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Abstract

The intended purpose of this paper is to associate with a given function y = f(x) whose derivative

admits one to three turning points an infinite number of other functions, called conditional

functions (Cdf ),which are related to f in a way similar to that of a bijective function and its

inverse. However, the new application called conditional function is defined for both bijective

and non bijective functions. The composite map of f and its conditional function is called a

transformation , and some applications of these transformations presented in the paper include

amongst others, the determination of analytic solutions for a number of algebraic equations

describing the dynamics of natural phenomena.
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1 Introduction

Injective or one-to-one functions are those such that preimages of elements of the range are unique.
In other words, every element in the range is assigned to exactly one element in the domain.
However, a function is surjective or onto if the range is equal to the codomain. Both injective
and surjective function is a bijective function [1]. Among these functions those whose derivative
admits one to three turning points are numerous. Some of them are elementary functions such
that logarithm, exponential, polynomials...[2]. The elementary functions of a real variable possess
properties that could greatly simplify the mathematical analysis needed to be done on them.
Also, many problems in mathematics deal with elementary functions or even if the functions are
non-elementary, very often the studying of these non-elementary functions leads to elementary
functions. It is also the case for special functions which are numerous with applications in many
branches of sciences. One of the special functions is the series w(x) converging for |x| < 1/e
where w(x) is defined to be a function satisfying W (x)eW (x) = x. In literature, the solutions
of equation xex = y are expressed by the function Omega (W ) which has two branches [3]. It
can also be expressed in terms of tree function T satisfying T (x)e−T (x) = x [4]. In addition,
The glog function bears a strong resemblance to W , possessing similar properties and useful
common applications as enumeration of trees, enzyme kinetics, linear delay equations, combustion,
population growth, spread of disease, and the analysis of algorithms [3][5][6][7]. Several other
cases involve generalized Gaussian noise, solar winds, black holes, general relativity, quantum
chromodynamics, fuel consumption, Stirlings formula for n!, cardiorespiratory control, water-wave
heights in oceanography, enumeration of trees in combinatorics, and statistical mechanics [8][9][10].
However, the field application of these elementary and special functions is limited. For example
the Omega (W ), Tree, glog and many other related, functions can not be used to describe the
dynamics of certain natural phenomena such that solution of the equation governing the dilaton
field, from which is derived the metric of the R = T or lineal two-body gravity problem in 1 + 1
dimensions (one spatial dimension and one time dimension)[12]. Another example among others is
the equation (ax + b)pcx+d + (gx + h) = 0[(a, c) ∈ ℜ2∗, (b, d, g, h) ∈ ℜ4, p > 0] whose these special
functions can not be used to finding differents classes of analytic solutions except for the case g = 0.
To overcome this problem, in this study, a given function y = f(x) whose derivative admits one
to three turning points was associated to an infinite number of other functions, called conditional
functions (Cdf ),which are related to f in a way similar to that of a bijective function and its inverse.
The new application has many advantages in the fact that all the above previous functions could be
expressed in terms of conditional function. It becomes a unified model to define and characterize
all the functions whose derivative admits zero to three turning points.

Definition 1.1. Let y = g(x), and y = f(x), be a given functions defined in their domain.
Conditional function h = g(x) is an infinite number of function associated to y = f(x) whose
derivative does not have a minimum or maximum or admits one to many turning points, which are
related to f in a way similar to that of a bijective function and its inverse. It is also defined for
both bijective and non bijective functions.

Notation 1.1. The conditional function is denoted g(x) = Cdf (x) and read ”Conditional function
of x knowing f(x)”.The composite map of f and its conditional function [f ◦ Cdf (x)) = k(x)]
is called a transformation. k(x), an elementary function, is the characteristic of transformation
depending on the properties of f .

Properties 1.2. P1) Conditional function (Cdf ) are expressed only from those of a predefined
function f . It may be bijective, one-to-one or onto function; P2) If f is bijective, the conditional
function g(x) = Cdf (x) is its inverse(2.1); P3) A transformation associates an infinite number of
functions and depends on the domain, the number of turning points of f .
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The conditional function is applied for a set of algebraic transformations with a potential interest in
the determination of analytic solutions for a number of algebraic equations describing the dynamics
of natural phenomena. Its properties are discussed in this paper.

2 Transformation 0 of Bijective Function

Theorem 2.1. Let f : A −→ B be a given function. If f is bijective and g : B −→ A is the
inverse of f , then g is also a conditional function where g = Cdf . Analytic solution of y = f(x) is
x = Cdf (y). The composite map of f and its conditional function is a transformation defined by:

f ◦ Cdf (y) = y and Cdf ◦ f(x) = x (2.1)

Proof Let f : A −→ B be bijective. We will define a function g : B −→ A as follows. Let y ∈ B.
Since f is surjective, there exists x ∈ A such that f(x) = y. Let g(y) = x. Since f is injective, this
is a unique, so g is well-defined. Now we must check that g is the inverse of f . First we will show
that g ◦ f = 1A. Let x ∈ A. Let y = f(x). Then, by definition,

g(y) = x and g ◦ f(x) = g(f(x)) = g(y) = x (2.2)

Now we will show that f ◦ g = 1B . Let y ∈ B. Let x = g(y). Then, by definition,

f(x) = y and f ◦ g(y) = f(g(y)) = f(x) = y (2.3)

In addition, g = Cdf by definition. From (2.2) and (2.3), analytic solution of y = f(x) is x = Cdf (y)
and a transformation is f ◦ Cdf (y) = y or Cdf ◦ f(x) = x

3 Applications 1

Let f : ℜ 7−→ ℜ such that xex = y. This function is the product of two elementary functions,
each defined on the real numbers, and each being one-to-one; but the product is not injective.
Consequently, if we restrict the domain to f : ℜ∗+ 7−→ ℜ∗+, then xex will possess an inverse, which
is a function, and it’s this function that is now known as the (principal) Lambert W function [3].
It can be transformed in different ways in this domain by x + lnx = lny or et + t = lny with
x = ln(t) or tt = ey with x = et · ·· . If we apply (2.2) Cdf (e

x + x) = x, Cdf (x + lnx) = lnx...
or eCdf (x) + Cdf (x) = x, Cdf (x) + ln[Cdf (x)] = x... The unique solution expressed by an infinite
number of conditonal function such that in the case of [11] is

x = Cdp(y) = eCdf (lny) = Cdh(lny) = ln[Cdq(e
y)] · ·· (3.1)

where W0(y) = Cdp(y) is the first branch of Omega function; p(x) = xex; f(x) = ex + x; h(x) =
x+ lnx and q(x) = xx are the associated functions.

4 Transformation 1 of Non Bijective Function

Theorem 4.1. Let f : ℜ −→ [f(φ) + ∞) be a given non bijective function whose derivative f
′

admits one turning point φ with a concave upwards curve. f is associated to an infinite number
of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The
composite map of f and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the
main or first transformation defined by

f ◦ [(Cd)1]f (x) = x2 + f(φ) (4.1)
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Two consecutive conditional functions are closed by

[Cdn]f [x] = [Cdn+1]f [
√

ln(x2 + 1)] and [Cdm]f [x] = [Cdm+1]f [
√

ex2 − 1] (4.2)

From (4.1) and (4.2), secondary transformations are

 f ◦ [(Cd)n]f (x) = [e[e
..
(ex

2
−1)−.−.−1] − 1] + f(φ)

f ◦ [(Cd)m]f (x) = ln[ln(· · · · · · (ln(x2 + 1)) + · · · · · ·+ 1) + 1] + f(φ)
(4.3)

The two analytic solutions of y = f(x) are expressed by

x1.2 = [Cdm]f (±

√
e(e.

..
(ey−f(φ)−1)−.−.−.−1) − 1)

= [Cdn]f (±
√

ln[(ln[......(ln[y − f(φ) + 1] + 1) + ......+ 1] + 1) + 1])

= [Cd1]f (±
√

y − f(φ))

Proof Let f : ℜ −→ [f(φ) + ∞[ be a given function. f is bijective if it is both injective and

surjective. f is injective if ∀(x1, x2) ∈ ℜ2, f(x1) = f(x2) ⇒ x1 = x2. In this case f
′
admits one

turning point φ, then ∃(x1, x2) ∈ ℜ2(x1 < φ < x2) such that f(x1) = f(x2) ⇒ x1 ̸= x2. So f is a
non injective function and then non bijective. By definition, f is related to a conditional function
in a way that

f ◦ Cdf (x) = U(x) (4.4)

In that condition, f has two branches f1 : (−∞ φ] −→ [f(φ) + ∞) and f2 : [φ + ∞) −→
[f(φ) + ∞) whose are both bijective because ∀[x1 ∈ (−∞ φ] or x2 ∈ [φ + ∞)], ∃!(y1, y2) ∈
([f(φ) +∞[)2 such that y1 = f1(x1) or y2 = f2(x2), respectively . In addition U (an elementary
function) will have the same domain with f and also one turning point. Assuming that U(x) =
x2 + b , if we make a changing of variable U(x) = x2 + b = t, this leads to x = ±

√
t− b and

f ◦ Cdf [±
√
t− b] = t

The two reciprocal branches of f1 and f2 are Cdf1 : [f(φ) + ∞) −→ (−∞ φ] and Cdf2 :
[f(φ) +∞) −→ [φ +∞). For these conditions, b = f(φ) and (4.4) becomes

f ◦ Cdf [±
√

t− f(φ)] = t (4.5)

According to (2.1) and by the way that f has two branches f1 and f2, Cdf [±
√

t− f(φ)] of (4.5)
are one of the two branches of the reciprocal function f1 and f2.

In addition, from (4.5), V1(x) = t− f(φ) > 0, it exists an infinite number of in-equations satisfying
t > f(φ). If we take the exponential of both sides, the in-equation becomes V2(x) = et−f(φ)−1 > 0.
Repeating m time the principle leads to

V (x)m = e(e
..
.(e

t−f(φ)−1)−.−.−.−1) − 1 > 0 (4.6)

By definition,

f◦[Cd1]f [±
√

t− f(φ)] = f◦[Cd2]f [±
√

et−f(φ) − 1] = ...f◦[Cdm]f [±

√
e(e.

..
(et−f(φ)−1)−.−.−.−1) − 1] = t
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Because [Cdm]f [±
√

V (x)m] are the inverse of the two branches of f

[Cd1]f [±
√

t− f(φ)] = [Cd2]f [±
√

et−f(φ) − 1] = ...[Cdm]f [±

√
e(e.

..
(et−f(φ)−1)−.−.−.−1) − 1]

if we substitute t− f(φ) by x2,the previous equation satisfying (4.2) becomes

[Cd1]f [x] = [Cd2]f [
√

ex2 − 1] = ...[Cdm]f [

√
e(e.

..
(ex

2−1)−.−.−.−1) − 1]

In other way, from (4.5), V1(x) = t− f(φ) > 0. If we take logarithm of the both sides, in-equation
becomes V2(x) = ln[t− f(φ) + 1] > 0. Repeating n time the principle leads to

V (x)n = ln[(ln[......(ln[x− f(φ) + 1] + 1) + ......+ 1] + 1) + 1] > 0 (4.7)

By definition,

f ◦ [Cd1]f [±
√

t− f(φ)] = ...f ◦ [Cdn]f [±
√

ln[(ln[...(ln[x− f(φ) + 1] + 1) + ...+ 1] + 1) + 1]] = t

Because [Cdn]f [±
√

V (x)n] are the inverse of the two branches of f

[Cd1]f [±
√

t− f(φ)] = ...[Cdn]f [±
√

ln[(ln[...(ln[x− f(φ) + 1] + 1) + ...+ 1] + 1) + 1]]

if we substitute t− f(φ) by x2,the previous equation satisfying (4.4) becomes

[Cd1]f [x] = [Cd2]f [
√

ln(x2 + 1] = ...[Cdn]f [
√

ln[(ln[...(ln[x2 + 1] + 1) + ...+ 1] + 1) + 1]]

5 Transformation 2 of Non Bijective Function

Theorem 5.1. Let f : ℜ −→ [f(φ1) φ2[ be a given non bijective function whose derivative f
′

admits one turning point φ1 with a concave upwards curve. f is associated to an infinite number
of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The
composite map of f and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the
main or first transformation defined by

f ◦ [Cd1]f (x) = φ2 − [φ2 − f(φ1)]e
−x2

(5.1)

Two consecutive conditional functions also satisfied relation (4.2). From (5.1) and (4.2), secondary
transformations are

 f ◦ [(Cd)n]f (x) = φ2 − [φ2 − f(φ1)]e
−[e[e

..
(ex

2
−1)−.−.−1]−1]

f ◦ [(Cd)m]f (x) = φ2 − [φ2 − f(φ1)]e
−ln[ln(······(ln(x2+1))+······+1)+1]

(5.2)

The two analytic solutions of y = f(x) are

x1.2 = [Cdm]f (±

√√√√√
e(e.

..
(e

ln[
φ2 − f(φ1)

φ2 − y
]

−1)−.−.−.−1) − 1)

= [Cdn]f (±

√
ln[(ln[......(ln[

φ2 − f(φ1)

φ2 − y
] + 1) + ......+ 1] + 1) + 1])

= [Cd1]f (±

√
ln[

φ2 − f(φ1)

φ2 − y
])
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Proof Let f : ℜ −→ [f(φ1) φ2[ be a given function. f is bijective if it is both injective and

surjective. f is injective if ∀(x1, x2) ∈ ℜ2, f(x1) = f(x2) ⇒ x1 = x2. For this study, f
′
admits one

turning point φ1, then ∃(x1, x2) ∈ ℜ2(x1 < φ1 < x2) such that f(x1) = f(x2) ⇒ x1 ̸= x2. So f is a
non injective function and then non bijective. By definition, f is related to a conditional function
in a way that.

f ◦ Cdf (x) = U(x) (5.3)

Then, f has two branches f1 : (−∞ φ1] −→ [f(φ1) φ2[ and f2 : [φ1 + ∞) −→ [f(φ1) φ2[
whose are both bijective because ∀x1 ∈ (−∞ φ1] or x2 ∈ [φ1 +∞)), ∃!(y1, y2) ∈ ([f(φ1) φ2[)

2

such that y1 = f1(x1) or y2 = f2(x2), respectively . This imply that from (5.3), x = U−1(x) and
equation becomes

f ◦ Cdf [U
−1(x)] = x (5.4)

According to (5.4), we assume that the inverse of f1 and f2 are such that U−1(x) = ±
√

−[ln(φ2 − x) + k]
then

f ◦ Cdf [±
√

−[ln(φ2 − x) + k]] = x and Cdf [±
√

−[ln(φ2 − f(x)) + k]] = x (5.5)

For u(x) = ±
√

−[ln(φ2 − x) + k], to satisfy the relation f(φ1) ≤ x < φ2 of (5.5), we must have

φ2 − x > 0 and [ln(φ2 − x) + k] ≤ 0

Then, x < φ2 (true for hypothesis). In addition, the problem consist in determining k from (5.5)
to obtain x ≥ f(φ1). Thus, [ln(φ2 − x) + k] ≤ 0 leads to,

x ≥ −e−k + φ2 = f(φ1) with k = −ln(φ2 − f(φ1))

By substituting k to (5.5) and taking
φ2 − x

φ2 − f(φ1)
= e−t2 , we get

f ◦ [Cd1]f [±
√

−ln(
φ2 − x

φ2 − f(φ1)
)] = x and f ◦ [Cd1]f (t) = φ2 − [φ2 − f(φ1)]e

−t2 (5.6)

which is the main transformation.

In addition, from (5.6), V (x)1 = ln[
φ2 − f(φ1)

φ2 − x
] > 0, it exists an infinite number of in-equation

satisfying f(φ1) ≤ x < φ2. If we take the exponential of both sides, the in-equation becomes

V2(x) = e
ln[

φ2 − f(φ1)

φ2 − x
]

− 1 > 0. Repeating m time the principle leads to

V (x)m = e(e
..
.(e

ln[
φ2 − f(φ1)

φ2 − x
]

−1)−.−.−.−1) − 1 > 0 (5.7)

By definition,

f ◦ [Cd1]f [±

√
ln[

φ2 − f(φ1)

φ2 − x
]] = ...f ◦ [Cdm]f [±

√√√√√
e(e.

..
(e

ln[
φ2 − f(φ1)

φ2 − x
]

−1)−.−.−.−1) − 1] = t
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Because [Cdm]f [±
√

V (x)m] are the inverse of the two branches of f

[Cd1]f [±

√
ln[

φ2 − f(φ1)

φ2 − x
]] = [Cd2]f [±

√
e
ln[

φ2 − f(φ1)

φ2 − x
]

− 1] = ...

if we substitute ln[
φ2 − f(φ1)

φ2 − x
] by t2,the previous equation becomes

[Cd1]f [t] = [Cd2]f [
√

et2 − 1] = ...[Cdm]f [

√
e(e.

..
(et

2−1)−.−.−.−1) − 1]

In other way, from (4.5), V1(x) = ln[
φ2 − f(φ1)

φ2 − t
] > 0. If we take logarithm of the both sides,

in-equation becomes V2(x) = ln[ln[
φ2 − f(φ1)

φ2 − t
] + 1] > 0. Repeating n time the principle leads to

V (x)n = ln[(ln[...(ln[ln[
φ2 − f(φ1)

φ2 − t
] + 1] + 1) + ...+ 1] + 1) + 1] > 0 (5.8)

By definition,

f◦[Cd1]f [±

√
ln[

φ2 − f(φ1)

φ2 − t
]] = ...f◦[Cdn]f [±

√
ln[(ln[...(ln[ln[

φ2 − f(φ1)

φ2 − t
] + 1] + 1) + ...+ 1] + 1) + 1]] = t

Because [Cdn]f [±
√

V (x)n] are the inverse of the two branches of f

[Cd1]f [±

√
ln[

φ2 − f(φ1)

φ2 − t
]] = ...[Cdn]f [±

√
ln[(ln[...(ln[ln[

φ2 − f(φ1)

φ2 − t
] + 1] + 1) + ...+ 1] + 1) + 1]]

if we substitute ln[
φ2 − f(φ1)

φ2 − y
] by x2,the previous equation becomes

[Cd1]f [x] = [Cd2]f [
√

ln(x2 + 1] = ...[Cdn]f [
√

ln[(ln[......(ln[x2 + 1] + 1) + ......+ 1] + 1) + 1]]

6 Transformation 3 of Non Bijective Function

Theorem 6.1. Let f : ℜ −→]φ1 f(φ2)] be a given non bijective function whose derivative f
′

admits one turning point φ2 with a concave downwards curve. f is associated to an infinite number
of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The
composite map of f and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the
main or first transformation expressed by

f ◦ [(Cd)1]f (x) = φ1 + [f(φ2)− φ1]e
−x2

(6.1)

Two consecutive conditional functions also satisfied relation (4.2). The secondary transformations
deduced from (6.1) and (4.2) are

 f ◦ [(Cd)n]f (x) = φ1 + [f(φ2)− φ1]e
−[e[e

..
(ex

2
−1)−.−.−1]−1]

f ◦ [(Cd)m]f (x) = φ1 + [f(φ2)− φ1]e
−ln[ln(······(ln(x2+1))+······+1)+1]

(6.2)

7
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The two analytic solutions of y = f(x) are

x1.2 = [Cdm]f (±

√√√√√
e(e.

..
(e

ln[
f(φ2)− φ1

y − φ1
]

−1)−.−.−.−1) − 1)

= [Cdn]f (±

√
ln[(ln[......(ln[

f(φ2)− φ1

y − φ1
] + 1) + ......+ 1] + 1) + 1])

= [Cd1]f (±

√
ln[

f(φ2)− φ1

y − φ1
])

Proof Let f : ℜ −→]φ1 f(φ2)] be a given function. f
′
admits one turning point φ2,with a concave

downwards curve, and is a non bijective function as proved for the previous function. By definition,
f is related to a conditional function in a way that

f ◦ Cdf (x) = U(x) (6.3)

In that condition, U (an elementary function) will have the same domain with f and also one
turning point. So, f has also two branches f1 and f2 whose are both bijective. This imply that
from (6.3), x = U−1(x) and equation becomes

f ◦ Cdf [U
−1(x)] = x (6.4)

According to (6.4), we assume that the inverse of f1 and f2 are such that U−1(x) = ±
√

−[ln(x− φ1) + k]
then

f ◦ [Cd1]f [±
√

−[ln(x− φ1) + k]] = x and [Cd1]f [±
√

−[ln(f(x)− φ1) + k]] = x (6.5)

Let U−1(x) = ±
√

−[ln(x− φ1) + k], to satisfy the relation φ1 < x ≤ f(φ2) of (6.5), we must have

x− φ1 > 0 and [ln(x− φ1) + k] ≤ 0

Then, x > φ1 (true for hypothesis). In addition, the problem consist in determining k from (6.5)
to obtain x ≤ f(φ2). Thus, ln(x− φ1) + k ≤ 0 leads to,

x ≤ e−k + φ1 = f(φ2) with k = −ln(f(φ2)− φ1)

By substituting k to (6.5) and taking
f(φ2)− φ1

x− φ1
= et

2

, we get

f ◦ [Cd1]f [±

√
ln[

f(φ2)− φ1

x− φ1
]] = x and f ◦ [Cd1]f (t) = φ1 + [f(φ2)− φ1]e

−t2 (6.6)

which is the main transformation. Many other infinite functions are related to f and are also proved
as in the case of transformation 2.

7 Transformation 4 of Non Bijective Function

Theorem 7.1. Let f : ℜ −→ (−∞ f(φ)] be a given non bijective function whose derivative f
′

admits one turning point φ with a concave downwards curve. f is associated to an infinite number
of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The
composite map of f and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the
main transformation expressed by

f ◦ [(Cd)1]f (x) = f(φ)− x2 (7.1)

8
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Two consecutive conditional functions also satisfied relation (4.2). The secondary transformations
deduced from (7.1) and (4.2) are

 f ◦ [(Cd)n]f (x) = f(φ) + 1− e[e
..
(et

2
−1)−.−.−1]

f ◦ [(Cd)m]f (x) = f(φ)− ln[ln(· · · · · · (ln(x2 + 1)) + · · · · · ·+ 1) + 1]
(7.2)

The two analytic solutions of y = f(x) are

x1.2 = [Cdm]f (±

√
e(e.

..
(ef(φ)−y−1)−.−.−.−1) − 1)

= [Cdn]f (±
√

ln[(ln[......(ln[f(φ) + 1− y] + 1) + ......+ 1] + 1) + 1])

= [Cd1]f (±
√

f(φ)− y)

Proof Let f : ℜ −→ (−∞ f(φ)] be a given function. f admits one turning point φ, with a
concave downwards curve, then ∃(x1, x2) ∈ ℜ2(x1 < φ < x2) such that f(x1) = f(x2) ⇒ x1 ̸= x2.
So f is a non bijective function. Since, f has two branches f1 and f2 whose are both bijective
because ∀[x1 ∈ (−∞ φ] or x2 ∈ [φ + ∞)], ∃!(y1, y2) ∈ ([f(φ) + ∞[)2 such that y1 = f1(x1)
or y2 = f2(x2), respectively . In addition U and f have the same domain and one turning point
each. Assuming that U(x) = −x2 + b is a polynomial function, if we make a changing of variable
U(x) = −x2 + b = t, this leads to x = ±

√
b− t and f ◦ Cdf [±

√
b− t] = t

The two reciprocal branches of f1 and f2 are Cdf1 : (−∞ f(φ)] −→ (−∞ φ] and Cdf2 :
(−∞ f(φ] −→ [φ +∞). For these conditions, b = f(φ) and

f ◦ Cdf [±
√

f(φ)− t] = t (7.3)

According to (2.1) and by the way that f has two branches f1 and f2, Cdf [±
√

f(φ)− t] of (7.3)
are one of the two branches of the reciprocal function of f1 and f2.

In addition, from (7.3), V1(x) = f(φ)− t > 0, it exists an infinite number of in-equation satisfying
t < f(φ). If we take the exponential or the logarithm of both sides, the in-equation becomes
V2(x) = ef(φ)−t − 1 > 0 or V2(x) = ln(f(φ)− t+ 1) > 0, respectively. Repeating m or n time the
principle leads to Vm(x) and Vn(x) as in the case of transformation 1 and finally to

[Cd1]f [x] = [Cd2]f [
√

ln(x2 + 1] = ...[Cdn]f [
√

ln[(ln[...(ln[x2 + 1] + 1) + ...+ 1] + 1) + 1]]

with [Cdm]f [±
√

V (x)m] and [Cdn]f [±
√

V (x)n] expressed in term of inverses of the two branches
of f

8 Applications 2

Example 8.1. Given (ax+ b)p(cx+d) + gx = y, the changing of variable leads to

tet + nt = Y with x =
t

clnp
− b

a
(8.1)

The determinant (n) is

n =
gp(bc/a)−d

a
with Y = [(y +

bg

a
)
clnp

a
]p(bc/a)−d (8.2)

9
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Contrary to the conditional function, analytic solutions of the reduced form tet + nt = Y and its
conjugate tet−nt = Y are partially expressed by the Omega function when n = 0. The generalisation
belongs to the different classes of functions deriving from the conditional function.{

fn(t) = tet + nt, for n = 0, n > 1/e2, n = 1/e2, 0 < n < 1/e2and n < 0
fn(t) = tet − nt, for n = 0, n < −1/e2, n = −1/e2,−1/e2 < n < 0, and n > 0

(8.3)

(i) If n = 0, and 0 < Y < +∞, then f0(t) = f0(t). From (2.1), Cdf01 (Y )e
Cdf01

(Y )
= Y where

Cdf01 = W01 is the first branch of Omega function and t = Cdf01 (Y ). Final solution is
expressed

x =
Cdf01 ([

(yc)lnp

a
]p

(
bc

a
−d)

)

clnp
− b

a
(8.4)

(ii) If n = 0, and (
−1

e
≤ Y < 0 = φ2 and x < 0), the derivative (t + 1)et cancel at t = −1. By

(5.2), Cdf02 (Y )e
Cdf02

(Y )
= Y where Cdf02 = W02 is the second branch of Omega function.

Then,

t1,2 = W02(Y )

= Cdh02
(±

√
−[ln(−Y ) + 1])

= −Cdk02
(±

√
−[ln(−Y ) + 1])

= −e
Cdg02

(±
√

−[ln(−Y )+1])

with h(t) = tet; k(t) = t− lnt, g(t) = et − t. We noticed that W02(0) is not defined in ℜ as
described by [3]

(iii) If n < 0, and −2n+n[e−Cdg(ln[−ne]) + eCdg(ln[−ne])] ≤ Y < +∞, the derivative (t+1)et = n

cancel at t = e
Cdg01

(ln[−ne]) − 1. Using (4.1),

Cdfn(Y )(eCdfn (Y ) + n) = Y 2 − 2n+ n[e−Cdg(ln[−ne]) + eCdg(ln[−ne])] (8.5)

(with t = Cdfn(Y )). The two final solutions are

x =
Cdfn(±

√
[(y +

bg

a
)
clnp

a
]p

(
bc

a
−d)

+ 2n− n[e−Cdg(ln[−ne]) + eCdg(ln[−ne])])

clnp
− b

a
(8.6)

(iv) If n > 1/e2, and Y ∈ ℜ, the derivative (t + 1)et = n is strictly positive in a set ℜ. From
(2.1), Cdfn(Y )(eCdfn (Y ) + n) = Y (with t = Cdfn(Y )). The final solution is expressed

x =
Cdfn([(y +

bg

a
)
clnp

a
]p

(
bc

a
−d)

)

clnp
− b

a
(8.7)

(v) If n = 1/e2, and Y ∈ ℜ, the derivative (t + 1)et = n cancel at t = 1 is strictly positive in a
set ℜ and there is an inflexion point at x = −2; then (2.1) is applied.

(vi) If 0 < n < 1/e2, and Y ∈ ℜ, the derivative (t+ 1)et = n cancel at

t1,2 = φ1,2 = −eCdgn (±
√

−ln[−ne2]) − 1.

10
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By applying (9.19), there are three sub classes which should be defined in the next section.

Cdfn(Y )(eCdfn (Y ) + n) =


fn(φ1)− eY

eY + fn(φ2)

Y 3 +
3

2
[f(φ2)− f(φ1)]

1/3Y +
f(φ2) + f(φ1)

2

(8.8)

Remark 8.2. Given y + ln(y) = z = x + iy, the unique solution is y = Cdf (x + iy) [(x, y) ∈ ℜ2].
The [4] function was developed and denoted ω. It is defined in terms of the Lambert W function as:
ω(z) = W[(Im(z)−π)/2π](e

z). Wright showed that y = ω(z) is the unique solution, when z ̸= x± iπ
for x ≤ −1, of the equation y + ln(y) = z. Contrary to Cdf , Wright function is not continuous in
the domain. In addition, W0 ̸= 0 is contradictory to the study of [3]. In contrast, W0(x) approaches
0 when x approaches 0 according to the Lagrange inversion theorem [13]. xex = 0 at that point
leads to the solution

x = 0 (ex ̸= 0) (8.9)

instead of x = w0(0) = 0

Example 8.3. Given p(ax
2+bx+c) + (dx2 + fx+ g) = 0 defined in ℜ, with [(a, d) ̸= (0, 0)].

(i) a > 0 and p > 1 or a < 0 and 0 < p < 1: Two reduced forms are

et
2

+ n(t+m)2 = Y and et
2

+ n(m− t)2 = Y (8.10)

with

Y =
f2 − 4dg

4d
[p]

(b2 − 4ac)

4a and n =
d

aln(p)
[p]

(b2 − 4ac)

4a (first determinant) (8.11)

For each of the reduced form, the second determinant is

m = (f − bd

a
)

√
aln(p)

2d
and m = (

bd

a
− f)

√
aln(p)

2d
(8.12)

respectively and

x =
±t√
aln(p)

− b

2a
(8.13)

The two derivatives of reduced forms are 2[t(et
2

+n)+nm] and 2[t(et
2

+n)−nm] respectively.

They have a same second derivative Y
′′

= 2[(1 + 2t2)et
2

] + n. In these conditions when

n < −1, Y
′′
has two turning points

φ1.2 = ±

√
e
Cdf (ln[−

ne1/2

2
])
− 1/2 (8.14)

Particularly when n = −1, Y
′′

has one turning point φ1 = 0 and when −1 < n < 0 then
Y

′′
> 0. In addition when n > 0, Y

′′
> 0.These initial conditions show that generalisation

belongs to different classes of functions

Case 8.1. n < 0 and m = 0, et
2

+ n(t)2 = Y and referring to (4.3)

t = ±

√
Cdg(±

√
−Y

n
− ln(− 1

n
)− 1)− ln(− 1

n
) (8.15)

11
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Case 8.2. n > 0 and m = 0, by applying (2.1) to et
2

+ n(t)2 = Y ,

t = ±
√

Cdf [
Y

n
+ ln(

1

n
)]− ln(

1

n
) (8.16)

Case 8.3. n > 0 and m ̸= 0 and et
2

+n(t+m)2 = Y , the derivative of Y
′
is 2[(1+2t2)et

2

]+

n > 0. Then, Y
′
is bijective and Cdgn [t(e

t2 + n)] = Cdgn [−nm] leading to t = Cdgn [−nm]
with φ = Cdgn [−nm] which is the turning point of y. Referring to (4.3)

t = Cdfm.n [±
√

Y − e[Cdgn [−m.n]]2 − n(Cdgn [−m.n] +m)2] (8.17)

where fm.n = et
2

+ n(t+m)2 and gn = t(et
2

+ n)

Case 8.4. n > 0 and m ̸= 0 and et
2

+n(m− t)2 = Y , the derivative of y
′
is 2[(1+2t2)et

2

]+

n > 0. Then, Y
′
is bijective and Cdgn [t(e

t2 + n)] = Cdgn [nm] leading to t = Cdgn [nm] with
φ = Cdgn [nm] which is the turning point of y. By (4.3),

t = Cdhm.n [±
√

Y − e[Cdgn [m.n]]2 − n(m− Cdgn [m.n])2] (8.18)

where hm.n = et
2

+ n(m− t)2 and gn = t(et
2

+ n)

Case 8.5. n < −1 and m ̸= 0 and et
2

+ n(t+m)2 = Y , derivatives of Y are

Y
′
= 2[t(et

2

+ n) + nm] and Y
′′
= 2[(1 + 2t2)et

2

] + n (8.19)

Y
′′
has two turning points

φ1.2 = ±

√
e
Cdf (ln[−

ne1/2

2
])
− 1/2, ( with n ≤ −1) (8.20)

∗ If −∞ < −nm < f
′
mn(φ1),Y

′
has one turning point φ1 = Cdf ′

nm
[ln(f

′
mn(φ1)) + nm)] and

(4.3) is applied to Y

t = Cdfm.n [±
√

Y − e
[Cd

f
′
nm

[ln(f
′
mn(φ1))−nm)]]2

− n(Cdf ′
nm

[ln(f ′
mn(φ1))− nm)] +m)2]

∗ If f
′
mn(φ2) < −nm < +∞, Y

′
has one turning point φ2 = Cdf ′

nm
[−nm − ln(f

′
mn(φ2)))]

and referring to (4.3),

t = Cdfm.n [±
√

Y − e
[Cd

f
′
nm

[−nm−ln(f
′
mn(φ2)))]]2 − n(Cdf ′

nm
[−nm− ln(f ′

mn(φ2)))] +m)2]

∗ If f
′
mn(φ1) < −nm < f

′
mn(φ2), Y

′
has three turning points

φk = Cdf ′
nm

[V cos[
1

3
arcos([

y

2
− f

′
nm(φ1) + f

′
nm(φ2)

4
]

√
8

[f ′
nm(φ1)− f ′

nm(φ2)]
) +

2kπ

3
]

where

V = 2

√
1

2
[f ′

nm(φ2)− f ′
nm(φ1)]1/3andk ∈ {0, 1, 2}

Transformation 6 is applied and there are three subclasses of solution.

∗ If −nm = f
′
mn(φ2) or −mn = f

′
mn(φ1), Y

′
has two turning points. (9.19) is applied and

there are three subclasses of solution.

12
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Case 8.6. n < −1 and m ̸= 0 and et
2

+ n(m − t)2 = Y , the derivative of Y is Y
′
=

2[t(et
2

+ n)− nm] and Y
′′
= 2[(1 + 2t2)et

2

] + n. Y
′′
has also two turning points

φ1.2 = ±

√
e
Cdf (ln[−

ne1/2

2
])
− 1/2( with n ≤ −1) (8.21)

∗ If −∞ < nm < h
′
mn(φ1),Y

′
has one turning point φ1 = Cdh′

nm
[ln(h

′
mn(φ1)) − nm)] and

(4.3) is applied to Y

∗ If h
′
mn(φ2) < nm < +∞, Y

′
has one turning point φ2 = Cdh′

nm
[nm− ln(h

′
mn(φ2)))] and

(4.3) is applied to Y .

∗ If h
′
mn(φ1) < nm < h

′
mn(φ2), Y

′
has three turning points

φk = Cdh′
nm

[Ucos[
1

3
arcos([

y

2
− h

′
nm(φ1) + f(φ2)

4
]

√
8

[f ′
nm(φ1)− h′

nm(φ2)]
) +

2kπ

3
] (8.22)

where

U = 2

√
1

2
[h′

nm(φ2)− h′
nm(φ1)]1/3andk ∈ {0, 1, 2}

Transformation 6 is applied and Y has three subclasses of solutions.

∗ If nm = h
′
mn(φ2) or nm = h

′
mn(φ1), Y

′
has two turning points, by (9.3), Y has three

subclasses of solutions.

Case 8.7. n = −1 and m ̸= 0 then

et
2

− (t−m)2 = Y or et
2

− (m− t)2 = Y (8.23)

for each function Y
′′
= 2[(1+2t2)et

2

]−1. Y
′′
has one turning point φ1 = 0. (9.3) is applied.

Case 8.8. −1 < n < 0 and m ̸= 0 and

et
2

+ n(t−m)2 = Y or et
2

− (m− t)2 = Y (8.24)

for each function Y
′′
= 2[(1 + 2t2)et

2

] + n. Y
′′
> 0 (5.2) is applied.

(ii) a < 0 and p > 1 or a > 0 and 0 < p < 1, two reduced forms are

e−t2 − n(t+m)2 = Y and e−t2 − n(m− t)2 = Y (8.25)

with

Y =
f2 − 4dg

4d
[p]

(b2 − 4ac)

4a and n =
d

aln(p)
[p]

(b2 − 4ac)

4a (fist determinant) (8.26)

For each of the reduced form, the second determinant is

m = (f − bd

a
)

√
−aln(p)

2d
and m = (

bd

a
− f)

√
−aln(p)

2d
(8.27)

respectively and

x =
±t√

−aln(p)
− b

2a
(8.28)
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The two derivatives of reduced forms are −2[t(e−t2 + n) + nm] and −2[t(e−t2 + n) − nm]

respectively. They have a same second derivative Y
′′

= 2[(2t2 − 1)e−t2 − n] . In these

conditions when −1 < n < 0, Y
′′
has two turning points

φ1,2 = ±

√
−e

Cd[ln(
−n

2
e1/2)]

+ 1/2 (8.29)

Particularly when n = −1, Y
′′
has one turning point φ1 = 0 and when n < −1 then Y

′′
> 0.

In addition when n > 0, Y
′′
> 0.These initial conditions show that generalisation belongs to

different classes of functions

Referring to (8.10), (8.25) has also eight cases:

Case 8.9. n > 0 and m = 0;

Case 8.10. n < 0 and m = 0;

Case 8.11. n > 0 and m ̸= 0 and e−t2 − n(t+m)2 = Y ;

Case 8.12. n > 0 and m ̸= 0 and e−t2 − n(m− t)2 = Y ;

Case 8.13. −1 < n < 0 and m ̸= 0 and e−t2 − n(t+m)2 = Y ;

∗ If −∞ < −nm < f
′
mn(φ1);

∗ If f
′
mn(φ2) < −nm < +∞;

∗ If f
′
mn(φ1) < −nm < f

′
mn(φ2);

∗ If −nm = f
′
mn(φ2) or −mn = f

′
mn(φ1), Y

′
has two turning points. Transformation 5 of

next paragraph is applied and Y has three subclasses of solution.

Case 8.14. −1 < n < 0 and m ̸= 0 and e−t2 + n(m− t)2 = Y ;

∗ If nm ∈]−∞ h
′
mn(φ1)[;

∗ If h
′
mn(φ2) < nm < +∞;

∗ If h
′
mn(φ1) < nm < h

′
mn(φ2);

∗ If nm = h
′
mn(φ2) or nm = h

′
mn(φ1);

Case 8.15. n = −1 and m ̸= 0 then

e−t2 − (t−m)2 = Y or e−t2 − (m− t)2 = Y (8.30)

Case 8.16. n < −1 and m ̸= 0 and

e−t2 + n(t−m)2 = Y or e−t2 − (m− t)2 = Y (8.31)

9 Transformation 5 of a Non Bijective Function

Let f(x) = y be defined in a set A ≤ ℜ. If f(x)
′
has two turning points φ1 and φ2 with φ2 > φ1

or φ2 < φ1 depending on the sign of f
′
(x) and f(φ2) < f(φ1) then, −∞ < y < f(φ2) and

f(φ2) < y < f(φ1) and f(φ1) < y < +∞ and [y, h] = [f(φ1), f(φ2)]. The function has three
branches.

14
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9.1 First branch of transformation

Theorem 9.1.1. Let f1 : A ∈ ℜ −→ (−∞ f(φ2)[ be a branch of f . f1 is bijective whose

derivative f
′
1 > 0. f1 is associated to an infinite number of conditional functions, gn = [(Cd)n]f

and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The composite map of f1 and its main
conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the main or first transformation defined
by

f1 ◦ [(Cd)1]f1(x) = f(φ2)− ex (9.1)

Two consecutive conditional functions satisfied the relation

[(Cd)n]f (x) = [(Cd)n+1]f ln[ln(e
x + 1)] and [(Cd)m]f (x) = [(Cd)m+1]f ln(e

ex − 1) (9.2)

From (9.1) and (9.2), secondary transformations are f1 ◦ [(Cd)n]f1(x) = f(φ2)− [e[e
..
(ee

x
−1)−.−.−1] − 1]

f1 ◦ [(Cd)m]f1(x) = f(φ2)− ln[ln(· · · · · · (ln(ex + 1)) + · · · · · ·+ 1) + 1]
(9.3)

The analytic solution of y = f1(x) is

x = [(Cd)m]f1 [ln(e
(e.

..
(ef(φ2)−y−1)−.−.−.−1) − 1)]

= [(Cd)n]f1 [ln(ln[(ln[......(ln[f(φ2)− y + 1] + 1) + ......+ 1] + 1) + 1])]

= (Cd)1f1 [ln(f(φ2)− y)]

Proof: Let f1 : A ∈ ℜ −→ (−∞ f(φ2)[ be bijective. We will define a function Cdf1 :
(−∞ f(φ2)[−→ A ∈ ℜ . Let y ∈ (−∞ f(φ2)[. Since f is surjective, there exists x ∈ A
such that f1(x) = y. Let x = (Cd)1f1 [ln(f(φ2)− y)]. Since f is injective, this is a unique, so Cdf1
is well-defined. Now we most check that (Cd)1f1 [ln(f(φ2) − y)] is the inverse of f1. First we will
show that Cdf1 ◦ f1 = 1A. Let x ∈ A. Let y = f(x). Then, by definition,

(Cd)1f1 [ln(f(φ2)− y)] = x and Cdf1 ◦ f1(x) = (Cd)1f1 [ln(f(φ2)− f1(x))] = x (9.4)

Now we will show that f ◦ Cdf1 = 1B . Let y ∈ B. Let x = g(y). Then, by definition,

f1(x) = y and f1 ◦ g(y) = f1((Cd)1f1 [ln(f(φ2)− y)]) = f1(x) = y (9.5)

In addition from f(φ2)−y > 0 of (9.4), it exists a set of in-equations satisfying y < f(φ). If we take
the exponential or the logarithm of both sides, the in-equation becomes V1(x) = ef(φ2)−y − 1 > 0
or V2(x) = ln(f(φ2)− y + 1) > 0, respectively. Repeating m or n time the principle leads to

Vn(x) = ln[(ln[......(ln[f(φ2)− x+ 1] + 1) + ......+ 1] + 1) + 1] > 0 (9.6)

Vm(x) = e(e
..
.(e

f(φ2)−x−1)−.−.−.−1) − 1 > 0 (9.7)

Rearanging the above expression in (9.1) will give the relation between two consecutive conditional
function of (9.2)

Example 9.1.2. Given e−cx = a0(x−r1)(x−r2), it expresses the equation governing the dilaton field,
from which is derived the metric of the R=T or lineal two-body gravity problem in 1+1 dimensions
(one spatial dimension and one time dimension) for the case of unequal (rest) masses, as well as,
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the eigenenergies of the quantum-mechanical double-well Dirac delta function model for unequal
charges in one dimension. The reduced form of equation is et − nt2 = y(n, t) where

y = [
−(r1 + r2)

2

4a0
+ r1r2]e

[−(r1 + r2)c

2a0
], (9.8)

x =
−t

c
+

(r1 + r2)

2a0
and n =

a0

c2
e[
−(r1 + r2)c

2a0
] (9.9)

The generalization resembles the hypergeometric function but it belongs to a different class of

functions (with n >
e

2
, n <

e

2
and n =

e

2
) [12].

If n >
e

2
, y has two turning points t = Cdh(±

√
ln(2n)− 1) + ln(2n) (with h(t) = et − t),

{
f(φ2) = e[Cdh(−

√
ln(2n)−1)+ln(2n)] − n[Cdh(−

√
ln(2n)− 1) + ln(2n)]2 and

f(φ1) = e[Cdh(
√

ln(2n)−1)+ln(2n)] − n[Cdh(
√

ln(2n)− 1) + ln(2n)]2
(9.10)

In the set −∞ < y < f(φ2), the transformation is

eCdf1 (t) − n[Cdf1(t)]
2 = e[Cdh(−

√
ln(2n)−1)+ln(2n)] − n[Cdh(−

√
ln(2n)− 1) + ln(2n)]2 − et (9.11)

which yields the final and unique solution

x =
−Cdf1 [ln(e

[Cdh(−
√

ln(2n)−1)+ln(2n)] − n[Cdh(−
√

ln(2n)− 1) + ln(2n)]2 − y)]

c
+

(r1 + r2)

2a0

9.2 Second branch of transformation

Theorem 9.2.1. Let f2 : ℜ −→]f(φ1) + ∞) be a second branch of f . f2 is bijective whose

derivative f
′
2 > 0. f2 is associated to an infinite number of conditional functions, gn = [(Cd)n]f

and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The composite map of f2 and its main
conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the main or first transformation defined
by

f2 ◦ [(Cd)2]f (x) = f(φ1) + ex (9.12)

Two consecutive conditional functions satisfied the relation of (9.2)

From (9.12) and (9.2), secondary transformations are

 f2 ◦ [(Cd)n]f2(x) = f(φ1) + [e[e
..
(ee

x
−1)−.−.−1] − 1]

f2 ◦ [(Cd)m]f2(x) = f(φ1) + ln[ln(· · · · · · (ln(ex + 1)) + · · · · · ·+ 1) + 1]
(9.13)

The analytic solution of y = f2(x) is

x = [(Cd)n]f2 [ln(e
(e.

..
(ey−f(φ2)−1)−.−.−.−1) − 1)]

= [(Cd)n]f2 [ln(ln[(ln[......(ln[y − f(φ1) + 1] + 1) + ......+ 1] + 1) + 1])]

= (Cd1)f2 [ln(y − f(φ1))]
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Proof Let f2 : A ∈ ℜ −→]f(φ1) + ∞) be bijective. Based on the previous proof, We will also
define a function Cdf2 :]f(φ1) + ∞) −→ A ∈ ℜ and check that (Cd)1f2 [ln(y − f(φ1))] is the
inverse of f2. In addition we will also show that an infinite number of conditional function are
related to f such that for the previous case

V (x)n = ln[(ln[......(ln[x− f(φ2) + 1] + 1) + ......+ 1] + 1) + 1] > 0 (9.14)

V (x)m = e(e
..
.(e

x−f(φ1)−1)−.−.−.−1) − 1 > 0 (9.15)

Example 9.2.2. Given e−cx = a0(x− r1)(x− r2), if n >
e

2
, one of the turning point is

t = Cdh(
√

ln(2n)− 1) + ln(2n) (9.16)

[with h(t) = et − t], and

f(φ1) = e[Cdh(
√

ln(2n)−1)+ln(2n)] − n[Cdh(
√

ln(2n)− 1) + ln(2n)]2 (9.17)

In the set f(φ2) < y < +∞, the transformation is

eCdf2 (t) − n[Cdf2(t)]
2 = et + e[Cdh(

√
ln(2n)−1)+ln(2n)] − n[Cdh(

√
ln(2n)− 1) + ln(2n)]2 (9.18)

which yields the final and unique solution

x =
−Cdf1 [ln(y − e[Cdh(

√
ln(2n)−1)+ln(2n)] − n[Cdh(

√
ln(2n)− 1) + ln(2n)]2)]

c
+

(r1 + r2)

2a0

where

y = [
−(r1 + r2)

2

4a0
+ r1r2]e

[−(r1 + r2)c

2a0
]

9.3 Third branch of transformation

Theorem 9.3.1. Let f3 : ℜ −→]f(φ2) f(φ1)[ be a third branch of f . f3 is non bijective whose

derivative f
′
3 has two turning points. f3 is also associated to an infinite number of conditional

functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and m ∈ 1, 2, 3 · · · . The composite map
of f3 and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is the main or first
transformation defined by

f3 ◦ Cdf3 [x] = x3 +
3

2
[f(φ2)− f(φ1)]

1/3x+
f(φ2) + f(φ1)

2
(9.19)

The three analytic solutions of y = f3(x) are

xk = Cdf3 [V cos[
1

3
arcos([

y

2
− f(φ2) + f(φ1)

4
]

√
8

[f(φ1)− f(φ2)]
) +

2kπ

3
] (9.20)

where

V = 2

√
1

2
[f(φ1)− f(φ2)]1/3 and k ∈ {0, 1, 2}
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Proof: Let f3 : A ∈ ℜ −→]f(φ2) f(φ1)[ be a given function. In this case f
′
admits two turning

points φ1, φ2 then ∃(x1, x2) ∈ ℜ2(x1 < φ1orφ2 < x2) such that f(x1) = f(x2) ⇒ x1 ̸= x2. So f is
a non injective function and then non bijective. By definition, f is related to a conditional function
in a way that

f3 ◦ Cdf3(x) = U(x) (9.21)

In addition U and f3 have also by definition the same domain with two turning points each.
Assuming that U(x) = x3 + px + q is a cubic function, the transformation is expressed by f3 ◦
Cdf3 [x] = x3 + px + q, the problem consist in determining p and q to obtain the inverse of f
defined in f(φ2) < y < f(φ1). According to the Cardan’s method cited by [14], real solutions of the

equation x3 + px+ q = t(p < 0,−∞ ≤ q ≤ +∞) are xk = 2

√
−p

3
cos[

1

3
arcos(

t− q

2

√
27

−p3
) +

2kπ

3
].

Then

f ◦ Cdh[2

√
−p

3
cos[

1

3
arcos(

t− q

2

√
27

−p3
) +

2kπ

3
]] = x (9.22)

The relation shows that
(t− q)

2

√
27

−p3
> −1 and

(t− q)

2

√
27

−p3
< 1. After expending and by

definition, t > q − 2√
−27/p3

= f(φ2) and t < q +
2√

−27/p3
= f(φ1). Resolution of the system

yields to

q =
f(φ2) + f(φ1)

2
and p =

3

2
(f(φ2)− f(φ1))

1/3 (9.23)

The transformation is expressed

f ◦ cdf3 [x] = x3 +
3

2
(f(φ2)− f(φ1))

1/3x+
f(φ2) + f(φ1)

2
(9.24)

By setting x3 +
3

2
(f(φ2)− f(φ1))

1/3x+
f(φ2) + f(φ1)

2
= y yields to the three previous solutions

Example 9.3.2. Given e−cx = a0(x− r1)(x− r2), the reduced form of equation is

et − nt2 = y(n, t) If n >
e

2
, y has two turning points t = Cdh(±

√
ln(2n)− 1) + ln(2n) (with

h(t) = et − t),

{
f(φ2) = e[Cdh(−

√
ln(2n)−1)+ln(2n)] − n[Cdh(−

√
ln(2n)− 1) + ln(2n)]2 and

f(φ1) = e[Cdh(
√

ln(2n)−1)+ln(2n)] − n[Cdh(
√

ln(2n)− 1) + ln(2n)]2
(9.25)

In the set f(φ2) < y < f(φ1), t = Cdf3(u) thus,

eCdf3 (u) − n[Cdf3(u)]
2 = u3 +

3

2
(f(φ2)− f(φ1))

1/3u+
f(φ2) + f(φ1)

2
= y (9.26)

The three solutions of equations are

xk =
−Cdf3(u)

c
+

(r1 + r2)

2a0
(9.27)

where k = 0, 1, 2

u = 2

√
1

2
[f(φ1)− f(φ2)]1/3cos[

1

3
arcos([

y

2
− f(φ2) + f(φ1)

4
]

√
8

[f(φ1)− f(φ2)]
) +

2kπ

3
(9.28)
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Remark 9.3.3. When y = f(x) with (y, y) = (f(φ1), f(φ2)), the equation has two solutions and
the first one is (φ1, φ2) respectively. The second one is deduced from relation (x − φ1)[R(x)] =
f(x)− f(φ1) or (x− φ2)[P (x)] = f(x)− f(φ2) respectively where R(x) and P (x) are obtained by
dividing f(x)− f(φ1) or f(x)− f(φ2) by (x− φ1) and (x− φ2), respectively.

10 Transformation 6 of Non Bijective Function

Theorem 10.1. Let f : ℜ −→ [f(φ1) +∞) be a non bijective function whose derivative f
′
has

three turning points φ1 < φ2 < φ3 with a global minimum. f has three branches.

(i) Let f1 : A ∈ ℜ −→ [f1(φ1) f1(φ2)] be a branch of f . f1 is non bijective and associated to
an infinite number of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ,
n and m ∈ 1, 2, 3 · · · . The composite map of f1 and the two main conditional function
[g1,2 = [(Cd)1,2]f : ℜ −→ ℜ], (n = 1), are the main or first transformations expressed by

f1 ◦ Cdf(1,2)(x) =

{
f1(φ1) + [

√
f1(φ2)− f1(φ1)− x2]2

f1(φ2)− [
√

f1(φ2)− f1(φ1)− x2]2
(10.1)

Two consecutive conditional functions also satisfied relation (4.2). Secondary transformations
gotten from (10.1) and (4.2), are expressed like in a case of the transformation 1 and 4 by
the following changing

√
f1(φ2)− f1(φ1)− x2 = t

Solutions of y = f(x) using the main transformation are

x1.2.3.4 =

 Cdf1(±
√

−
√

y − f1(φ1) +
√

f1(φ2)− f1(φ1))

Cdf2(±
√

−
√

f1(φ2)− y +
√

f1(φ2)− f1(φ1))
(10.2)

(ii) Let f2 : A ∈ ℜ −→ [f2(φ3) f2(φ1)[ be a branch of f as defined to (5.2). f2 is non bijective
and associated to an infinite number of conditional functions. The main transformation is

f2 ◦ Cdf3(x) = f2(φ1)− [f2(φ1)− f2(φ3)]e
−x2

(10.3)

The analytic solutions of y = f(x) from the main transformation are

x1.2 = Cdf2(±

√
−[ln(

f2(φ1)− y

f2(φ1)− f2(φ3)
)])

(iii) Let f3 : A ∈ ℜ −→ [f(φ) + ∞) be a given non bijective function. f3 is associated to an
infinite number of conditional functions, gn = [(Cd)n]f and gm = [(Cd)m]f : ℜ −→ ℜ, n and
m ∈ 1, 2, 3 · · · . The composite map of f3 and its main conditional function [g1 = [(Cd)1]f :
ℜ −→ ℜ], (n = 1), is the main or first transformation expressed by

f3 ◦ Cdf3(x) =
1

x2
+ f3(φ2) (10.4)

Two consecutive conditional functions satisfied the relation

Cdfn(
1

x
) = Cdfn+1(

1√
ln(x2 + 1)

) (10.5)

From (10.4) and (10.5), secondary transformations are
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 f3 ◦ [(Cd)n]f3(x) = [e[e
..
(ex

−2
−1)−.−.−1] − 1] + f3(φ2)

f3 ◦ [(Cd)n]f3(x) = ln[ln(· · · · · · (ln(x−2 + 1)) + · · · · · ·+ 1) + 1] + f3(φ2)
(10.6)

In addition, analytic solutions of y = f(x) are

x1.2 = [cdn]f3(
1

±

√
e(e.

..
(ey−f(φ)−1)−.−.−.−1) − 1

)

= [Cdm]f3(
1

±
√

ln[(ln[......(ln[y − f(φ) + 1] + 1) + ......+ 1] + 1) + 1]
)

= [Cd1]f3(
1

±
√

y − f3(φ2)
)

Let f : ℜ −→ ℜ be a non bijective function whose derivative f
′
has three turning points φ1 <

φ2 < φ3 with a global maximum. f has three branches.

(i) Let f1 : A ∈ ℜ −→ [f1(φ2) f1(φ1)] be a branch of f . f1 is non bijective and associated to
an infinite number of conditional functions, gn = [(Cd)n]f : ℜ −→ ℜ, n ∈ 1, 2, 3 · · · . The
composite map of f1 and the two main conditional function [g1,2 = [(Cd)1,2]f : ℜ −→ ℜ],
(n = 1), are the main or first transformations defined by

f ◦ Cdf(1,2)(x) =

{
f(φ2) + [

√
f(φ1)− f(φ2)− x2]2

f(φ1)− [
√

f(φ1)− f(φ2)− x2]2
(10.7)

.

For each one, right and left Transformations of order n are obtained by substituting n times,

[u(x)]2(u(x) =
√

f(φ1)− f(φ2) − x2) from the main transformation by e[u(x)]
2

− 1 and
ln([u(x)]2+1), respectively. In addition in order n, x2 of u(x) from the main transformation

is substituted by ex
2

− 1 and ln(x2 + 1), respectively. Considering the first substitution,
functions are closed to f by the equations

{
f ◦ [(Cd)n]f (x) = f(φ2) + U
f ◦ [(Cd)n]h(x) = f(φ1)− U

(10.8)

where

U = [e[e
..
(e[

√
ln[(ln[..(ln[f(φ1)−f(φ2)+1]+1)+..+1]+1)+1]−[e[e

..
(ex

2
−1)−.−.−1]−1]]2−1)−.−.−1] − 1]

Solutions of y = f(x) using the main transformation are

x1.2.3.4 =

 Cdf1(±
√

−
√

f(φ1)− y +
√

f(φ1)− f(φ2))

Cdf2(±
√

−
√

y − f(φ2) +
√

f(φ1)− f(φ2))
(10.9)
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(ii) Let f2 : A ∈ ℜ −→ [f2(φ1) f2(φ3)[ be a branch of f as defined to (5.2). f2 is non bijective
and associated to an infinite number of conditional functions. The main transformation is

f ◦ Cdf3(x) = f(φ1) + [f(φ3)− f(φ1)]e
−x2

(10.10)

The analytic solutions of y = f(x) are

x1.2 = Cdf3(±

√
ln[

f(φ3)− f(φ1)

y − f(φ1)
])

(iii) Let f3 : A ∈ ℜ −→] − ∞ f(φ2)[ be a given non bijective function. f3 is associated to
an infinite number of conditional functions, gn = [(Cd)n]f : ℜ −→ ℜ, n ∈ 1, 2, 3 · · · . The
composite map of f3 and its main conditional function [g1 = [(Cd)1]f : ℜ −→ ℜ], (n = 1), is
the main or first transformation expressed by

f ◦ Cdf4(x) = f(φ2)−
1

x2
(10.11)

Two consecutive conditional functions satisfied the relation of (10.5). Secondary transformations
deduced from (10.11) and (10.5) are

 f ◦ [(Cd)n]f (x) = f(φ2)− [e[e
..
(ex

−2
−1)−.−.−1] − 1]

f ◦ [(Cd)n]f (x) = f(φ2)− ln[ln(· · · · · · (ln(x−2 + 1)) + · · · · · ·+ 1) + 1]
(10.12)

The analytic solutions of y = f(x) are

x1.2 = [cdn]f (
1

±

√
e(e.

..
(ef(φ2)−y−1)−.−.−.−1) − 1

)

= [Cdn]f (
1

±
√

ln[(ln[......(ln[f(φ2)− y + 1] + 1) + ......+ 1] + 1) + 1]
)

= Cdf4(
1

±
√

f(φ2)− y
)

Proof: Let f1 : A ∈ ℜ −→ [f1(φ1) f1(φ2)] be a branch of f . In this case f
′
1 admits three turning

points φ1, φ2 and φ3. Then ∃(x1, x2) ∈ ℜ2 (x1 < φ1 or φ2 or φ3 < x2) such that f(x1) = f(x2) ⇒
x1 ̸= x2. So f is a non injective function and then non bijective. By definition, f1 is related to a
conditional function in a way that

f1 ◦ Cdf1(x) = U(x) (10.13)

In that condition, f1 has four reciprocal functions defined in the domain [f1(φ1) f1(φ2)] whose
are both bijective because ∀[(x1, x2, x3, x4) ∈ [f1(φ1) f1(φ2)]

4], ∃!(y1, y2, y3, y4) in their reciprocal
set such that y1 = f1(x1), y2 = f2(x2), y3 = f1(x3) and y4 = f1(x4), respectively .

In addition U and f1 by definition have the same domain with three turning points each. Assuming
that U(x) = x4 + px2 + q is a quartic function, the transformation is expressed by f1 ◦ Cdf1 [x] =
x4 + px2 + q. A changing of variable x4 + px2 + q = ±t with p = 2k and p = 2k1 leads to two cases.
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x1 = ±
√

−[±
√

k2 − q + t+ k] and x2 = ±
√

−[±
√

k2
1 − q − t+ k1] (10.14)

So (10.13) becomes

f1 ◦ Cdf1(±
√

−[±
√

k2 − q + t+ k]) = t and f1 ◦ Cdf1(±
√

−[±
√

k2
1 − q − t+ k1]) = t (10.15)

So, to satisfy conditions f(φ1) ≥ t ≤ f(φ2) of (10.15) we must have

k2
1 − q − t ≥ 0 and [

√
k2
1 − q − t+ k] ≤ 0 (10.16)

In addition,

t+ k2 − q ≥ 0 and [
√

t+ k2 − q + k] ≤ 0 (10.17)

From these conditions, t ≤ k2
1 − q = f1(φ2) with q = −f1(φ1) and t ≥ −k2 + q = f1(φ1) with

q = f1(φ2).

In the two cases,
k = k1 = −

√
f1(φ2)− f1(φ1)

By taking
√

f1(φ2)− t −
√

f1(φ2)− f1(φ1) = −x2 and
√

t− f1(φ1) −
√

f1(φ2)− f1(φ1) = −x2,
we obtain

{
f1 ◦ g(x) = f1(φ2)− [

√
f1(φ2)− f1(φ1)− x2]2

f1 ◦ h(x) = f1(φ1) + [
√

f1(φ2)− f1(φ1)− x2]2
(10.18)

From (10.18), if
√

f(φ2)− f(φ1)−t2 = x, we get transformations 1 and 4 and can apply the relation
(4.2), (4.3) and (7.2) In the case where the curve is concave downwards,the same method is used to
satisfy relation f(φ3) ≤ x ≤ f(φ1)

In the set f(φ2) < y < +∞, according to (2.1) and the fact that f has two branches, Cdf [U(x)] is
the reciprocal function such that

f ◦ Cdf [U(x)] = x or f ◦ Cdf [x] = U(x)−1 (10.19)

then, conditions Cdf ∈ ℜ∗ and f(φ2) ≤ Cdf [U(x)] < +∞ are verified if

U(x)−1 =
1

x2
+ f(φ2) and u(x) =

1

±
√

[x− f(φ2)]
(10.20)

where Cdf [
1

±
√

[x− f(φ2)]
] are the two branches of reciprocal function. Then

f ◦ Cdf [
1

±
√

[x− f(φ2)]
] = x or f ◦ Cdf [x] =

1

x2
+ f(φ2) (10.21)

is the main transformation. Many other infinite functions are related to f and proved as in the case
of transformation 1

In the case where the curve has a global maximum,the same method is used to satisfy relation in
the set −∞ < y < f(φ2)

The particularity of that transformation is the using to solve any type of equation respecting our
previous conditions such that quartic functions [12][15]
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Example 10.2. Let
e2x

2
− 2ex − x3

3
− x2 = f(x) = y. The derivative is y

′
(x) = (ex + x)(ex −

x − 2) with (g(x), h(x)) = (ex + x, ex − x − 2). The derivative has three turning points φ1 =
Cdh(−1) = (Cd1)h(−

√
ln(2)) = −1.84168719 < φ2 = Cdg(0) = −0.56714329 < φ3 = Cdh(1) =

(Cd1)h(
√

ln(2)) = 1.14619322 with a concave upwards curve.

If f [Cdh(−1)] ≤ y ≤ f [Cdg(0)], f [Cdh(−1)] ≤ y ≤ f [Cdg(0)], f [Cdh(1)] ≤ y < f [Cdh(−1)] and
f [Cdg(0)] < y < +∞, the solutions of equations using mains transformations are

x =



Cdf1(±
√

−
√

f [Cdg(0)]− y +
√

f [Cdg(0)]− f [Cdh(−1)])

Cdf2(±
√

−
√

y − f(Cdh(−1)) +
√

f(Cdg(0))− f(Cdh(−1)))

Cdf3(±

√
−[ln(

f [Cdh(−1)]− y

f [Cdh(−1)]− f [Cdh(1)]
)])

Cdf4(
1

±
√

y − f [Cdg(0)]
)

(10.22)

respectively,

11 Numerical Evaluation of Conditional Function

Many methods of numerical evaluation have been developed. For each given function (f), an
algebraic transformation is established. The conditional function (Cdf ) may be easily approximated
using Newton’s method [16]. It consists in defining a series u(n+1) = g(un) that converge to x0 and
where

x0 ≤ g(x) ≤ x and g(x) = x− f(x)

f(x)′
(11.1)

With successive approximations, some values of conditional function are resumed in the Table 1.
For example

{
X1 = CdF (1) = ln[Cdg(1)] = ln[−W0(−e−2)] = 1.14619322 · ··
X2 = CdF (−1) = ln[Cdg(−1)] = ln[−W−1(−e−2)] = −1.84168719 · ·· (11.2)

are solutions of equation eX −X = 2 with F (X) = eX −X and g(X) = X − lnX. In addition,

{
X1 = Cdg(1) = eCdF (1) = −W0(−e−2) = 3.146193221 · ··
X2 = Cdg(−1) = eCdF (−1) = −W−1(−e−2) = 0.158594339 · ·· (11.3)

are solutions of equation X − lnX = 2 with F (X) = eX −X and g(X) = X − lnX (Table 1).
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Table 1. Some remarkable and usual values of the conditional function

Reduced function Values of Cd Values of Cd

f(x) = ex + x Cdf (0) = −0.56714329 Cdf (−2) = −2.120028239

f(x) = ex + x Cdf (1) = 0 Cdf (−1 + iπ) = iπ

f(x) = ex + x Cdf (2) = 0.44285440 Cdf (e
n + n) = n

f(x) = ex + x Cdf (−1) = −1.278464543 Cdf (n) ≈ n (n ≤ −20)

f(x) = ex + x Cdf (−19) = −19.00000001 Cdf (n) ≈ ln(n) (n ≥ e20)

g(x) = ex − x Cdg(0) = 0 [Cd1]g(0) = 0

g(x) = ex − x Cdg(1) = 1.14619322 eCdg(±i) = Cdg(±i)

g(x) = ex − x Cdg(−1) = −1.84168719 Cdg(±
√

ln(0)) = Cdg(±i) = Cdh(−1)

g(x) = ex − x Cdg(−2) = −4.993253432 e[Cd1]g(±i) − [Cd1]f (±i) =
1

e
h(x) = xex Cdh(0) = impossible in ℜ Cdh(−lna/a) = −lna (1/e ≤ a ≤ e)

h(x) = xex Cdh(e) = 1 Cdh(1) = 0.56714329

h(x) = xex Cdh(−1/e) = −1 Cdh(−1) = −0.31813− 1.3372i

h(x) = xex Cdh(−π/2) = (π/2)i Cd
′
h(0) = impossible in ℜ

k(x) = x− ln(x) Cdk(0) = 1 [Cd1]k(0) = 1

k(x) = x− ln(x) Cdk(1) = 3.146193221 [Cd1]k(1) = 4.138651946

k(x) = x− ln(x) Cdk(2) = 6.936847406 [Cd1]k(2) = 58.67007991

k(x) = x− ln(x) Cdk(−1) = 0.158594339 [Cd1]k(−1) = 0.070831586

k(x) = x− ln(x) Cdk(−2) = 0.006783381 [Cd1]k(±i)− ln[[Cd1]k(±i)] =
1

e
k(x) = x− ln(x) Cdk(±i) = ln[Cdk(±i)] Cdk(±i) = [Cd1]k(±

√
ln0)

v(x) = ex
2

Cdv(0) = 0 Cdv(±i
√
2) = ±

√
πi

v(x) = ex
2

Cdv(±1) = ±
√

ln(2) Cdv(±i) = ±
√

ln(0)

v(x) = ex
2

[Cd1]v(n) = n Cdv(±0.794352761i) = ±i

12 Concluding Remarks

We noted that properties of conditional function and different related transformations are numerous
and might be applied to dynamics of natural phenomena. Most of the functions usually used such
that logarithm, exponential, Omega... can be expressed in terms of the conditional function. It is
useful to implement the conditional function in a software. In addition, conditional function might
be associated to any other function whose derivative admits more than three turning points. A
transformation which is the composite map of f and its conditional function should be extended to
the complex plane.
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