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With the green-oriented transition of energy, electric vehicles (EVs) are being

developed rapidly to replace fuel vehicles. In the face of large-scale EV access

to the grid, real-time and effective charging management has become a

key problem. Considering the charging characteristics of different EVs, we

propose a real-time scheduling framework for charging stations with an

electric vehicle aggregator (EVA) as the decision-making body. However, with

multiple optimization objectives, it is challenging to formulate a real-time

strategy to ensure each participant’s interests. Moreover, the uncertainty of

renewable energy generation and user demand makes it difficult to establish

the optimization model. In this paper, we model charging scheduling as a

Markov decision process (MDP) based on deep reinforcement learning (DRL)

to avoid the afore-mentioned problems. With a continuous action space,

the MDP model is solved by the twin delayed deep deterministic policy

gradient algorithm (TD3). While ensuring the maximum benefit of the EVA,

we also ensure minimal fluctuation in the microgrid exchange power. To

verify the effectiveness of the proposed method, we set up two comparative

experiments, using the disorder charging method and deep deterministic

policy gradient (DDPG) method, respectively. The results show that the

strategy obtained by TD3 is optimal, which can reduce power purchase cost

by 10.9% and reduce power fluctuations by 69.4%.

KEYWORDS

electric vehicle, microgrid, multi-objective optimization, charging scheduling, deep

reinforcement learning

1 Introduction

In recent years, the global energy structure (Tian et al., 2018; Peng et al., 2021)
is transforming into clean energy (Fu et al., 2018; Rajendran et al., 2022), which
provides an incentive for the development of EVs. According to research, the
exhaust gas emitted by fuel vehicles is one of the main causes of global warming
(Purushotham Reddy et al., 2021). Against the background of carbon neutrality
(Duan, 2021), some countries have introduced relevant policies promoting EVs
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(Yang et al., 2020) to replace traditional fuel vehicles. A smart
grid is a new type of modern grid that is stable, efficient, and
economical. However, with the large-scale charging demand of
EVs, the smart grid faces many challenges (Choi et al., 2017;
Brenna et al., 2018), such as increasing exchange power
fluctuations and degrading power quality. Therefore, the stable
access of EVs to the smart grid is a key issue that must be solved.

EVs have the advantages of flexibility and adjustability
due to the power battery. Taking advantage of these features,
people can control the charging or discharging of EVs to realize
grid stability. At present, various optimization approaches
have been proposed to manage the charge or discharge
of EVs, that is, convex-optimum methods, programming-
based methods (Hu et al., 2013; Ordoudis et al., 2019), and
heuristic-based methods (Megantoro et al., 2017; Li et al., 2019).
Shi et al. (2017) optimized the day-ahead scheduling of EVs by
Lyapunov optimization,which can realize real-timemanagement
but relies on precise objective functions. Based on mixed
integer programming, Koufakis et al. (2020) minimized EV
charging costs and load fluctuations, which also relies on
accurate predictions of environmental information. Combining
genetic algorithms and dynamic programming algorithms,
Ravey et al. (2012) formulated energy management strategies
for EVs, but the method shows poor robustness. Therefore, the
uncertainty of renewable energy generation and user demand
makes it difficult to establish the optimization model based on
traditional methods.

There are twoways to deal with the uncertainty in charge and
dischargemanagement of EVs. One is to predict uncertain values
before optimization through physical models or probability
distributions (Kabir et al., 2020). However, this method is only
suitable for scenarios with low accuracy requirements, such
as day-ahead prediction. Another solution benefits from the
development of DRL (Franaois-Lavet et al., 2018). DRL includes
two types of methods, model-based and model-free. Model-free
DRL (Wan et al., 2019) has attracted great attention in this field
due to the following two advantages: 1) neural network as a
function approximator (Zhang et al., 2021) can extractmore data
features based on data history. The data features are input into
the policy network to learn the optimal policy. This process does
not rely on the predicted values. 2)This method makes decisions
according to the current state, so it is suitable for real-time
decision scenarios with high precision requirements.

Based on DRL, Chis et al. (2017) and Li et al. (2022)
combined neural networks and DRL, which effectively reduced
the charging cost. Zhao and Lee (2022) and Su et al. (2020)
proposed a dynamic pricing mechanism based on DRL to
minimize charging costs. Abdalrahman and Zhuang (2022)
improved user satisfaction by maximizing the quality of
the charging service. Qian et al. (2022) proposed a pricing
mechanism based on multi-agent reinforcement learning
and reduced the cost of charging stations. However, the

afore-mentioned works in the literature only consider the
benefits of the demand side while ignoring the benefits of the
supply side. In the electricity market, EVA (Okur et al., 2020;
Kong et al., 2021) plays an important role in integrating
demand, participating in bidding, and purchasing resources.
Qiu et al. (2020) and Tao et al. (2022) studied the efficient
pricing problem from the perspective of EVA. Considering
the operation cost of microgrids and the purchasing cost of
EVs, Zhaoxia et al. (2019) reduced overall costs through day-
ahead optimized scheduling. Kandpal and Verma (2021) and
Mahmud et al. (2019) considered the microgrid benefits by
minimizing grid peaks, but they still used inefficient traditional
methods. As an important part of the electricity market,
the role of EVA participating in electricity ancillary services
(Yang et al., 2017; Yuan et al., 2021) is neglected. Meanwhile,
there are few works in the literature (Wang and Cui, 2020;
Zhou et al., 2021) that consider the behavioral characteristics
of different cars such as taxis, buses, and private cars. Most of
them are about path planning or pricing issues.

To sum up, at present, EV charging scheduling based on
DRL is used and the following problems still exist: 1) As one
of the most effective mechanisms to integrate the market, the
benefits and the electric ancillary service functions of EVA are
neglected. 2)When applyingDRL, it is difficult to learn a strategy
that can balance multiple optimization objectives. 3) In the
charging model, the characteristics of different types of EVs are
not taken into account. Aiming to fill the research gaps, this paper
proposes a real-time charging scheduling framework with EVA
as the decision-making body. We build a scheduling model with
continuous action space, which is solved based on TD3. Our
optimization objectives are set to minimize the cost of EVA and
minimize the fluctuations of microgrids.Themain contributions
of this paper are as follows:

• A real-time charging scheduling framework with EVA as
a decision-making body is proposed. Considering multiple
optimization objectives, the EVA cost and the microgrid
exchange power fluctuations are minimized.
• Considering the charging characteristics of taxis and private
cars, the charging scheduling process is established as an
MDP model. EVA is an agent that interacts with the
environment to maximize accumulated rewards.
• The MDP model is solved by TD3. Compared
with the disorder charging method and DDPG, the
TD3 achieves lower EVA costs and lower microgrid
fluctuations.

The remainder of this paper is organized as follows. In
Section 2, we introduce the system model, constraints, and
optimization objectives in detail. In Section 3, we introduce the
main elements of the design of the MDP model. In Section 4,
we briefly introduce the TD3 method. In Section 5, we perform
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groups of experiments and analyze the results. Finally, in
Section 6, we conclude this paper.

2 System model

2.1 System framework

In this paper, the framework of charging station scheduling
is shown in Figure 1. First, the power supplier microgrid is
composed of DER, an energy storage system (ESS), a micro-
power dispatching center (MDC), and a load. Microgrid stability
is affected by output power PDER and load power PL. DER is a
electricity-generating unit, and its excess energy is stored or sent
to the main grid. We assume that PDER includes two types of
output sources, photovoltaic power and wind force. EVA mainly
sends charging strategy π to the charging station according to the
physical information and economic information. The physical
information includes themicrogrid exchange power and the state
of charge (SOC) of the charging stations. Economic information
is determined by the market side, including resource buyers and
market operators. The market operator acts as a middleman,
matching tenders and resource buyers. On the market side, EVA
minimizes the purchase cost of resources. On the grid side, EVA
minimizes power fluctuations.

When the EVs arrive at the station, EVA will obtain their
maximum charging power and charging demand. According
to the day-ahead exchange power Pmg and the electricity price

from the market side, EVA formulates the charging strategy
π. According to the strategy, DER supplies energy for EVs in
charging stations. Meanwhile, the charging station feeds back
the SOC to EVA, which provides a reference for its decision-
making.

2.2 Constraint model

This paper considers two types of vehicles, taxis and private
cars. We divided the 24-h scheduling time into T time steps, that
is, t = {1,2,⋯T}. One time step is denoted as τ.

At time t, the number of taxis and private cars is Xt and
Yt , respectively. When updating the number of cars at the next
moment, we need to remove the cars that meet the charging
expectations and add new cars. We assumed that the number of
newly added taxis and private cars at each moment is Mt andNt ,
and the proportionwith fast-charging demand is σ1 and σ2. In the
scheduling process, the charging or discharging power is limited
to the following two conditions.

2.2.1 Power limitations of charging station

Pmin
t ≤ Pt ≤ P

max
t , (1)

where Pmin
t and Pmax

t are the maximum and minimum charging
power of the charging station at time t. The positive Pt
represents the charging power, while the negative Pt represents

FIGURE 1
Scheduling framework of the EV charging station in a microgrid.
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the discharging power of EVs. Pmin
t and Pmax

t are limited by two
conditions, which can be expressed as

Pmin
t =max{−Pstationt ,−ηdis

SSOCt c
τ
}, (2)

Pmax
t =min

{
{
{
Pstationt ,

1
ηdis
⋅
(Xt +Yt − S

SOC
t )c

τ
}
}
}
, (3)

where the first term represents themaximumorminimumpower
of the charging station during time τ.The second term represents
the remaining available capacity of the battery. Pstationt is the
maximum charging power of the charging station. c, ηdis, and
ηch are the battery capacity, discharging efficiency, and charging
efficiency, respectively. SSOCt is the sum SOC of the EVs at
time t.

2.2.2 State of charge limitations of electric
vehicles

0 ≤ SSOCt ≤ Xt +Yt, (4)

|SSOCt −E
SOC
t | ≤ δ, (5)

where δ is the allowable difference factor between the SOC
expected value ESOCt and the actual value SSOCt . Eq. 4 expresses
the total SOC range of EVs. Eq. 5 is the judgment condition for
whether EVs reach the expected values.

At time t, the maximum power of the charging station is

Pstationt = Pf,max
t + P

s,max
t , (6)

where Pf,max
t and Ps,max

t are the maximum power for fast charging
and slow charging at time t.

Pf,max
t = Pf ⋅ n

fast
t ⋅ τ, (7)

Ps,max
t = Ps ⋅ n

slow
t ⋅ τ, (8)

where Pf and Ps are a fast power and slow power of the charging
station, which are fixed values. nfastt and nslowt are the number of
fast-charging vehicles and the slow-charging vehicles at time t,
respectively.

For the total power Pt allocated to the charging station,
the power distributed to each fast-charging and slow-charging
vehicle is

Pfastt,i =
Pf,max
t

Pstationt ⋅ nfastt

⋅ Pt, (9)

Pslowt,i =
Ps,max
t

Pstationt ⋅ nslowt

⋅ Pt. (10)

FIGURE 2
RL structure for charging scheduling.

The SOC update satisfies the following equation:

SSOCt+1,i =
{{
{{
{

SSOCt,i +
1
ηdis
⋅
Pt,i ⋅ τ
c ,Pt,k,i ≤ 0

SSOCt,i + ηch ⋅
Pt,i ⋅ τ
c ,Pt,k,i > 0

. (11)

Note that for each time step, we need to remove the cars
that have reached the expected values and add the new cars.
Therefore, the total value of SOC at the next moment can be
expressed as

SSOCt+1 =∑SSOCt+1,i +∑SSOC,M+N
t+1,i −∑SESOCt,i , (12)

where the first item is the sum of the updated SOC of all vehicles
at time t. The second term is the sum of the SOC of newly added
Mt+1 + Nt+1 vehicles at time t+ 1. The third term is the sum of
the SOC that reaches the expected values at time t.

2.3 Optimization objective

According to the system model in Section 2.1, we set two
optimization objectives, namely, maximizing the benefits of EVA
and minimizing power fluctuations.

Assuming that the service cost of EVA is a fixed value,
reducing the power purchase cost canmaximize EVA’s profit.The
first optimization objective can be set as follows:

minFa =∑
T
t=1

λtPt ⋅ τ, (13)

where λt is the time-of-use electricity price at time t. Pt is limited
by Eq. 1.

We define FP as the exchange power fluctuation of the
microgrid. The second optimization objective can be set as
follows:

minFP =
T

∑
t=1
(PMG,t −

1
T

T

∑
t=1

P̂MG,t), (14)
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FIGURE 3
Training framework of TD3.

where PMG,t is the microgrid real-time power including EVs at
time t. P̂MG,t is the day-ahead forecasting value of the microgrid
power without EVs at time t.

PMG,t = PEV,t + PL,t − PDER,t, (15)

P̂MG,t = P̂L,t − P̂DER,t, (16)

where PEV,t , PL,t , and PDER,t are the real-time values of EVs, other
loads, and DER, respectively. P̂L,t and P̂DER,t are the day-head
predicted values of other loads and DER, respectively.

3 Model design of Markov decision
process

3.1 Markov decision process

For reinforcement learning (RL), the agent and environment
are twomain interacting objects, as shown in Figure 2.The agent
perceives the state and reward from the environment to learn
and make decisions, while the environment updates the state
and reward at the next moment based on the current action
from the agent. The purpose of this process is to learn a strategy
that satisfies the optimization objectives through continuous
interactions.

The learning process of RL is usually described by MDP.
We set the EVA as an agent and information such as price
and power as the environment. At time t, the agent interacts
with the environment to give a policy π and implement
action at within the action range. The environment reacts to
at and updates the state st+1. The state transition function
P determines the update from st to st+1. The environment
feedbacks to the agent a reward rt = R(st,at) to guide the
agent to achieve the optimization objectives. To express this
process, we need four elements, state, action, state transition
function, and reward function, which are denoted as a tuple
⟨S,A,P,R⟩.

3.2 Model design

State space S is the set of state values. S is a description of the
current situation and should not contain redundant information.
Therefore, in this paper, st ∈ S contains four variables, time-of-
use electricity price, the sum of charging station SOC, the output
power of DER, and the power of other loads, denoted as st =
{λt,S

SOC
t ,PDER,t,PL,t}.
Action space A is the set of action values. We set the total

charging or discharging power of the charging station as the
action. Limited by the maximum andminimum charging power,
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FIGURE 4
Number distributions of taxis and private cars.

TABLE 1 Time-of-use electricity price.

Time Electricity price (yuan/kW⋅h)

0:00–6:00 0.385
6:00–8:00, 11:00–18:00 0.555
8:00–11:00, 18:00–23:00 0.725

at can be expressed as

at =
{{
{{
{

Pmin
t ,Pt < P

min
t

Pmax
t ,Pt > P

max
t

Pt ,others
, (17)

where Pmin
t and Pmax

t are determined by Eqs. 2, 3, respectively.
State transition function P is the rule for state update,

denoted as

P : st × at→ st+1. (18)

In Eq. 18, it can be seen that st+1 is determined by the action
and state st . The probability of taking action at in state st is
denoted as p (st+1|st ,at).

Reward function R(st,at) represents the optimization
objectives of the model. In order to maximize the benefits of
EVA, the reward function can be designed as

rt,1 = −λtat ⋅ τ. (19)

At time t, in order to minimize the exchange power
fluctuations of the microgrid, the reward function can be
designed as

rt,2 = −|PMG,t − P̂MG,t| . (20)

At time t, in order to encourage the agent to charge and satisfy
the needs of users, the reward function can be designed as

rt,3 = {
1 |SSOCt −E

SOC
t | < δ

0 |SSOCt −E
SOC
t | > δ

, (21)

where ESOCt is the sum of the expected SOC values at time t.
In order to balance these three rewards, the total reward

function can be expressed as

rt = β1rt,1 + β2rt,2 + β3rt,3, (22)

where β1, β2, and β3 are the balance coefficients of three rewards,
respectively.

4 Proposed approach

TD3 is a type of deterministic strategy gradient algorithm,
which is a relatively advanced method. In Section 3, the action
is continuously adjustable. Therefore, it is necessary to select a
type of RLmethodwith continuous action space. Comparedwith
traditional RL methods, such as Q-learning, TD3 can handle
decision problems with continuous action space and continuous
state space. The training process has fast convergence speed and
good stability.The following is the principle and training process
of TD3.

4.1 TD3 algorithm

TD3 is an optimization method of DDPG, which is based
on the actor-critic framework. Methods based on the actor-critic
framework consist of critic networks and actor networks. The
purpose of the actor networks is to establish a relational mapping
of st and at , while the purpose of the critic networks is to evaluate
this mapping relationship and output the value function Q. Its
mapping relationship can be described as

Actor : st→ at
Critic : [st,at] → Q

. (23)

DDPG uses the experience replay of Deep Q-learning (Gao
and Jin, 2022), and adds two target networks, namely, the target-
actor network and the target-critic network. The loss function L
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FIGURE 5
Day-ahead power curves for microgrid: (A) output power; (B) load power; (C) microgrid exchange power.

of the critic network is defined as

L(θQ) =
1
M
∑M

i=1
[Qtarget −Q(st,at,θQ)]

2, (24)

where θQ is the critic network parameter. M is the number
of learning samples selected from the experience replay buffer.
Qtarget
t is the value function of the target-critic network, which is

calculated as follows:

Qtarget
t = rt + γQ

′
[st+1,μ

′
(st+1,θμ′) ,θQ′] , (25)

where γ is the discount factor. μ′ and θμ′ represent the
target-actor network and its parameter, respectively. Q′ and
θQ′ represent the target-critic network and its parameter,
respectively.

The current state ismapped to action by the function μ(st ,θμ).
The actor-network parameter is updated through the gradient
back-propagation algorithm. Its loss gradient is

∇θμJ ≈
1
M

M

∑
i=1
[∇aQ(st,a,θQ) |a=μ(st,θμ) ⋅ ∇θμμ(st,θμ)] , (26)

TABLE 2 Training parameters of TD3.

Parameter Value

Number of training episodes 60,000
Batch sizeM 256
Discount factor γ 0.99
Soft update factor τ 0.005
Policy noise ɛ 0.2
Noise clip d 0.5
Greedy coefficient ς increment 0.00002
ςmax 0.95
Policy frequency 2

where ∇ is the gradient. μ and θμ are the output value and
parameters of the actor-network.

The target network parameters θQ′ and θμ′ can be updated
by smoothing exponentials

θQ′ = τθQ + (1− τ)θQ′ , (27)

θμ′ = τθμ + (1− τ)θμ′ , (28)
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FIGURE 6
Reward curves in the training process: (A) DDPG and (B) TD3.

where τ is the update factor.
When updating the Q value of the critic network, it can be

expressed as

Q = r+ γmaxQ(st+1,at+1) . (29)

However, if the value function is estimated by maximum,
the DDPG method will overestimate, which causes slow
convergence and a suboptimal solution. In order to overcome
these shortcomings, TD3 has been improved in the following
three aspects.

First, in order to overcome the over-estimation problem,
TD3 establishes two independent critic networks and two target-
critic networks. The target network Q value is updated by the
minimum Q value, as follows:

Qtarget
t = rt + γmin

k=1,2
Qk
′
[st+1,μ

′
(st+1,θμ′) ,θQ′k] , (30)

whereQk
′
and θQ′k (k = 1,2) represent two target-critic networks

and their parameters.
The loss function can be improved as

L(θQk
) = 1

M

M

∑
i=1
[Qtarget −Qk (st,at,θQk

)]2, k = 1,2, (31)

where Qk and θQk
(k = 1,2) represent two critic networks and

their parameters, respectively.
Second, if we update the actor-network μ and critic networks

Qk in each loop, the training process will be unstable. Fixing μ
and only training the Q-function can converge faster and get
better results. Therefore, TD3 adds the concept of actor-network
training frequency, which is less than the update frequency of the
critic network. That is also the meaning of “delay.”

Finally, to avoid overfitting, TD3 adds a target-actor
smoothing step. The action output by the actor-network is

improved as

ãt+1 = μ
′
(st+1,θμ′) + ε,ε∼clip (0,σ,−d,d) ,d > 0, (32)

where ɛ is the noise obeying the truncated normal distribution.
σ is the variance, and d is the truncated amplitude.

4.2 Training process

Based on TD3, the training framework for optimal
scheduling of charging stations is shown inFigure 3.Thedetailed
training steps of the agent are as follows.

First, as shown by the red line in Figure 3, the agent
interacts with the environment to get st and uses the actor-
network to get μ(st ,θμ). To increase the exploratory effect, we
add random noise to the action, which is ãt = μ(st,θμ) + (1− ζ) ⋅
N(0,1). In the environment, get the next moment state st+1 and
reward rt . The tuple [st ,at , rt , st+1] is stored in the experience
replay buffer for sampling. When the data in the buffer
reach a certain amount, M samples for training are randomly
selected.

Then, as shown by the blue line in Figure 3, the target
networks get target action byEq. 32.Through the critic networks,
value functions Q1 (st ,at) and Q2 (st ,at) are calculated. Through
the target-critic networks, the target value functions Q1

′
(st,at)

and Q2
′
(st,at) are calculated. Then, the target value function

Qtarget
t is obtained by Eq. 30.
Finally, as shown by three gray squares on the right in

Figure 3, the critic network parameters θQ1
and θQ2

, are updated,
which are determined by Eq. 31. The actor-network parameter
θμ is delay updated, which is determined by Eq. 26. Three target
network parameters θμ′ , θQ′1 , and θQ

′
2
, are soft updated, which are
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determined by Eqs 27, 28. The next training loop is continued
until the reward curve converges.

Algorithm 1 outlines the process of learning the optimal
policy based on TD3.

5 Experiment

5.1 Experimental settings

In this paper, we simulate charging station scheduling in a
complex park during a working day. This type of park includes
offices, residences, and commercial shops. The microgrid
contains wind force, photovoltaic outputs, charging stations, and
other household loads. The detailed parameter settings are as
follows.

5.1.1 Environmental parameters
We consider two types of vehicles, taxis and private cars.

Figure 4 shows the number distributions of taxis and private
cars. Taxis usually use a two-shift system, with shifts at
6:00 and 18:00, respectively. Therefore, we assumed that the
taxi charging peak occurs at 1:00 and 15:00. The private
car charging peaks are affected by two groups of people,
employees and residents. Therefore, it is assumed that the
charging peaks occur at 10:00 and 21:00, respectively. The fast-
charging ratios of taxis and private cars are set to σ1 = 0.7
and σ2 = 0.1, respectively. The initial SOC distributions of taxis
and private cars are N(0.35,1) and N(0.45,1), respectively, and
the expected SOC distributions are N(0.95,1) and N(0.90,1),
respectively.

The charging station power is divided into four gears:
−30, −7, +7, and +30 kw. When each vehicle leaves the
charging pile, the deviation of SOC from the expected value
is less than the tolerance factor δ = 0.05. The time step is
set to τ = 1h and the time-of-use electricity price is listed in
Table 1.

Figure 5 shows the day-ahead power curves that are output
forecast curves (Figure 5A) and household load forecast curves
(Figure 5B). Assuming that this working day is an ordinary
sunny day, the photovoltaic output power reaches the peak
about at 12:00, and the wind-force output power fluctuates
randomly. According to Eq. 16, we can obtain the forecast curve
of microgrid exchange power (Figure 5C), which shows that
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FIGURE 7
Charging or discharging strategies obtained by (A)disorder charging, (B) DDPG, and (C) TD3.

there are evident peaks and valleys in some periods. To rule out
the possibility that the method depends on the distribution, we
set the uncertain power to be ±10% of the forecast power.

5.1.2 Algorithm settings
To evaluate the performance of the TD3, we set up two

different methods, the disorder charging method and DDPG.
The parameters and rule settings of these three methods are as
follows:

• TD3: The detailed parameters of TD3 are shown in
Table 2. In Eq. 24, we set the number M of learning
samples from the experience replay buffer to 256. When
updating the Q value of two critic networks, the discount
factor γ set to 0.99 (Zhang et al., 2021) works best. In
Eqs 27, 28, the soft update factor τ is set to 0.005. In
Eq. 32, the added noise is set to ɛ∼ clip (0.2,1,−0.5,0.5).
For better exploration, set th initial value of greedy
coefficient ς is set to zero and its increment for each
episode to 0.00002. Note that when setting the reward
functions, each reward is normalized by its maximum
values.
• DDPG: Compared with TD3, DDPG uses one critic
network and does not add noise ɛ when the actor-
target network updates the action. In order to compare
the performance of different algorithms, other training
parameters of DDPG keep the same as that of
TD3.
• Disorder charging: To provide a quantitative reference for
the performance of theDRLmethods, we set up a disordered
charging experiment. When one EV arrives at the station,
the charging station starts to continuously supply power
with Pf = 30kw or Pf = 7kw until its SOC reaches the
expected value.

5.1.3 Metrics
To quantitatively evaluate the performance of the three

methods, we set the following three metrics.

• Average price: F̄a = ∑
24
t=1λtat/∑

24
t=1at represents the average

cost of EVA in one day. The lower F̄a is, the greater the
benefits EVA can get.
• Fluctuation: FP = ∑

24
t=1(PMG,t −∑

24
t=1PMG,t/24) represents

the total fluctuations of microgrid changing power
in one day. The lower the FP, the better the charging
strategy is in reducing the fluctuations of the
microgrid.
• Satisfaction: ξ = ∑24t=1at/Amax, where Amax represents the
maximum charging demand in one day. In order to ensure
the user’s experience, we set the satisfaction coefficient ξ.The
higher the ξ, the better the charging strategy performs in
improving the users’ experience.

5.2 Training results

We evaluate three groups of experiment results and training
processes by the threemetrics in Section 5.1.3.The following are
the analysis results.

Figure 6 shows the training process of two DRLmethods. To
be more intuitive, we average the rewards every 30 episodes, the
results of which are shown as the dark blue curve in Figure 6. It
can be seen that at the beginning, the reward of both methods is
low. When the reward curve tends to stabilize, it means that the
agent has explored the optimal strategy. Compared with DDPG
(Figure 6A), the convergence point of TD3 (Figure 6B) is 28%
earlier and the reward value is 1.5 (Table 3). Therefore, TD3
has notable advantages of better stability, faster convergence,
and higher reward in solving the model proposed in this
paper.

Figure 7 shows the results of charging or discharging
strategies obtained by three experiments. The gray curves
represent the time-of-use price, and the red columns represent
the charging or discharging power in each time step. Positive
values represent electricity purchased and negative values
represent electricity sold by EVA. In Figure 7A, it is evident
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that the disorder charging method does not respond to price. Its
charging strategy is to meet the maximum charging demand in
each time step. In Figure 7B, the scheduling strategy obtained
by DDPG is to charge less during the high-price hours and
charge more during other hours. In Figure 7C, the TD3-based
strategy has evident discharge behaviors during high-price
hours, which indicates a more adequate response to price. From
the perspective of the overall benefit, the TD3-based strategy can
reduce the electricity price by 10.90% (Table 3), which performs
better than DDPG.

Figure 8 shows the results of the microgrid exchanging
power. Compared with the day-ahead values, it is evident that
the average exchanging power of all experiments increases, which
is the result of balancing the charging satisfaction. As shown by
the red line in Figure 8, if the charging behavior of EVs is not
managed, a large number of EV loads will increase the peak-to-
valley difference. In addition, compared withDDPG, the strategy
obtained by TD3 can drastically reduce the power fluctuation
by 69.40% (Table 3), which is almost twice that of DDPG. Note
that in the hours of 3:00–7:00, there is a valley for both RL
methods. Combined with Figure 7, during this low-price period,
the agent sacrifices certain power fluctuations, which can not
only reduce the charging cost but also improve the charging
satisfaction.

Table 3 summarizes the results of the three groups of
experiments. In terms of charging satisfaction, compared with
the other two methods, TD3 sacrifices a certain degree of
satisfaction. However, compared to DDPG’s results, it is worth
sacrificing 24% satisfaction to reduce 51% cost and 84% power
fluctuations. Therefore, for the charging model in this paper,
the strategy based on TD3 is optimal, which can obtain
the real-time scheduling strategy faster and higher overall
benefits.

5.3 Impact of model parameters

In the training process of TD3, the balance coefficient
β = [β1,β2,β3] has an important influence on the exploration
of optimal strategy. Figure 9 shows the training curves for
three different groups of balance coefficients. In order to
explore the influence on strategy formulation, experiments are
conducted with β1,β2,β3 as the dominant factors, respectively.
From Figure 9, it can be seen that the reward dominated by
β2 is the largest. Table 4 summarizes the experiment results,
from which we can see that the strategies dominated by β1
and β3 are two extreme cases. The former reduces costs with
maximum discharging, while the latter improves satisfaction
with maximum charging. On the whole, when dominated
by β2, the strategy can guarantee both low cost and low
power fluctuations. Therefore, for the training in Section 5.2,
the balance coefficient is set to be [0.2, 0.6, 0.2] dominated
by β2.
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FIGURE 8
Exchange power of the microgrid in one day obtained by day-ahead prediction; disorder charging, DDPG; TD3.

FIGURE 9
Training curves under different balance coefficient β based on
TD3.

6 Conclusion

In the current EV charging management market, balancing
the interests of each participant will be an important part in
improving the market structure. Therefore, it is necessary to
formulate a charging management strategy that considers the
interests of each participant. Considering the participation of
EVA, microgrids, and users, this paper provides a reference for
solving this problem.

Based onDRL, we propose a charging scheduling framework
with EVAas the decision-making body.Considering the charging
characteristics of electric taxis and private cars, we formulate a
charging strategy for charging stations based on TD3. Compared

with the disorder charging method and DDPG, TD3 can reduce
power purchase costs by 10.9% and reduce power fluctuations by
69.4% on the basis of ensuring certain user satisfaction.
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