omega limit set of 

each solution lies in an invariant set contained in   Ψ   .  The only invariant set contained in   Ψ   is the 
singleton   �∗  . This shows that each solution which intersects   ℝ�

�   limits to the endemic equilibrium and 
that trivial equilibrium is globally asymptotically stable in the invariant feasible region. This completes the 
proof. 
 

The clinical data in Table 3 was used to determine the parameter values in model ( 4 )  [25]. 
 

Table 3. Data values for the state variables of the model 4 
 

Years  ��  ��  ��  ��  ��  �� 
2000 15,475,505 1,303,685 2,045,843 102,834 246,498,646,800 2,061,060,114,000 
2001 16,248,546 1,316,724 1,728,120 80,036 224,544,432,000 1,877,493,360,000 
2002 16,645,417 966,923 2,173,970 85,192 231,627,669,000 1,936,718,745,000 
2003 16,748,794 1,421,148 2,131,748 82,055 261,177,701,400 2,183,796,747,000 
2004 17,419,477 1,289,874 2,126,159 78,008 251,116,727,400 2,099,673,477,000 
2005 17,584,872 900,000 3,175,705 95,337 299,026,198,800 2,500,261,074,000 
2006 18,086,432 946,946 2,914,402 99,862 284,758,194,000 2,377,379,370,000 
2007 18,086,432 1,239,374 4,145,311 100,068 393,182,164,200 3,287,531,541,000 
2008 17,784,946 1,363,920 3,845,506 121,548 380,631,543,600 3,182,591,478,000 
2009 16,629,384 1,875,338 5,067,370 141,068 505,781,606,400 4,229,014,272,000 
2010 16,172,616 2,223,194 5,768,026 153,894 581,561,139,600 4,862,633,058,000 
2011 15,210,099 2,747,162 6,774,978 196,261 693,893,831,400 5,801,885,397,000 
2012 14,904,333 3,095,178 7,342,778 202,271 759,712,207,800 6,352,215,519,000 
2013 15,107,273 3,311,214 7,528,239 217,04 789,481,009,800 6,601,122,729,000 
2014 19,609,450 2,454,620 4,562,437 160,093 512,448,510,000 4,284,758,550,000 
2015 23,549,481 1,244,974 2,501,649 112,898 275,569,799,400 2,304,135,032,000 
2016 23,464,661 1,463,608 2,947,607 134,403 324,557,125,200 2,713,733,946,000 

 

11 Sensitivity Analysis 
 
Sensitivity analysis tells us which parameters have a high impact on the basic reproduction number 
( �� )  and should be targeted by intervention strategies. Sensitivity index also measures the relative change 
in a variable when a parameter change [1]. The normalized forward sensitivity index of a variable with 
respect to a parameter is the ratio of the relative change in the variable to the relative change in the 
parameter. When the variable is a differentiable function of the parameter, then the sensitivity index could be 
defined using partial derivatives. 
 

Definition 2 
 

The normalized forward sensitivity index of    ��  , that depends differentiably on a parameter   �  , is defined 
by [1,11] 
 

ξ�
�� =

���

��
×

�

��
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Computation of the sensitivity index of the basic reproduction number  �� with respect to each parameter is 
given Table 4 for the model. 
 

Table 4. Sensitivity analysis values 
 

Parameter Value Sensitivity index 
Ζ� 414521 − 0.43575 
Ζ� 134267979835 0.47706 
�� 0.016 0.44885 
�� 0.058176 − 0.83339 
�� 0.020605 − 0.00891 
�� 0.19113 − 0.21104 
�� 0.49273 − 0.00025 
Λ� 0.11855 − 0.04825 
Λ� 0.14348 − 0.16136 
Λ� 0.14154 − 0.00025 
��� 0.00016937 0.47712 
��� 0.00454 0.47712 
Φ � 0.33575 0.18607 
Φ � 0.98982 0.83034 
Φ � 0.012704 0.0000054 
� 0.10743 0.00569 
Ω  0.016744 − 0.0198 

 
The most positive parameter is the biting rate  (  Φ � )   for the people above 5 years and this is followed by 
fractions of bites that successfully infect humans and mosquitoes   (  ���   and   ���   )  . Also, these are 
followed by the recruitment rate for mosquitoes    (  Ζ�  )   Therefore, decreasing these four parameters will 
decrease the basic reproduction number and will have a great impact on the elimination of malaria. Since the 
three biting rates are all positive, then decreasing them is the surest way to malaria elimination. Since the 
three clinical recovery rates are all negatives, therefore increasing them will lead to a decrease in    ��  . 
Increasing the density-dependent natural mortality rate for adult female Anopheles mosquitoes will lead to a 
decrease in    ��  , that is, reducing the lifespan of mosquitoes may assist in the elimination of malaria. 
Therefore, from the sensitivity analysis, we have to control the following parameters in order to eliminate 
malaria or bring it under control: 
 

 biting rates, 
 recruitment rate for mosquitoes, 
 density-dependent natural mortality rate for mosquitoes and 
 clinical recovery rates.  

 
The red lines in the Figs. 1, 2, 3 and 4 show the current state of the malaria disease using the clinical data in 
Table 3. The yellow and green lines show either the first and second increments of the parameters or the first 
and second reductions of the parameters respectively. The yellow and green lines in Fig. 1 show the impact 
of reducing the biting rate of mosquitoes. Therefore, reducing biting rates through the Insecticide Treated 
Nets (ITNs) is one of the key strategies to consider in fighting the malaria menace. Fig. 2 shows the impact 
of reducing the recruitment rate of the mosquito population through the ITN, clearing the breeding grounds 
for mosquitoes and spraying the larvae sites of mosquitoes.  
 
We also have Fig. 3 which shows the impact of increasing the natural death rate of mosquitoes through the 
Indoor Residual Spraying (IRS), Mass Spraying and the ITN.  And finally, we have Fig. 4 which shows the 
impact of increasing the clinical recovery rate of humans through Improved Antimalarial drugs. That is if 
Antimalarial drug producers can develop new drugs such that the number of days it takes to recover from 
malaria infection is reduced to the shortest possible minimum will also assist in malaria elimination quickly, 
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because the longer the parasite stays in the human, the more that person spreads the parasite to mosquitoes. 
Therefore, the key parameters to consider in the elimination of the malaria disease are biting rates of 
mosquitoes, the recruitment rate of mosquitoes, the natural death rate of mosquitoes and clinical recovery 
rates of humans. 
 

 
 

Fig. 1. The impact of reducing the biting rates 
 

 
 

Fig. 2. The impact of reducing the recruitment rate of mosquitoes 
 



 
 
 

Azu-Tungmah et al.; JAMCS, 30(4): 1-21, 2019; Article no.JAMCS.46649 
 
 
 

19 
 
 

 
 

Fig. 3. The impact of increasing the death rate for mosquitoes 
 

 
 

Fig. 4. The impact of increasing the clinical recovery rates for humans 
 

12 Conclusion 
 
It can be seen that either reducing the recruitment rate for mosquitoes in Fig. 2 or increasing the density-
dependent natural mortality rate for mosquitoes in Fig. 3 or both are key parameters to consider in the 
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elimination of the disease. The biting rate for the over 5years population is highest among the three biting 
rates since most of the over 5years population do not even sleep under the insecticide-treated bed net (ITNs). 
One striking revelation is the high disease-induced death rate for infectious pregnant women, which means 
infectious pregnant women can easily lose their lives and that of the unborn babies if they do not seek 
treatment when they exhibit any symptoms of Malaria infection. 
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