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Abstract 
 

Oscillatory flow in bifurcating blood capillaries is presented. The governing nonlinear and coupled 
equations expressed in the form of the Boussinesq approximations are solved by the method of 
perturbation series expansions. Solutions for the concentration, temperature and velocity are obtained, and 
presented quantitatively using Malple 18 computational soft ware. The results show that the rate of 
chemical reaction, Hartmann number (M2≤I.0), heat exchange parameter and Grashof number (Gr/Gc≤I.0) 
tend to increase the velocity of the flow. The increase in the velocity structure has some attendant 
implications. In fact, it tends to increase the rate of transport of oxygen and nutrient-rich blood to the 
tissues, and this in turn enhances the physiological well-being of man. 
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1 Introduction 
 
The study of blood flow in the capillaries has received considerable attention in the past decades, possibly, 
due to its intermediary role in the transport of arterial and venous blood. The flow has been studied in 
different perspectives. Some considered the nature of the vessels, and others the nature and physical 
composition of blood. [1] investigated analytically the flow in bifurcating porous channels the method of 
perturbation series solution, and noticed the existence of imaginary parts in the solutions but did not examine 
their relevance in terms of the oscillatory flow behaviours. Therefore, the aim of this study is to investigate 
the roles of the oscillatory flow characteristics in the flow of blood in bifurcating capillaries. Blood flows 
from the heart to the arteries through the influence of pressure waves and pulses produced in the heart. These 
pressure waves and pulses are damped out or seriously reduced when they reached the capillaries, and as 
such the pulsating or non-stationary part is neglected. However, due to the curved nature some secondary or 
oscillatory flow behaviours abound. 
 
Blood capillaries are small vessels connecting the arteries to the veins so as to reach individual cells of the 
body for the purpose of exchange of materials. They constitute a network of branched and un-branched thin 
cylindrical porous tubes [2]. Each is about 5-10 microns (µ) in diameter [3]. The flow is slow [4] such that 
the Reynolds and Womersley numbers of the flow in the capillaries are less than one [5]. Moreover, 
capillaries are porous and this is said to dominate the elasticity of the walls such that the distensibility factor 
is neglected [6]. Thus they are treated as rigid vessels [7]. Similarly, it is suggested that blood in the 
capillaries seems to be less sensitive to vessel geometries, therefore, its flow could be treated as Poiseuille 
[8]. On this note, the flow in bifurcating capillaries approximates that in the upstream/mother channel. More 
so, the transport processes in the capillaries is assumed bidirectional under the influence of osmotic gradients 
involving concentration, temperature and convection [9].  
 
Usually, blood flow in the capillaries is considered on the basis of homogeneity and non-homogeneity of 
blood. On the basis of homogeneity, both the blood fluid and corpuscles are assumed to be in the same phase 
such that they flow with a common velocity; for the non-homogeneous case, the blood fluid and corpuscles 
are taken to be in different phases and as such flow with different velocities. [4,7] have detailed description 
of the non-homogeneous blood flow in micro-channels/capillaries; [10] examined it as non-homogeneous 
and solved the governing Stokes’ equations by numerical integration.  
 
More so, on the homogeneous background, [11] and [12] considered blood flow in the capillaries and solved 
the governing Stokes’ equations using series expansion method; [13] studied the blood flow and permeability 
in micro-vessels/capillaries but with emphasis on the mechanical aspect of the flow using in vivo and in vitro 
approach; [14] investigated the MHD oscillatory flow of blood in a capillary where thermal radiation and 
chemical reaction are present but with a non-Newtonian view using numerical approach, and obtained results 
for the velocity, temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number 
when the parameters are varied; [15] examined the flow of blood in the capillaries using the method of 
perturbation series expansion, and observed that the increase in Grashof number increases the velocity, 
Nusselt and Sherwood numbers, whereas the increase in the Hartmann number decreases the velocity. 
 
Additionally, some other literatures exist on related flows. For example, [16] studied the steady MHD 
incompressible viscous flow of a bio-fluid through a curved pipe of circular cross section using spectral 
method, and found that axial velocity increases as the Dean number increases, whereas it decreases as the 
curvature and magnetic parameters increase; [17] investigated steady MHD flow of a viscous incompressible 
fluid through a rotating curved pipe of circular cross-section using spectral approach, and noticed that for 
Taylor number greater than zero, the Coriolis force enforces the curvature effect, whereas for Taylor number 
less than zero, the Coriolis force exhibits an opposite effect to that of the curvature.  
 
This paper examines the effects of chemical reaction rate, magnetic field force, heat exchange parameter and 
Grashof number on the concentration and velocity factors in the oscillatory blood flow in bifurcating 
capillaries. 
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2 Problem Formulation 
 
This model is developed on the assumptions that the capillaries are porous; blood is incompressible, 
Newtonian and electromagnetic; the fluid velocity is symmetrical about the θ-axis.  Then, for a two-
dimensional situation, the equations describing the creepy flow, considering the Boussinesq approximations 
in the non-dimensionalized form (as developed from [18]) are: 
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with the boundary conditions:   
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and x  and r  are the axial and radial coordinates directions; u , w  are the velocity vectors with respect to 
the orthogonal coordinate directions ( xr, ); ρ the fluid density; p the pressure; β1 and β2 are the volumetric 

expansion coefficient for temperature and concentration, respectively;  and  are the non-

dimensionalized temperature and concentration;   is the aspect ratio;  is the kinematic viscosity; l
 
is the 

characteristic length of the tube; μ the viscosity; m the magnetic permeability of the fluid; g the gravitational 

field vector;   is the permeability parameter of the porous medium; Bo is the applied uniform magnetic 

field strength due the nature of the blood and the earth field; σe  is the electrical conductivity of the fluid; ok  

the thermal conductivity; Cp the specific heat capacity at constant pressure; Q is the heat absorption 

coefficient; D the diffusion coefficient; 
2
rk  is the rate of chemical reaction occurring in the system; Ro is the 

characteristic radius of the capillary; is the Hartmann number;  is the Reynolds number;  is the 

environmental temperature differential parameter, otherwise called the Heat exchange parameter;  is the 

porosity parameter;  is the chemical reaction parameter;  the Schmidt number;  the Prandtl 

number; (Gr,Gc) are the Grashof number due to temperature and  concentration difference; (Peh, Pem) are the 
Peclet number due to heat and mass  transfers. 
 

 
 

Fig. 1. A physical models of a bifurcating capillary (where    and  are the bifurcation angles) 

 
A look at the flow structure in Fig. 1, shows that there are different flow pattern in the region before and after 

the nodal point. oXx  . The region oXx   represents the upstream/mother channel, while the region

oXx  represents the downstream/daughter channels. Therefore, the flow in the upstream terminates at 

oXx  , while that  of the daughter/downstream start at oXx  . The flow in the mother/upstream is 

laminar and Poiseuille. The local stream-wise direction in the upstream channel is x , while that of the 

daughter/downstream is along the bifurcation angles   and  , off the x -axis. According to [8], the flow 

in the bifurcating blood capillaries approximates the Poiseuille flow. Therefore, the flow characteristics in 
the upstream channel shall be used to describe the flow in the capillaries 
 
Equations (1)-(5) are nonlinear and coupled. Therefore, to obtain analytic solutions we seek for perturbation 
series solutions of the form 
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and Poiseuille.  But as it flows towards the point of bifurcation, it experiences some forms of disturbances 
due to a change in the geometrical configuration such that its inertial force rises, and consequently the 
Reynolds number and momentum increase. Similarly, we assume the flow is fully developed such that
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the mother/upstream region (see [18]), then the equations governing the flow in this stream are as follows:
                              

x

p
wM

r

w

rr

w













 00
00

2
1

00
2
00

2 1

       

0000  GcGr                                                                                                                           (9)  

 
2

200 00
002

1
h oN Pe w

r r r


  
     

 
                                                                                 (10) 

       
 

2
200 00

1 002

1
m oPe w

r r r
 

  
     

                                                                                   
(11) 

 
with the boundary conditions  
 

,100 w ,100  100 
 
at 0r                                                                                    (12) 

 

,000 w ,00 w w00 at 1r                                                                                    (13)                                                                         

 

Now, we shall eliminate 00w  from equations (10) and (11) by taking the  

 


















 2
12

2 1
M

rrr
  

 

of both sides of the equations to get  
 

    00
22

1  RNDMD rr  
 hPeR  00                          (14)  

 

and 
 

00  RPeh    
 

     00
2

1
2

1   RDMD rr                                                                                   (15)  

  
where   
 

rD = 

















rrr

1
2

2

and ,GcPeGrPe mh  GcGr 
   

 

 

Additionally, we shall eliminate 00  from equations (14) and (15) by taking 



 
 
 

Okuyade; ARJOM, 5(1): 1-11, 2017; Article no.ARJOM.31585 
 
 
 

6 
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of equation (14) and multiplying through equation (15) by R  so that on subtracting the first result from 

the second one, we have 
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A comparison of equation (16) with equation (17) shows that they the same. Therefore, 00 = 00
, and as 

such their solutions are the same.
 

 
Expanding equation (17), gives a fourth order characteristic equation, which when split into two tractable 
parts (even and odd power terms) and solving the even power term, we have 
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3 Results and Discussion 
 
We used Maple 18 for our computations. For constant values of Pr =0.71, Re=0.03; γ1 = 0.6, γ2 =0.6, γ =0.7, 

Φw = 2.0, Θw =2.0, 0.8  , and varied values of 
2

1 =0.1, 0.3, 0.5. 1.0, 5.0; N2 = 0.1, 0.3, 0.5. 1.0, 5.0; M2 

=0.1, 0.3, 0.5. 1.0, 5.0; Gr=0.1, 0.3, 0.5. 1.0, 5.0; we have the results shown in Tables 1–4. These tables show 
that the flow velocity increases as the rate of chemical reaction, Hartmann number (M2≤I.0), Heat exchange 
parameter and Grashof number (Gr/Gc≤I.0) respectively, increase. 
 

Table 1. Velocity-chemical reaction rate 
 

r  2
1 =0.1 

2
1  =0.3 

2
1 =0.5 

2
1  =1.0 

2
1 =5.0 

0.0 -0.36328199I 0.359416906I 0.368320711I 0.401327653I 0.464588355I 
0.2 -0.35870131I 0.3528408142I 0.3612898353I 0.3930844632I 0.4571474604I 
0.4 -0.34592389I 0.3340905770I 0.3412147251I 0.3694318709I 0.4351587332I 
0.6 -0.32774512I 0.3059649607I 0.3109846512I 0.3333123769I 0.3990192654I 
0.8 -0.30845479I 0.2726520016I 0.2748315768I 0.2885693688I 0.3470627970I 
1.0 -0.29312320I 0.2389109513I 0.2402955081I 0.2419522519I 0.2708109823I 

 
Table 2. Velocity-Hartmann number 

 

r  M2=0.1 M2=0.3 M2=0.5 M2=1.0 M2=5.0 
0.0 0.2639014849I 0.3114408964I 0.3876844866I 0.5736734869I -24.6222126I 
0.2 0.2583992618I 0.3051927331I 0.3805461903I 0.5668512426I -30.7835927I 
0.4 0.2423136801I 0.2870988249I 0.3603153536I 0.5506124969I -49.1710680I 
0.6 0.2168696658I 0.2590327883I 0.3303430146I 0.5359877494I -89.0313150I 
0.8 0.1839511642I 0.2238223629I 0.2955092709I 0.5359558022I -197.568668I 
1.0 0.1457560168I 0.1846758476I 0.2610195833I 0.5575863648I -507.656414I 

 
Table 3. Velocity-Heat exchange parameter 

 

r  N2=0.1 N2 =0.3 N2 =0.5 N2 =1.0 N2 =5.0 
0.0 0.3628856652I 0.3641383645I 0.3668353860I 0.393909983I 0.4530320097I 
0.2 0.3560461385I 0.3572654254I 0.3598811703I 0.385670012I 0.4486760210I 
0.4 0.3365248924I 0.3376482990I 0.3400298217I 0.362015322I 0.4206821694I 
0.6 0.3071632297I 0.3081392636I 0.3101571606I 0.325859781I 0.3807568522I 
0.8 0.2721612063I 0.2729486939I 0.2744926468I 0.281025050I 0.3231145097I 
1.0 0.2361398399I 0.2366912558I 0.2376250114I 0.238000235I 0.2386197556I 

 
Table 4. Velocity-Grashof number 

 

r  Gr=0.1 Gr=0.3 Gr=0.5 Gr=1.0 Gr=5.0 
0.0 0.0717144449I 0.218353646I 0.365958128I 0.734719241I -3.84847884I 
0.2 0.0703950464I 0.2142558418I 0.3590318833I 0.7207126373I -3.80598853I 
0.4 0.0666345914I 0.2025636709I 0.3392612883I 0.6807168104I -3.68842974I 
0.6 0.0610033144I 0.1849936546I 0.3095145347I 0.6204729370I -3.52425613I 
0.8 0.0543417285I 0.1640777869I 0.2740154215I 0.5484227820I -3.35655423I 
1.0 0.0474648952I 0.1425222205I 0.2373631977 I 0.4739117773I -3.23627999I 
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Blood released from the heart into the arteries and capillaries mainly constitutes water, digested food 
materials, mineral salts and possibly, drugs taken. The chemical content may spark-up a chemical reaction 
(assumed an order one reaction), which leads to the required depletion of the chemicals in the system. It may 
be exothermic or endothermic, implying that heat is given out or absorbed. The depletion of the chemical 
content leads to an increase in concentration of the transported blood (see Table 1). The increase in the 
concentration of the blood makes it osmotically higher than that in the tissues, thus making its diffusion 
possible. 
 

Blood is saline or slightly acidic in nature; therefore, it is electrolytic and magnetically susceptible. The 
chemical content exists as ions or charges. The motion of these ions in the presence of the Earth magnetic 
field produces electric currents. In addition, the action of the magnetic field on the currents generates a 
mechanical force, the Lorentz force, which modifies the flow. The Lorentz force tends to fractionalize and 
polarize the fluid chemical contents such that they cluster around the magnetic field. Similarly, the freezing 
of the velocity makes the fluid to be concentrated in the region. This may accounts for what is seen in          
Table 1.  
 

Even so, the analysis shows that any increase in the Hartmann number in the range of 0.1≤M2≤I.0 tends to 
increase the velocity whereas it decreases for M2≥5.0 (see Table 2). In many flow problems, the Hartmann 
number is known to freeze up the velocity field. The re-ordering of the flow in the range of 0.1≤M2≤I.0, here, 
could be due to the oscillatory effect. 
 

Furthermore, the heat exchange parameter depends on the external/environmental temperature, which in 
particular, depends on the radiation from the sun. It rises when the temperature is high and vice versa. The 
increase in the temperature invariably leads to an increase in the fluid velocity. More so, the increase in the 
temperature increases the permeability of the cell walls on one hand, and reduces the fluid viscosity on the 
other hand. This tends to enhance the flow velocity (see Table 3).  
 

Similarly, in systems involving heat flow, heat is either generated or absorbed. In whichever way, the 
existence of the heat looses the fluid particles from the grip of viscosity and grants them buoyancy. The 
energization of the fluid particles tends to increase the velocity structures, as seen in Table 4.  
 
The increase and decrease in the temperature, concentration and velocity has some attendant health 
implications in man (for example). The increase in these flow variables combiningly increases the rate of 
transport of blood rich in oxygen and nutrients in the capillaries, thus increasing the availability of such 
blood in the tissues. These enhance the physiological well-being of man.  
    

4 Conclusions 
 
We investigated the oscillatory flow of blood in bifurcating fine capillaries. The results show that the 
increase in the rate of chemical reaction, Hartmann number (M2≤I.0), heat exchange parameter and Grashof 
number (Gr≤I.0) tends to increase the velocity structure of the flow. These results have attendant 
implications. They tend to increase the rate of transport of oxygen and nutrients–rich blood in the capillaries, 
and their availability to the tissues. In fact, these enhance the physiological well-being of man. 
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