
Asian Research Journal of Mathematics

5(1): 1-9, 2017; Article no.ARJOM.32884

ISSN: 2456-477X

Some Power Sums from the Geometric Series

Aeran Kim1∗

1A Private Mathematics Academy, 23, Maebong 5-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54921,

South Korea.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2017/32884
Editor(s):

(1) Rakesh Prakash Tripathi, Department of Mathematics, Graphic Era University, India.
(2) Subramanian Vaithyasubramanian, Department of Mathematics, Sathyabama University,

India.
Reviewers:

(1) Clement Boateng Ampadu, Massachusetts, USA.
(2) Jitender Singh, Guru Nanak Dev University, India.

(3) Erdal Unluyol, Ordu University, Turkey.
(4) Ricardo Enguia, Instituto Superior de Engenharia de Lisboa, Portugal.

(5) Ali Yakar, Gaziosmanpasa University, Turkey.
Complete Peer review History: http://www.sciencedomain.org/review-history/19741

Received: 21st March 2017

Accepted: 16th June 2017

Original Research Article Published: 28th June 2017

Abstract

We focus on the summation of

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k and express it as simple polynomials and

find a relation between them.
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1 Introduction

Let N denote the set of positive integers. For n, k ∈ N ∪ {0}, the sum of powers of consecutive
integers,

n∑
r=0

rk

was studied by Faulhaber, Fermat, Pascal, Bernoulli, Jacobi, and many other mathematicians.
Recently Sullivan [1], Edwards [2], Scott [3], and Khan [4] have contributed on power sums.
Moreover Gauthier [5] studied sums of the type

n∑
r=0

rkxr,

where n, k ≥ 0 are integers and x is an arbitrary parameter (real or complex). Gauthier obtained
some results for the sums of powers of consecutive integers as a special case.

In this paper we focus on the following power sum

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k. (1.1)

After defining the differential operator D = x2 d

dx
, we obtain some formulae for the summation

(1.1), following Gauthier’s method on
∑

rkxr. More precisely, we deduce

Theorem 1.1. Let n, k ∈ N. Then

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k = xn+kPk(x;n)− xk · a(k)

0 (x),

where

Pk(x;n) =

k+1∑
r=1

a
(k)
r−1(x)n

r−1

= −
k∏

r=1

(n+ r)x−
k∏

r=1

(n+ r + 1)x2 − · · ·

and Pk(x;n) is a polynomial of degree k in n, with coefficients a
(k)
r−1 which depend on x.

Theorem 1.2. Let n, k ∈ N. Then

xPk+1(x;n) = (n+ k)xPk(x;n) +DPk(x;n)

and

xa
(k+1)
0 (x) = kxa

(k)
0 (x) +Da

(k)
0 (x).
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2 Proofs of Theorem 1.1 and Theorem 1.2

Let x ̸= 1 be an arbitrary real or complex parameter, and note the following identity,

n∑
r=0

xr =
1− xn+1

1− x
. (2.1)

By k successive applications of the differential operator D = x2 d

dx
to both sides of (2.1), we obtain

as follows.

Lemma 2.1. Let n ∈ N and k ∈ N ∪ {0}. Then

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k =


Dk

(
1− xn+1

1− x
− 1

)
, for k = 0,

Dk

(
1− xn+1

1− x

)
, for k ≥ 1.

Proof. For k = 0 the summation becomes Eq. (2.1) so it is right. For k = 1 we take D = x2 d

dx
and

then

D
(
1− xn+1

1− x

)
= x2 d

dx

(
n∑

r=0

xr

)
=

n∑
r=0

rxr+1 =

n∑
r=1

rxr+1.

We suppose that

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k = Dk

(
1− xn+1

1− x

)
.

Then

Dk+1

(
1− xn+1

1− x

)
= D

(
Dk

(
1− xn+1

1− x

))
= D

(
n∑

r=1

(r + k − 1)!

(r − 1)!
xr+k

)

=

n∑
r=1

(r + k − 1)!

(r − 1)!
· (r + k)xr+k+1

=

n∑
r=1

(r + k)!

(r − 1)!
xr+k+1.

Example 2.2. Let k = 1 in Lemma 2.1.

n∑
r=1

rxr+1 =

n∑
r=1

r!

(r − 1)!
xr+1 = D

(
1− xn+1

1− x

)
=

nxn+3 − (n+ 1)xn+2 + x2

(1− x)2

and so if x = 2 then we have

3
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n∑
r=1

r · 2r+1 = 2n+3n− 2n+2(n+ 1) + 22

and if x = 3 then we obtain

n∑
r=1

r · 3r+1 =
3n+3n− 3n+2(n+ 1) + 32

22
.

In a similar manner, after putting k = 2 in Lemma 2.1, we substitute x = 2 and x = 3, respectively
then we have

n∑
r=1

r(r + 1) · 2r+2

= 23
{
−2n+3n+ 2n+2(n+ 1) + 2n+1n(n+ 3)− 2n(n+ 1)(n+ 2)− 2

}
and

n∑
r=1

r(r + 1) · 3r+2

=
33

22
{
−3n+2n+ 3n+1(n2 + 4n+ 1)− 3n(n+ 1)(n+ 2)− 1

}
.

Proof of Theorem 1.1. We can rewrite Lemma 2.1 as

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k = Dk

(
1− xn+1

1− x

)
= Dk

(
xn+1

x− 1

)
−Dk

(
1

x− 1

)
= Dk (xn+1(−1− x− x2 − x3 − · · · )

)
−Dk (−1− x− x2 − x3 − · · ·

)
= Dk (−xn+1 − xn+2 − xn+3 − · · ·

)
−Dk (−1− x− x2 − x3 − · · ·

)
.

(2.2)

Then, since

D
(
−xn+1 − xn+2 − xn+3 − · · ·

)
= −(n+ 1)xn+2 − (n+ 2)xn+3 − · · · ,

D2 (−xn+1 − xn+2 − xn+3 − · · ·
)
= −(n+ 1)(n+ 2)xn+3

− (n+ 2)(n+ 3)xn+4 − · · · ,
...

Dk (−xn+1 − xn+2 − xn+3 − · · ·
)
= −

k∏
r=1

(n+ r)xn+k+1 −
k∏

r=1

(n+ r + 1)xn+k+2 − · · ·

4
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and

D
(
−1− x− x2 − x3 − · · ·

)
= −x2 − 2x3 − 3x4 − · · · ,

D2 (−1− x− x2 − x3 − · · ·
)
= −1 · 2x3 − 2 · 3x4 − 3 · 4x5 − · · · ,

...

Dk (−1− x− x2 − x3 − · · ·
)
= −

k∏
r=1

rxk+1 −
k∏

r=1

(r + 1)xk+2 − · · · ,

the Eq. (2.2) becomes

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k

=

{
−

k∏
r=1

(n+ r)xn+k+1 −
k∏

r=1

(n+ r + 1)xn+k+2 − · · ·

}

−

{
−

k∏
r=1

rxk+1 −
k∏

r=1

(r + 1)xk+2 − · · ·

}

= xn+k

{
−

k∏
r=1

(n+ r)x−
k∏

r=1

(n+ r + 1)x2 − · · ·

}

− xk

{
−

k∏
r=1

rx−
k∏

r=1

(r + 1)x2 − · · ·

}

= xn+k
k+1∑
r=1

a
(k)
r−1(x)n

r−1 − xk · a(k)
0 (x)

= xn+kPk(x;n)− xk · a(k)
0 (x).

(2.3)

Corollary 2.3.

n∑
r=1

(r + k)!

(r − 1)!
xr+k+1 = D

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k.

Proof. We note that

D
n∑

r=1

(r + k − 1)!

(r − 1)!
xr+k = x2 d

dx

n∑
r=1

(r + k − 1)!

(r − 1)!
xr+k

= x2
n∑

r=1

(r + k − 1)!

(r − 1)!
(r + k)xr+k−1

=

n∑
r=1

(r + k)!

(r − 1)!
xr+k+1,

which completes the proof.
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Proof of Theorem 1.2. Using Theorem 1.1 and Corollary 2.3, we can easily know that

xn+k+1Pk+1(x;n)− xk+1a
(k+1)
0 (x)

=
n∑

r=1

(r + k)!

(r − 1)!
xr+k+1

= D
n∑

r=1

(r + k − 1)!

(r − 1)!
xr+k

= D
(
xn+kPk(x;n)− xka

(k)
0 (x)

)
=
(
Dxn+k

)
Pk(x;n) + xn+kDPk(x;n)−

(
Dxk

)
a
(k)
0 (x)− xkDa

(k)
0 (x)

= (n+ k)xn+k+1Pk(x;n) + xn+kDPk(x;n)− kxk+1a
(k)
0 (x)− xkDa

(k)
0 (x)

and so

xn+1Pk+1(x;n)− xa
(k+1)
0 (x)

= (n+ k)xn+1Pk(x;n) + xnDPk(x;n)− kxa
(k)
0 (x)−Da

(k)
0 (x).

This leads that

xn
(
xPk+1(x;n)− (n+ k)xPk(x;n)−DPk(x;n)

)
= xa

(k+1)
0 (x)− kxa

(k)
0 (x)−Da

(k)
0 (x).

The right hand side of the above identity is independent of n but the left hand side has a factor
which grows exponentially with n. Consequently, for the identity to hold for all values of n, with x
fixed but arbitrary, we must have

xPk+1(x;n)− (n+ k)xPk(x;n)−DPk(x;n) = 0

and

xa
(k+1)
0 (x)− kxa

(k)
0 (x)−Da

(k)
0 (x) = 0.

Therefore we conclude that

xPk+1(x;n) = (n+ k)xPk(x;n) +DPk(x;n)

and

xa
(k+1)
0 (x) = kxa

(k)
0 (x) +Da

(k)
0 (x).

Example 2.4. Consider the following equation deduced from Theorem 1.2 :

xP2(x;n) = (n+ 1)xP1(x;n) +DP1(x;n). (2.4)

6
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Then by Eq. (2.3), the left hand side of (2.4) is

xP2(x;n) = x

{
−

2∏
r=1

(n+ r)x−
2∏

r=1

(n+ r + 1)x2 − · · ·

}
= x

{
−(n+ 1)(n+ 2)x− (n+ 2)(n+ 3)x2 − · · ·

}
= −(n+ 1)(n+ 2)x2 − (n+ 2)(n+ 3)x3 − · · ·

and the right hand side of (2.4) is

(n+ 1)xP1(x;n) +DP1(x;n)

= (n+ 1)x

{
−

1∏
r=1

(n+ r)x−
1∏

r=1

(n+ r + 1)x2 − · · ·

}

+D

{
−

1∏
r=1

(n+ r)x−
1∏

r=1

(n+ r + 1)x2 − · · ·

}
= (n+ 1)x

{
−(n+ 1)x− (n+ 2)x2 − · · ·

}
+D

{
−(n+ 1)x− (n+ 2)x2 − · · ·

}
= −(n+ 1)2x2 − (n+ 1)(n+ 2)x3 − · · ·+ x2 {−(n+ 1)− 2(n+ 2)x− · · · }

= −(n+ 1)(n+ 2)x2 − (n+ 2)(n+ 3)x3 − · · ·

therefore it is shown to be right. Similarly we have

xP3(x;n) = (n+ 2)xP2(x;n) +DP2(x;n). (2.5)

Then the left hand side of (2.5) is

xP3(x;n) = x

{
−

3∏
r=1

(n+ r)x−
3∏

r=1

(n+ r + 1)x2 − · · ·

}
= x

{
−(n+ 1)(n+ 2)(n+ 3)x− (n+ 2)(n+ 3)(n+ 4)x2 − · · ·

}
= −(n+ 1)(n+ 2)(n+ 3)x2 − (n+ 2)(n+ 3)(n+ 4)x3 − · · ·

and the right hand side of (2.5) is

(n+ 2)xP2(x;n) +DP2(x;n)

= (n+ 2)x

{
−

2∏
r=1

(n+ r)x−
2∏

r=1

(n+ r + 1)x2 − · · ·

}

+D

{
−

2∏
r=1

(n+ r)x−
2∏

r=1

(n+ r + 1)x2 − · · ·

}
= (n+ 2)x

{
−(n+ 1)(n+ 2)x− (n+ 2)(n+ 3)x2 − · · ·

}
+D

{
−(n+ 1)(n+ 2)x− (n+ 2)(n+ 3)x2 − · · ·

}
= −(n+ 1)(n+ 2)2x2 − (n+ 2)2(n+ 3)x3 − · · ·

+ x2 {−(n+ 1)(n+ 2)− 2(n+ 2)(n+ 3)x− · · · }

= −(n+ 1)(n+ 2)(n+ 3)x2 − (n+ 2)(n+ 3)(n+ 4)x3 − · · · .

7
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Lemma 2.5. Let n, k ∈ N. Then

xa
(k+1)
r−1 (x) = xa

(k)
r−2(x) + xka

(k)
r−1(x) +Da

(k)
r−1(x).

Proof. In advance we define

a
(k)
k+1 := 0 and a

(k)
−1 := 0. (2.6)

Now by Theorem 1.1, Theorem 1.2, and (2.6) we have

x

k+2∑
r=1

a
(k+1)
r−1 (x)nr−1 = xPk+1(x;n)

= (n+ k)xPk(x;n) +DPk(x;n)

= (n+ k)x

k+1∑
r=1

a
(k)
r−1(x)n

r−1 +D
k+1∑
r=1

a
(k)
r−1(x)n

r−1

= x

{
k+1∑
r=1

a
(k)
r−1(x)n

r +

k+1∑
r=1

ka
(k)
r−1(x)n

r−1

}
+D

k+1∑
r=1

a
(k)
r−1(x)n

r−1

= x

{
k+2∑
R=2

a
(k)
R−2(x)n

R−1 +

k+1∑
r=1

ka
(k)
r−1(x)n

r−1

}
+D

k+1∑
r=1

a
(k)
r−1(x)n

r−1

= x

{
k+2∑
R=1

a
(k)
R−2(x)n

R−1 +

k+2∑
r=1

ka
(k)
r−1(x)n

r−1

}
+D

k+2∑
r=1

a
(k)
r−1(x)n

r−1

=

k+2∑
r=1

{
xa

(k)
r−2(x) + xka

(k)
r−1(x) +Da

(k)
r−1(x)

}
nr−1

and so

xa
(k+1)
r−1 (x) = xa

(k)
r−2(x) + xka

(k)
r−1(x) +Da

(k)
r−1(x).

Remark 2.1. If r = 1 in Lemma 2.5 then by (2.6) we obtain

xa
(k+1)
0 (x) = xa

(k)
−1(x) + xka

(k)
0 (x) +Da

(k)
0 (x)

= xka
(k)
0 (x) +Da

(k)
0 (x),

which confirms Theorem 1.2.

3 Conclusion

Note [6] for more information on power sums. We start this article from the geometric sum

n∑
r=0

xr =
1− xn+1

1− x

8
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and consider the summation
n∑

r=1

(r + k − 1)!

(r − 1)!
xr+k to express it as simple polynomials. Moreover as

we can see, Lemma 2.1 enables us to calculate the complex summation easily.
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