
 

Journal of Advances in Mathematics and Computer Science 
  
27(2): 1-11, 2018; Article no.JAMCS.39745 
 

ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

 

_____________________________________ 

*Corresponding author: E-mail: mkh2502@yahoo.com; 
  
 

An Implicit Method for Numerical Solution of System of First-
Order Singular Initial Value Problems 

 
M. Kamrul Hasan1* and M. Suzan Ahamed1 

 
1Department of Mathematics, Rajshahi University of Engineering and Technology, Rajshahi-6204, 

Bangladesh. 
 

Authors’ contributions  
 

This work was carried out in collaboration between both authors. Both authors read and approved the final 
manuscript.  

 
Article Information 

 
DOI: 10.9734/JAMCS/2018/39745 

Editor(s): 
(1) Mehmet Sirin Demir, Professor, Department of Mechanical Engineering,  Faculty of Engineering, Istanbul University,  Avcilar  

Campus 34320 Istanbul, Turkey. 
Reviewers: 

(1) Grienggrai Rajchakit, Maejo University, Thailand. 
(2) Teodoro Lara, University of Los Andes, Venezuela. 

(3) Piyush Shroff, Texas State University, USA. 
Complete Peer review History: http://www.sciencedomain.org/review-history/24310 

 
 
 

Received: 29th January 2018 
Accepted: 16th April 2018 

Published: 24th April 2018 

_______________________________________________________________________________ 
 

Abstract 
 

Recently an implicit method has been developed for solving singular initial value problems numerically 
which have an initial singular point. The method is simple and gives significantly better results than the 
implicit Euler method as well as second order implicit Runge-Kutta (RK2) method. In this article, the 
system of first order singular initial value problems having an initial singular point has been solved by 
this method. 
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1 Introduction 
 
There are many mathematical models in physics, chemistry, and mechanics who take the form of systems of 
time-dependent partial differential equations subject to initial or boundary condition. For the investigation of 
stationary solutions, many of these models can be reduced to singular systems of ordinary differential 
equations when symmetries problems in the geometry have been used.  
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Consider a system of first-order singular initial value problem in the form as  
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Where z and f  are vector-valued functions of dimension n , M  is a nn   matrix, 0B  is a nm  matrix and

  is a vector of dimension nm  . Singular initial value problems are encountered in ecology in the 

computation of avalanche run-up [1]. Singular systems also arise in many areas of science and engineering 
problems such as constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of 
electrical networks, electrical circuit theory [2], etc.  Several authors evaluated this system analytically as 
well as numerically. Koch et al. [3-4] discussed the existence of an analytic solution of this system. Sekar 
and Vijayarakavan [5] investigated the numerical solution of first order linear singular systems using 
Leapfrog method. Recently, Komashynska et al. [6] applied the residual-power series method (RPSM) to 
obtain efficient analytical solutions of this system. 

 

For the numerical solution of the Eq. (1), various schemes such as explicit Runge-Kutta methods, multi-step 
methods have been applied. However, many high-order methods show order reductions when applied to 
singular problems. Explicit Runge-Kutta methods show a reduction down to order 2 in general [7], and 
multi-step methods deviate from their classical convergence order by a logarithmic term [8]. A basic low 
order method and then an acceleration technique also applied to obtain high accuracy numerical solution. 
Auzinger et al. [9] and Koch et al. [10,11] applied well-known acceleration technique Iterated Defect 
Correction (IDeC) based on implicit Euler method to obtain high accuracy. Low order Implicit Runge-Kutta 
method, e.g., second order implicit Runge-Kutta (RK2) method shows better approximation than implicit 
Euler method, but the results near the singular point are not significantly improved.  

 

In this article, the present method has been utilized to solve the Eq. (1) having an initial singular point.  

  

2 Methodology  
 
Earlier, Huq et al. [12] derived a numerical integration formula for evaluating definite integral having an 

initial singular point, i.e., at 0xx   as is given in Eq. (2)  
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Based on formula (2), an implicit method was derived by Hasan et al. [13] for solving first order initial value 
problem having an initial singular point. 

  

Consider a first order initial value problem having an initial singular point, i.e., at 0xx   is 

 

00 )(),,()( yxyyxfxy                                                                                                            (3)                                          

 

According to the formula (2), the first and others steps solutions of Eq. (3) are given in Eqs. (4a) and (4b) 
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where, hxx i
ii 3.21  . 

 

Since the formula (i.e., equations (4a) and 4(b)) was derived for the unequal interval as

,3.2,3.2,3.2,3, 32 hhhhh . In this regard step size as well as error gradually increased. To avoid this 

difficulty, the formulas (4a) and (4b) have been modified by Hasan et al. [14] as  
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where, hxx ii 1 . The Eq. (5) is the present formula for solving singular initial value problems. 

 

Recently, Hasan et al. [15] extended this formula (i.e., using Eq. (5)) for solving second orders singular 
initial value problems having an initial singular point. In this article, some system of first-order peculiar 
initial value problems having an initial singular point has been solved by applying this method.  

 

By particular choosing M and f , The Eq. (1) can be written as  
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The equation (6) can be transformed into two first-order singular initial value problems as  
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where )2sinh(/102/1)0(1 z and 0)0(2 z . 

 

The approximate solutions of the equations (7a) and (7b) can be obtained by applying the present formula is 
given in Eq. (5) as  
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It is obvious that equations (8a) and (8b) are systems of equations for two unknown 1iy and 1iz . These 

values calculated by Newton-Raphson method. To compare the present method to other classical methods 
such as the second order implicit Runge-Kutta (RK2) method and the implicit Euler method [16] are given in 
equations (9) and (10) respectively. 
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where )2/,2/( kyhxfhk ii   

 
and                                                                                                 
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3 Convergence and Stability of the Present Method 
 
The order of convergence of the present method (i.e., Eq. (5)) is )(

3
h , i.e., the truncation error is )(

4
h . The 

truncation error of the second order implicit Runge-Kutta (RK2) method (i.e., Eq. (9)) and implicit Euler 

method (i.e., Eq. (10)) are )(
3

h and )(
2

h respectively. 

 

To test the stability, consider a scalar test equation. 
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Appling (5) to the test equation with yyxfy  ),(  gives 
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Solving Eq. (12) for 1iy  and then substituting hz  , gives 
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where, )2/1/()2/1()( zzzR   is the stability function of the present method. 

 

For 0 , then 1)( zR  for any 0h . Since z  is imaginary, the present method is absolutely stable in the 

entire negative half of the complex z  plane. The region of absolute stability is the set of all complex z where

1)( zR , While )(zR is a polynomial for an explicit method and it is a rational function for an implicit 



method [17]. A Runge-Kutta method is said to be A

positive half-plane Re(:{  zChz 

present method is given in Fig. 1. 
 

Fig. 1.
 

4 Application Examples 

 
In this section some system of first-
method (i.e., using Eq. (5)) and compare absolute errors among second order implicit Runge
method (i.e., using Eq. (9)) and the implicit Euler (

 

Example 4.1  

 

Consider a system of first-order linear singular initial value problems (Auzinger et al. [9])
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With the exact result ))(),(( 21 xzxz 

systems given in Eq. (14) obtained by the implicit Euler method and RK2 method are plotted in Fig. 2(a), the 
RK2 method and the present method are plotted in Fig. 2(b) for
systems given in Eq. (14) obtained by the implicit Euler method and RK2 method are plotted in Fig. 2(c), the 
RK2 method and the present method are plotted in Fig. 2(d) for
that the error of the systems of the equation given in Eq.
RK2 method and also show in Figs. 2(b) and 2(d) that the error of the present method smaller than RK2 
method. 
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Kutta method is said to be A-stable [18] if its stability region contains

}0) z . So the present method is A-stable. The stability region of the 

 
 

. Stability region of the present method 

-order singular initial value problems have been solved by the present 
using Eq. (5)) and compare absolute errors among second order implicit Runge
using Eq. (9)) and the implicit Euler (i.e., using Eq. (10)) method.  

order linear singular initial value problems (Auzinger et al. [9]) 
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RK2 method and the present method are plotted in Fig. 2(b) for 01.0h . Also the second equation of the 
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RK2 method and the present method are plotted in Fig. 2(d) for 01.0h . Figs. 2(a) and 2(c) shows 
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Fig. 2. The absolute error of Eq. (14) for various methods having step size 

01.0h  
 

Example 4.2 

 

Consider a system of first-order linear singular initial value problems (Auzinger et al. [9]) 
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With the exact result ))2(,())(),(( 1212
21

xx exxexxzxz   . The absolute errors of the first equation                      

of the systems given in Eq. (15) obtained by the implicit Euler method and RK2 method are plotted in                
Fig. 3(a), the RK2 method and the present method are plotted in Fig. 3(b) for 01.0h . Also the                     
second equation of the systems given in Eq. (15) Obtained by the implicit Euler method and RK2 method are 
plotted in Fig. 3(c), the RK2 method and the present method are plotted in Fig. 3(d) for 01.0h . Figs. 3(a) 
and 3(c) shows that the error of the systems given in Eq. (15) Obtains by Euler method much higher than 
RK2 method. Fig. 3(b) shows that the error of RK2 method is higher than the present method for 

6.01.0  x and closer to other value x . However, Fig. 3(d) indicates that error of the present method lower 
than RK2.  

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

E
r
r
o
r

Euler

RK2

0.0E+00

2.0E-04

4.0E-04

6.0E-04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

E
rr
o
r

RK2

Present

0.0E+00

2.0E-02

4.0E-02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

E
rr
o
r

Euler

RK2

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

E
rr
o
r

RK2

Present



 
 
 

Hasan and Ahamed; JAMCS, 27(2): 1-11, 2018; Article no.JAMCS.39745 
 
 
 

7 
 
 

 
 

(a) 
 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
Fig. 3. The absolute error of Eq. (15) for various methods having step size 

01.0h  
 
Example 4.3 
  
Consider a system of first-order linear singular initial value problems (Auzinger et al. [9]) 
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With the exact result ))3sin(3),3(cos())(),(( 21 xxxxzxz  .The absolute errors of the first equation of the 

systems given in Eq. (16) obtained by the implicit Euler method and RK2 method are plotted in Fig. 4(a), the 
RK2 method and the present method are plotted in Fig. 4(b) for 01.0h . Also the second equation of the 
systems given in Eq. (16) obtained by the implicit Euler method and RK2 method are plotted in Fig. 4(c), the 
RK2 method and the present method are plotted in Fig. 4(d) for 01.0h . Figs. 4(a) and 4(c) shows                       
that the error of the systems given in Eq. (16) obtained by Euler method much higher than RK2 method.     
Fig. 4(b) shows that error of RK2 is higher than the present method. However Fig. 4(d) indicates that error 
of RK2 method is higher than for 35.0x and 55.0x smaller than to the present method for 

55.035.0  x . 
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Fig. 4. The absolute error of Eq. (16) for various methods having step size 
01.0h  

 
Example 4.4 
 
Consider a system of first-order nonlinear singular initial value problems (Auzinger et al. [9])  
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equation of the systems given in Eq. (17) obtained by the implicit Euler method and RK2 method; The RK2 
and the present method are plotted in Fig. 5(c) and Fig. 5(d) respectively for 01.0h . Figs. 5(a) and 5(c) 
shows that the error of the systems given in Eq. (17) obtained by Euler method much higher than RK2 
method. However Fig. 5(b) and 5(d) show that the error of RK2 method is much higher than the present 
method.  
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Fig. 5. The absolute error of Eq. (17) for various methods having step size 01.0h  

 

5 Results and Discussion 
 
The various types of systems of first-order singular initial value problems have been solved by the present 
method. The variations of absolute error concerning for Euler, RK2 and the present method have been 
presented in Figs. 2- 5.  
 
From the above Figs. 2- 5, it is observed that the error of the RK method is smaller than the Euler method. It 
is also observed that the error the present method is less than RK method. However, the RK method can 
produce less error than the present method in some region of the given interval (see Fig. 3(b) and Fig. 4(d)).  
 

6 Conclusion 
 
Overall the present method can show less than the RK method because the present method has a consistently 
lower error. Therefore, it is evident that the present method is more suitable than RK2 method as well as 
implicit Euler method for solving the system of first-order singular initial value problems.  
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