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1 Introduction

The study of population dynamics in mathematics started with the description of total population
size and its dynamical behaviour. Historically, some of the applications connected with mathematics
to biology were in the area of population dynamics; the instantaneous examples are

1. the unbounded exponential growth predicted by Malthus,

2. the logistic law proposed by Verhulst which corresponds to the limited resources of the
environment, and

3. the two more growth functions such as Gilpin-Ayala [1], extended form of logistic and
Gompertz law [2].

In many cases, either spatially distributed or dependence on the upward history of population
densities cannot be neglected, thus the adequate mathematical models would be either partial
differential or functional differential equations or sometimes both. In this paper, we consider
a system of partial differential equations that present the directional dynamics where species
movement are depending on their own resource functions, respectively, see similar model in [3].

At least in the last two decades, the competition model with regular diffusion was considered in
the literature [4, 5, 6, 7, 8, 9] and references therein. For spatial heterogeneity of the environment
in ecology, the space movements are modeled with diffusions, and a certain effort was undertaken
to explain the role of dispersal coefficients in non-homogeneous environment. Introducing spatial
distribution of species in mathematical description of population dynamics aims to explain certain
real world phenomena. Dockery et al. in [6], presented an illustrative example of the fact that
combined effects of dispersion and spatial non-homogeneity is that the slowest diffuser always the
sole winners. In this study, they consider the number of n phenotypes competing for the natural
resources.

Interaction of two species, either competing or cooperating, is usually described by the Lotka-
Volterra model. Generally, the inclusion of a standard diffusion term (notationally, d∆u) leads to
the uniform ideal free distribution while the diffusion coefficient is too high, i.e. d → ∞, which
is not feasible for problems when the carrying capacity is space-dependent. If we have a Lotka
system with partially shared resources, the situation changes. There is an asymptotically stable
steady state once the difference between diffusion rates is not very significant. In [9], the interesting
observation is the evolutionary advantage of spatial carrying capacity compared to the non-spatial
carrying capacity with the same average value over space. For diffusing populations, not only the
diffusion speed rate but also the strategy has become an object of intensive discussion [10, 3, 11].

The present paper is addressed in the following way: considering two species with similar diffusion
strategy mostly concerned with the case when they compete for similar basic resources, and their
diffusion strategies follow the dispersal towards two prescribed positive distribution, and they are
individual for each of the two organisms. We now consider the competition model with directed
dynamics and homogeneous Neumann boundary conditions:

∂u
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x)(K(x)− u(t, x)− v(t, x)), t > 0, x ∈ Ω,

∂v
∂t

= d2∆

(
v(t, x)
Q(x)

)
+ v(t, x)(K(x)− u(t, x)− v(t, x)), t > 0, x ∈ Ω,

∂(u/P )
∂n

=
∂(v/Q)

∂n
= 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(1.1)

Here u(t, x), v(t, x) represent the population density of two competing species which are therefore
assumed to be non-negative, with corresponding migration rates d1, d2 respectively. The function
K(x) represents their common resource function or carrying capacity and two distributions are P (x)
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and Q(x) and all these functions are in the class of C1+α, α > 0. Also the notation Ω is a bounded
region in Rn while the smooth boundary is ∂Ω, and n denotes the unit normal vector on ∂Ω. The
paper is organized as follows. In section 2, we present existence, and positivity of solutions for
single species and established some results which will be used in later sections. The key ingredients
of section 3 are to state different equilibrium states of the system (1.1) and justified and developed
the main results. In section 4, we present some numerical examples exposing the relationship
between average populations with various distributions; means the system has coexistence solution
independently of diffusion speed and extinction of one by other as well. Finally, section 5 presents
the conclusion and some discussions. Before starting the theoretical study of the system (1.1),
we consider the following two arbitrary examples for graphical observation to find the connection
between mathematics and biology.

Example 1. Let us consider P (x) ≡ Q(x) ≡ 1.3 + cos(πx) on Ω = (0, 1) with d1 = d2 = 1 and the
initial density (u0, v0) = (0.8, 1.8). If K(x) ≡ P (x) + c, both populations of (1.1) are coexisting as
shown in Fig. 1 for particular values of c > 0. The figure shows the relation of the density of two
species u and v for non-rational functions P (x) ≡ Q(x) and K(x).

Density u

D
en

si
ty

 v

0.0 0.2 0.4 0.6 0.8
0.0

0.6

1.2

1.8

Fig. 1. Density of species u(t, x) versus v(t, x) at time t = 100 where
P (x) ≡ Q(x) ≡ 1.3 + cos(πx), K(x) ≡ P (x)− c, c = 0.2 and u0 = 0.8, v0 = 1.8

Example 2. If we vary initial densities sufficiently, from low to high with the same resource
function as considered in Example 1 then the relation between two densities u(t, x) and v(t, x) are
approximated and shown in the following Fig. 2. In both diagrams (a) and (b) of Fig. 2, visually
it is observed that the species u and v are cooperating with each other but their initial density is
important.

Well, keeping these two examples under consideration, now we want to explore the characteristic
behaviours of (1.1) in absence of one population.
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Fig. 2. Solutions of (1.1) for P (x) ≡ Q(x) ≡ 1.3 + cos(πx), and K(x) ≡ P (x) − c, c >
0, Ω = (0, 1),d1 = d2 = 1.0 and for various initial conditions (u0, v0) = (0.1, 0.2), (0.1, 1.8)
and (1.8, 0.1) (a) the variation of density u(t, x), and (b) the variation of density v(t, x)
over space.
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2 Analysis of Single Species Model

The function u∗(x) is the stationary solution of the following boundary value problem and it
corresponds to a situation where only species u survives in (1.1):

d1∆

(
u∗(x)

P (x)

)
+ u∗(x)(K(x)− u∗(x)) = 0, x ∈ Ω,

∂(u∗/P )

∂n
= 0, x ∈ ∂Ω (2.1)

Proposition 1. Suppose that P (x) ̸≡ const, K(x) ̸≡ const, and P (x), K(x) are linearly independent
and let u∗(x) be a positive solution of (2.1) then∫

Ω

P (x)(u∗(x)−K(x)) dx = d1

∫
Ω

|∇(u∗/P )|2

(u∗/P )2
dx > 0. (2.2)

Proof. Since u∗ > 0 and P (x) > 0, dividing the first equation of (2.1) by u∗/P , we obtain

d1
∆(u∗/P )

(u∗/P )
+ P (x)(K(x)− u∗(x)) = 0, x ∈ Ω,

∂(u∗/P )

∂n
= 0, x ∈ ∂Ω (2.3)

Integrating (2.3) over the domain Ω using boundary conditions in (2.3), we have

d1 · 0 + d1

∫
Ω

|∇(u∗/P )|2

(u∗/P )2
dx+

∫
Ω

P (x)(K(x)− u∗(x)) dx = 0

which yields∫
Ω

P (x)(u∗(x)−K(x)) dx = d1

∫
Ω

|∇(u∗/P )|2

(u∗/P )2
dx > 0 unless u∗(x) = P (x) (2.4)

It is seen that u∗(x) = P (x) is not a solution of (2.1) as far as P (x) and K(x) are non-proportional.

Proposition 2. Suppose that P (x) ̸≡ const, P (x)/K(x) ̸≡ const and let u(t, x) be a positive
solution to 

∂u(t, x)
∂t

= d1∆

(
u(t, x)
P (x)

)
+ u(t, x)(K(x)− u(t, x)), t > 0, x ∈ Ω,

∂(u/P )
∂n

= 0, x ∈ ∂Ω

(2.5)

Then |u(t, x)−u∗(x)| → 0 uniformly in x ∈ Ω as t → ∞, where u∗(x) is the unique positive solution
of (2.1).

Proof. Integrating (2.1) over Ω and using the boundary conditions in (2.5), we obtain∫
Ω

u∗(x)(K(x)− u∗(x)) dx = 0

⇒
∫
Ω

K(x)(K(x)− u∗(x)) dx =

∫
Ω

(K(x)− u∗(x))2 dx > 0, while K(x) ̸≡ u∗(x).

Since K(x) > 0 and u∗(x) > 0, it concludes∫
Ω

K(x)(K(x)− u∗(x))dx > 0.
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In a similar manner, the function v∗(x) is the solution of the following initial-boundary value
problem and it corresponds to the survival of only species v in (1.1):

d2∆

(
v∗(x)

Q(x)

)
+ v∗(x)(K(x)− v∗(x)) = 0, x ∈ Ω,

∂(v∗/Q)

∂n
= 0, x ∈ ∂Ω (2.6)

Proposition 3. Suppose that Q(x) ̸≡ const, K(x) ̸≡ const, and Q(x), K(x) are linearly independent
and let v∗(x) be a positive solution of (2.6) then

∫
Ω

Q(x)(v∗(x)−K(x)) dx = d2

∫
Ω

|∇(v∗/Q)|2

(v∗/Q)2
dx > 0. (2.7)

The proof of this result can be constructed similar to proposition 1.

The following inequality is also valid for (2.6):∫
Ω

K(x)(K(x)− v∗(x)) dx > 0, unless v∗ ≡ K. (2.8)

Proposition 4. The trivial equilibrium (0, 0) of (1.1) is unstable.

The proof is available in [3, 12].

3 Global Stability Analysis

If the system is dynamically monotone, the best conception is to analyze the model globally instead
of local analysis. Also we remark that the system (1.1) represents the interaction between two
species in a wide area of both interspecific and intraspecific competitions other than to just count
only two particular organisms. Taking into account these points, we consider various relations
among three smooth functions P (x), Q(x) and K(x) for further study.

3.1 Combined Effects of Spatial Functions

In this section, we want to consider different linear combinations of spatial functions and to show
their heterogeneity effects.

Lemma 1. Suppose that P (x) ̸≡ const, Q(x) ̸≡ const, K(x) ̸≡ const and they are linearly
independent. If P (x) ≡ αK + βQ, α > 0, β > 0 with αK, βQ < P in some non-empty open
domain, and d = d1 = d2 then the semi-trivial steady state (0, v∗(x)) of (1.1) is unstable.

Proof. The associated eigenvalue problem of the first equation of (1.1) around (0, v∗(x)) with usual
boundary conditions is given by

d∆

(
ϕ(x)

P (x)

)
+ ϕ(x)(K(x)− v∗(x)) = σϕ(x), x ∈ Ω,

∂(ϕ/P )

∂n
= 0, x ∈ ∂Ω (3.1)

The principal eigenvalue of (3.1) is given by

σ1

∫
Ω

ϕ2

P
dx = sup

ϕ ̸=0,ϕ∈W1,2

−d

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− v∗(x)) dx
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Choosing the eigenfunction ϕ(x) = P (x), we obtain

σ1

∫
Ω

P (x) dx ≥
∫
Ω

P (x)(K(x)− v∗(x)) dx

and the combination P (x) ≡ αK + βQ outruns

σ1

∫
Ω

P (x) dx ≥
∫
Ω

(αK(x) + βQ(x))(K(x)− v∗(x)) dx

= α

∫
Ω

K(x)(K(x)− v∗(x)) dx+ β

∫
Ω

Q(x)K(x)(1− v∗(x)

K(x)
) dx

= α

∫
Ω

K(x)(K(x)− v∗(x)) dx+ β

∫
Ω

Q(x)K(x)(1− αv∗(x)

P (x)− βQ(x)
) dx

> α

∫
Ω

K(x)(K(x)− v∗(x)) dx+ β

∫
Ω

Q(x)K(x)(1 +
αv∗(x)

βQ(x)
) dx

where P −βQ > −βQ for positive P (x), Q(x) and β > 0. The last integral is positive and therefore,
the principal eigenvalue, σ1 > 0 using (2.8).

Lemma 2. Suppose that P (x) ̸≡ const, Q(x) ̸≡ const, K(x) ̸≡ const and they are linearly
independent. If P (x) ≡ αK + βQ, α > 0, β > 0 with αK, βQ < P in some non-empty open
domain, and d = d1 = d2 then the system (1.1) has no coexistence solution (us, vs).

Proof. Assume to the contrary that there exists a strictly positive solution (us(x), vs(x)) of (1.1)
and the system can be written as

d∆

(
us(x)
P (x)

)
+ us(x)(K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

d∆

(
vs(x)
Q(x)

)
+ vs(x)(K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(us/P )
∂n

=
∂(vs/Q)

∂n
= 0, x ∈ ∂Ω.

(3.2)

The following relation is constructed from (1.1) after few steps∫
Ω

K(x)(K(x)− us(x)− vs(x)) dx =

∫
Ω

(K(x)− us(x)− vs(x))
2 dx > 0 (3.3)

unless us + vs ≡ K. Thus we have two cases
Case 1: us + vs ≡ K

For us + vs ≡ K, by the Maximum Principle [13], ws = const and hs = const in (1.1), where
us/P = ws and vs/Q = hs. Therefore

Pws +Qhs ≡ K ≡ P (x)/α− (β/α)Q(x).

and which implies that ws = 1/α and hs = −(β/α), a contradiction of vs > 0.
Case 2: us + vs ̸≡ K

The principal eigenvalue σ1 of the associated eigenvalue problem of the first equation of (1.1) is
defined by

σ1

∫
Ω

ϕ2

P
dx = sup

ϕ̸=0,ϕ∈W1,2

−d

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− us(x)− vs(x)) dx

 (3.4)
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and we obtain σ1

∫
Ω

P (x) dx ≥
∫
Ω

P (x)(K − us − vs)dx by substituting ϕ(x) = P (x). Thus for

P (x) ≡ αK + βQ, we have

σ1

∫
Ω

αP (x) dx ≥
∫
Ω

(P (x)− βQ(x))(K − us − vs) dx+ β

∫
Ω

Q(x)(K − us − vs) dx

= α

∫
Ω

K(x)(K − us − vs) dx+ β

∫
Ω

Q(x)K(x)
(
1− us + vs

K

)
= α

∫
Ω

K(x)(K − us − vs) dx+ β

∫
Ω

Q(x)K(x)

(
1− us + vs

P − βQ

)

> α

∫
Ω

K(x)(K − us − vs) dx+ β

∫
Ω

Q(x)K(x)

(
1 +

us + vs
βQ

)

The integral
∫
Ω

K(x)(K − us − vs) dx > 0 by (3.3). For the last integral, sequentially we consider

P (x) ≡ αK(x) + βQ(x) > 0 and P (x)− βQ(x) > −βQ for positive Q(x) to ensure the positivity of
σ1. Hence the zero principal eigenvalue of (3.4) contradicts, σ1 > 0. So, there is no coexistence.

Lemma 1, Lemma 2 and Proposition 4 due to the following result in Theorem 1.

Theorem 1. Suppose that P (x) ̸≡ const, Q(x) ̸≡ const, K(x) ̸≡ const and they are linearly
idependent. If P (x) ≡ αK + βQ, α > 0, β > 0 with αK, βQ < P in some non-empty open domain,
and d = d1 = d2 then the semi-trivial equilibrium (u∗(x), 0) of (1.1) is globally asymptotically stable.

In a similar manner, if Q(x) ≡ αK + βP, α > 0, β > 0 with non-constant Q(x), K(x), and P (x),
we have the following statement and the proof of Theorem 2 is left to the reader.

Theorem 2. Suppose that P (x) ̸≡ const, Q(x) ̸≡ const, K(x) ̸≡ const and they are linearly
independent. If Q(x) ≡ αK+βP, α > 0, β > 0 with αK, βP < Q in some non-empty open domain,
and d = d1 = d2 then the semi-trivial equilibrium (0, v∗(x)) of (1.1) is globally asymptotically stable.

It is also noted that the following result was proven in [3].

Lemma 3. [3] Suppose that P (x), Q(x) and K(x) are non-constant and they are linearly independent.
If K(x) ≡ αP (x) + βQ(x), α > 0, β > 0, and d = d1 = d2 then the coexistence solution
(u∗(x), v∗(x)) ≡ (αP, βQ) of (1.1) is stable and the solution is unique.

3.2 Arbitrary Distribution Functions

The main study in this section is to show the effect of distribution functions and the carrying
capacity while the selection is random but bounded. First, let us assume the arbitrary function
Q(x) is constant; biologically it means that in system (1.1), the second species is in random walk
while the species u is moving along the resource function and we want to justify the next result.

Theorem 3. Assume that functions P (x), Q(x) and K(x) are arbitrary, K(x) > (P (x)+Q) for any
x ∈ Ω and Q ≡ const. Then the semi-trivial equilibrium (u∗, 0) of (1.1) is globally asymptotically
stable.

Proof. For monotone dynamical system (1.1), it is enough to establish that two steady states
(0, v∗(x)) and (us, vs) are instable. For simplicity, we assume that K(x) = P (x) + c∗, where

7
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c∗ = Q + c = const since Q = const is our primary choice. To show the instability of (0, v∗(x)),
consider the eigenvalue problem of (1.1) about (0, v∗(x)) and we get

σ1

∫
Ω

ϕ2

P
dx = sup

ϕ ̸=0,ϕ∈W1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− v∗(x)) dx


By considering the eigenfunction ϕ(x) = P (x), we obtain

σ1

∫
Ω

P (x) dx ≥
∫
Ω

P (x)(K(x)− v∗(x)) dx

Therefore if K(x) ≡ P (x) + c∗ in some non-empty open domain then

σ1

∫
Ω

P (x) dx ≥
∫
Ω

(K(x)− c∗)(K(x)− v∗(x)) dx

= c∗
∫
Ω

(v∗(x)−K(x)) dx+

∫
Ω

K(x)(K(x)− v∗(x)) dx

If Q = const then from Proposition 3, we have
∫
Ω

(v∗(x) − K(x)) dx > 0 and the rest integral is

positive by (2.8). Thus σ1 is strictly positive and (0, v∗) is unstable.

The next step is to prove that there is no coexistence solution of (1.1). The following integral is
driving from (1.1) for stationary solution (us, vs) such that∫

Ω

K(x)(K(x)− us(x)− vs(x)) dx =

∫
Ω

(K(x)− us(x)− vs(x))
2 dx > 0 (3.5)

unless us + vs ≡ K. Also for stationary solution (us(x), vs(x)) of (1.1), we constructed

d2∆

(
vs
Q

)
+ vs(x)(K(x)− us(x)− vs(x)) = 0, x ∈ Ω,

∂(vs/Q)

∂n
= 0, x ∈ ∂Ω

Dividing the first part of the above equation by vs and then integrating over the domain and using
the boundary conditions with fact Q = const yields

d2
Q

∫
Ω

∆vs
vs

dx+

∫
Ω

(K(x)− us(x)− vs(x)) dx = 0

⇒ d2
Q

∫
Ω

|∇vs|2

v2s
dx+

∫
Ω

(K(x)− us(x)− vs(x)) dx = 0

which employed the integral as defined by∫
Ω

(us(x) + vs(x)−K(x)) dx =
d2
Q

∫
Ω

|∇vs|2

v2s
dx > 0 (3.6)

Thus we consider the following two cases from (3.5):

Case 1. For us + vs ≡ K, by the Maximum Principle [13], ws = const and hs = const in (1.1),
where us/P = ws and vs/Q = hs. Therefore P (x)ws + Qhs ≡ K(x) ≡ P (x) + c∗ indicates that
ws = 1 and vs = h(x) ̸≡ const, a contradiction.

8
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Case 2. If us + vs ̸≡ K then we define the eigenvalue problem

d1∆

(
ϕ(x)

P (x)

)
+ ϕ(x)(K(x)− us(x)− vs(x)) = σϕ(x), x ∈ Ω,

∂(ϕ/P )

∂n
= 0, x ∈ ∂Ω (3.7)

and the principal eigenvalue is

σ1

∫
Ω

ϕ2

P
dx = sup

ϕ ̸=0,ϕ∈W1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K(x)− us(x)− vs(x)) dx


Choosing the eigenfunction ϕ(x) = P (x), the principal eigenvalue σ1 is given by σ1

∫
Ω

P (x) dx ≥∫
Ω

P (x)(K(x)− us(x)− vs(x)) dx. If K(x) ≡ P (x) + c∗ for all x over Ω then

σ1

∫
Ω

P (x) dx ≥
∫
Ω

(K(x)− c∗)(K(x)− us(x)− vs(x)) dx

= c∗
∫
Ω

(us + vs −K) dx+

∫
Ω

K(x)(K − us − vs) dx > 0

using (3.6) and by (3.5). The zero principal eigenvalue of (3.7) contradicts σ1 > 0 and the result is
justified.

Theorem 4. Assume that functions P (x), Q(x) and K(x) are arbitrary and K(x) > (P (x)+Q(x))

for any x ∈ Ω. If there exists some Q(x) such that
∫
Ω

∇(v∗/Q)∇v∗

(v∗)2 dx ≥ 0, the semi-trivial equilibrium

(u∗, 0) of (1.1) is globally asymptotically stable.

Proof. For monotonic dynamical system (1.1), we have to establish that the equilibrium (0, v∗) is
unstable and there is no co-existence solution.

Let us now turn the inequality K(x) > (P (x) + Q(x)) to K(x) ≡ P (x) + Q(x) + c for c > 0. To
show the instability of (0, v∗), consider the first equation of (1.1) about (0, v∗) and the principal
eigenvalue is defined as

σ1

∫
Ω

ϕ2

P
dx = sup

ϕ ̸=0,ϕ∈W1,2

−d1

∫
Ω

|∇(ϕ/P )|2 dx+

∫
Ω

ϕ2

P
(K − v∗) dx


Choosing the eigenfunction ϕ(x) = P (x) using the connection K(x) ≡ P (x) +Q(x) + c, we get

σ1

∫
Ω

P (x) dx ≥
∫
Ω

P (x)(K − v∗) dx

=

∫
Ω

(K(x)−Q(x)− c)(K − v∗) dx

=

∫
Ω

K(x)(K − v∗) dx+

∫
Ω

Q(x)(v∗ −K) dx+ c

∫
Ω

(v∗ −K) dx (3.8)

the first two integrals of right hand side of (3.8) is positive by Proposition 3.

To check the positivity of
∫
Ω

(v∗ − K) dx, let us now explore some additional investigations: Since

v∗ > 0, dividing both sides of (2.6) by v∗, and then integrating over Ω yields

d2

∫
Ω

∆(v∗/Q)

v∗
dx+

∫
Ω

(K − v∗) dx = 0

9
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Employing the respective boundary conditions, the outcome is∫
Ω

(v∗ −K) dx =

∫
Ω

∇(v∗/Q)∇v∗

(v∗)2
dx ≥ 0

as long as
∫
Ω

∇(v∗/Q)∇v∗

(v∗)2 dx ≥ 0. Therefor the principal eigenvalue is positive and so (0, v∗) is

unstable.

Next step is to prove that there is no co-existence solution of (1.1). Continuing the previous
techniques, it is easy to construct the following two integral relations from (1.1)∫

Ω

K(x)(K − us − vs) dx =

∫
Ω

(K − us − vs)
2 dx > 0, unless us + vs ≡ K (3.9)

and ∫
Ω

Q(x)(us + vs −K) dx = d2

∫
Ω

|∇(vs/Q)|2

(vs/Q)2
dx > 0 (3.10)

By taking into account us + vs = K and applying the maximum principal [13], ws = const > 0 and
hs = const > 0 in (1.1), where us/P = ws and vs/Q = hs. Therefore

P (x)ws +Q(x)hs ≡ K(x) ≡ P (x) +Q(x) + c (3.11)

In (3.11), if ws = 1 it is seen that Qhs = Q + c, which implies Q = c
hs−1

= const, which
is a contradiction. However if we choose hs = 1 then we obtain Pws = P + c, which implies
P = c

ws−1
= const, again a contradiction.

Instead of us + vs ≡ K, if us + vs ̸≡ K then the principal eigenvalue analysis import

σ1

∫
Ω

P (x) dx ≥
∫
Ω

P (x)(K − us − vs) dx

=

∫
Ω

K(x)(K − us − vs) dx+

∫
Ω

Q(x)(us + vs −K) dx+ c

∫
Ω

(us + vs −K) dx

Immediate first two integrals of right side are positive by (3.9) and (3.10) and the last one is∫
Ω

(us + vs −K) dx =

∫
Ω

∇(vs/Q)∇vs
(vs)2

dx ≥ 0

by the introductory assumption. So, σ1 > 0 and there is no co-existence solution, which concludes
the proof.

Remark 1. Since there are many choice of Q(x), it is remarked that Theorem 4 is not always

stable if
∫
Ω

∇(vs/Q)∇vs
(vs)2

dx < 0. On that point, possible outcomes are the co-existence of both species

and the extinction of one by other. By illustrating numerical examples, we will investigate these
situations in next section.

10
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4 Numerical Illustrations

In the following set of examples, we study the role played by initial densities of two species, various
linear combinations and the arbitrary relations between two spatial distributions P (x), Q(x) and
the carrying capacity K(x).

Example 3. Consider P (x) = 2.1 + cos(πx), Q(x) = 1.4 + cos(πx) and K(x) ≡ P (x) + Q(x) on
Ω = (0, 1) with equal diffusion coefficients.Consider initial condition u(0, x) = 0.8, v(0, x) = 1.8,

Domain
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0.0
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(a) time 
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ty

0 50 100 150 200
0.4
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1.2

1.6

2.0

u
P
v
Q

(b)

Fig. 3. Solutions of (1.1) at t = 200 in (a) and average solutions of (1.1) in (b) for

P (x) = 2.1 + cos(πx), Q(x) = 1.4 + cos(πx), and K(x) ≡ P (x) +Q(x), d1 = d2 = 1.0, on

Ω = (0, 1), with initial densities (u0, v0) = (0.8, 1.8).

then P (x) and Q(x) are the unique exact stationary solution of (1.1) and the coexistence is globally
attractive as observed in both (a) and (b) of Figure 3. It is remarked that when K(x) ≡ αP (x) +
βQ(x) for any x ∈ Ω then the theory for this type of result was proven in [3].

Example 4. Let us now assume that K(x) = 2.0 + cos(πx), Q(x) = 1.4 + cos(πx) and P (x) ≡
K(x) + Q(x) = 3.4 + 2 cos(πx) on Ω = (0, 1) with identical diffusion coefficients. Then for non-
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0.0
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1.6

2.4 u
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(b)

Fig. 4. Solutions of (1.1) at t = 200 in (a) and average solutions of (1.1) in (b) for

K(x) = 2.0 + cos(πx), Q(x) = 1.4 + cos(πx), and P (x) ≡ K(x) +Q(x), d1 = d2 = 1.0, on

Ω = (0, 1), with (u0, v0) = (0.8, 1.8).

negative u0 = 0.8, v0 = 1.8, the equilibrium (u∗, 0) is globally asymptotically stable and it ensure
the theoretical result described and justified in Theorem 1, here in particular α = β = 1.0. Check
the well designed results which are depicted in both diagrams of Figure 4. In the biological point of
view, the species u is consuming more resources in competition with v and as seen P (x) > Q(x)
over the habitat.
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Example 5. Consider K(x) = 2.2 + cos(πx), P (x) = 1.3 + cos(πx) and Q(x) ≡ K(x) + P (x)
on Ω = (0, 1) with equal diffusion coefficients. We assume the initial population sizes are u0 =
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Fig. 5. Solutions of (1.1) at t = 200 in (a), and average solutions of (1.1) in (b) for

K(x) = 2.2 + cos(πx), P (x) = 1.3 + cos(πx), and Q(x) ≡ K(x) + P (x), d1 = d2 = 1.0, on

Ω = (0, 1), with (u0, v0) = (0.8, 1.8).

0.8, v0 = 1.8.

Then the semi-trivial equilibrium (0, v∗) of (1.1) is globally attractive independently of diffusion
speeds and the result is verified in Theorem 2. See the numerical results as displayed in left and
right Figures of 5.

Example 6. Let us now consider the following arbitrary functions P (x) ≡ 2.0 + cos(πx), Q(x) ≡
3.4+ 2 cos(πx) and K(x) ≡ P (x) +Q(x) + 3.0 such that K(x) > P (x) +Q(x) in a non-empty open
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Fig. 6. Solutions of (1.1) at t = 2000 in (a), and average solutions of (1.1) in terms of

time in (b) for K(x) ≡ P (x) +Q(x) + 3.0 where P (x) ≡ 2.0 + cos(πx), Q(x) ≡ 3.4 + 2 cos(πx),

and d1 = d2 = 1.0, on Ω = (0, 1), with (u0, v0) = (0.5, 1.8).

sub-domain Ωs ⊂ Ω with initial values u0 = 0.5, v0 = 1.8 and identical dispersal rates d1 = d2 = 1.0.

Thus for non-negative and non-trivial (u0, v0) with a random choice of Q(x), the equilibrium
(u∗, 0) is globally asymptotically stable as depicted in two figures of 6. The numerical illustrations
correspond the analytical hypothesis as verified in Theorem 4.
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5 Conclusion

In this paper, we studied a two species diffusive model, where both species are adopted according
to two individuals directed functions. While P (x), Q(x) and K(x) are linearly independent, then
for the strict inequality αK(x) < P (x), βQ(x) < P (x), the coexistence solution is not stable and in
competition, one species repelled. Here the semi-trivial solution (u∗(x), 0) is globally asymptotically
stable. For random choice of K(x), P (x), and Q(x), it is proven that (u∗(x), 0) is globally
asymptotically stable for estimated non-negative integrand depending on Q(x); see Fig. 6. All these
functions are spatially periodic, bounded and strictly positive. If the distribution function P (x) is
equivalence to Q(x) and non-proportional to K(x) then for the same diffusion coefficient, the non-
trivial equilibria are locally asymptotically stable, see Examples 2. Some numerical examples were
presented to justify the analytic study in a non-empty open domain with various initial conditions.
This problem defined in (1.1) is biologically meaningful due to the activities of various species;
specially for grazing animals, birds, marine organisms. Someone might have interest to extend
these results for periodic (both space-time dependent) smooth distribution functions and carrying
capacity. Finally, we have some open problems to the readers for further analysis:

1. Introduce different boundary conditions in (1.1) and study the problem.

2. Considering non-equivalent functional carrying capacities for both species, show that population
with higher carrying capacity leads to the rest one is in extinction.

3. It will be interesting if we add the harvesting term for both populations in (1.1) and study
the revised model.
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