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∗
and N. Gündüz2
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Abstract

We propose an information-theoretic alternative to the popular Cronbach alpha coefficient of

item reliability. Particularly suitable for contexts in which instruments are scored on a strictly

nonnumeric and non ordinal scale, our proposed index is based on functions of the entropy of the

empirical distributions defined on the sample space of responses. Our proposed reliability index

tracks the Cronbach alpha coefficient uniformly while offering several other advantages discussed

in great details in this paper.
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1 Introduction

Suppose that we are given a dataset represented by an n × p matrix X whose ith row x⊤
i ≡

(xi1, xi2, · · · , xip) denotes the p-tuple of characteristics, with each xij ∈ {1, 2, 3, 4, 5} representing the
Likert-type level (order) of preference of respondent i on item j. This Likert-type score is obtained by
translating/mapping the response levels {Strong Disagree, Disagree, Neutral, Agree, Strongly Agree}
into pseudo-numbers {1, 2, 3, 4, 5}.

Strong Disagree Disagree Neutral Agree Strongly Agree

⃝ ⃝ ⃝ ⃝ ⃝
1 2 3 4 5

A usually crucial part in the analysis of questionnaire data is the calculation of Cronbach’s alpha
coefficient which measures the internal consistency or reliability/quality of the data. Let X =
(X1,X2, · · · , Xp)

⊤ be a p-tuple representing the p items of a questionnaire. Initially proposed by
[1] and later used and re-explained extensively by thousands of researchers and practitioners like [2]
Cronbach’s alpha coefficient is a function of the ratio of the sum of the idiosyncratic item variances
over the variance of the sum of the items, and is given by

α =

(
p

p− 1

)[
1−

∑p
j=1 V(Xj)

V
(∑p

ℓ=1 Xℓ

)] .
The coefficient of Cronbach α will be 1 if the items are all the same and 0 if none is related to
another. Because it is depend on the variance of the sum of a group of independent variables and
the sum of their variances. If the variables are positively correlated, the variance of the sum will
be increased. If the items making up the score are all identical and so perfectly correlated, all the

V(Xj) will be equal and V
(∑p

ℓ=1 Xℓ

)
= p2V(Xj), so that

∑p
j=1 V(Xj)

V(
∑p

ℓ=1
Xℓ)

= 1
p
and α = 1.

The empirical version of Cronbach’s alpha coefficient of internal consistency is given by

α̂ =

(
p

p− 1

)
1−

p∑
j=1

n∑
i=1

(
xij −

1

n

n∑
i=1

xij

)2

n∑
i=1

(
p∑

j=1

xij −
1

n

n∑
i=1

p∑
j=1

xij

)2

 .

Definition 1.1. LetD = {x1,x2, · · · ,xn} be a dataset with x⊤
i = (xi1, xi2, · · · , xip). An observation

vector xi will be called a zero variation vector if xij = constant, j = 1, · · · , p. Respondents with
zero variation response vectors will be referred to as single minded respondents/evaluators.

In fact, zero variation responses essentially reduce a p items survey to a single item survey.

Theorem 1.1. Let X = (X1,X2, · · · , Xp)
⊤ be a p-tuple representing the p items of a questionnaire.

If X is zero variation, then the Cronbach’s alpha coefficient will be equal to 1.

Proof. If X = (X1, X2, · · · , Xp)
⊤ is zero variation, then Xj = W for j = 1, · · · , p, and

∑p
j=1 Xj =

pW . As a result,
∑p

j=1 V(Xj) = pV(W ) and V
(∑p

j=1 Xj

)
= V(pW ) = p2V(W ). Therefore,

α =

(
p

p− 1

)[
1− pV(W )

p2V(W )

]
=

(
p

p− 1

)[
1− 1

p

]
= 1
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We use a straightforward adaptation of the Cronbach’s alpha coefficient to measure respondent
reliability.

Definition 1.2. Let D = {x1,x2, · · · ,xn} be a dataset with x⊤
i = (xi1, xi2, · · · , xip). Let the

estimated variance of the ith respondent be S̃2
i =

∑p
j=1 (xij − x̄i)

2/(p− 1). Let Zj =
∑n

i=1 xij
represent the sum of the scores given by all the n respondents to item j. Our respondent reliability
is estimated by

̂̃α =

(
n

n− 1

)
1−

n∑
i=1

p∑
j=1

(
xij −

1

p

p∑
j=1

xij

)2

p∑
j=1

(
n∑

i=1

xij −
1

p

p∑
j=1

n∑
i=1

xij

)2


Given a data matrix X, respondent reliability can be computed in practice by simply taking the
Cronbach’s alpha coefficient of X⊤, the transpose of the data matrix X. Let m be the number of
nonzero variation. If m ≪ p and m/n is very small, then respondent reliability will be very poor.

Despite its widespread use of Likert-type data since it creation, Cronbach’s alpha coefficient is
rigorously speaking not suitable for categorical data for the simple reason that averages on ordinal
measurements are often difficult to interpret at best and misleading at worst. For many years
researchers working on the clustering of Likert-type inappropriately resorted to average-driven
methods like kMeans clustering. Fortunately, there has been a surge of contributions to the
clustering of categorical data whereby appropriate methods have been used. At the heart of the
clustering of categorical data is the need to define appropriate measure of similarity. Recognizing
the possibility to preprocess Likert-type questionnaire data into a collection of estimate probability
distributions over the sample spaces of responses, many authors have developed powerful, highly
scalable techniques for clustering categorical data, most of them based on information-theoretic
concepts like entropy, mutual information, variation of information [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], along with many other distances and measures on probability distributions like the
Bhattacharya distance, the Kullback-Leibler divergence and the Hellinger distance just to name a
few [14], [15], [16], [17], [18], [19], In this paper, we use information-theoretic tools and concepts to
create several measures of internal consistency of questionnaire data.

2 Information-theoretic Measures of Consistency

Let Xj represent one of the questions on the questionnaire, and consider the n responses represented
by {x1j , · · · , xij , · · · , xnj} provided by the n evaluators. Let vj = (vj1, · · · , vjk, · · · , vjK)⊤ denote
the vector containing the relative frequencies of each Likert level for question j. With a total of n
questionnaires collected, we have

v̂jk =
1

n

n∑
i=1

I(xij = k), k = 1, 2, · · · ,K and j = 1, 2, · · · , p. (2.1)

Using (2.1), one can then form probabilistic vectors v̂⊤
j = (v̂j1, · · · , v̂jk, · · · , v̂jK), for j = 1, 2, · · · , p.

Each vector v̂j essentially represents an approximate probability distribution on the sample space
made up of the K response levels. Using this probabilistic representation of each question j, we
can compare the variability of each item of the questionnaire using the entropy, specifically

H(v̂j) = −
K∑

k=1

v̂jk log2(v̂jk) (2.2)
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We can imagine a transformation of the n× p data matrix X into a probabilistic p×K counterpart
V where each row represent the approximate probability distribution of the corresponding question
(item). The entropy of each question indicates the variability of the answers given by students
on that question. For a given course and a given instructor, a small value of this entropy would
indicate a greater degree of agreement of his/her student on that item, and therefore suggest a
more careful examination of the scores on that item. As far as the relationship between items
is concerned, information theory also provides a wealth of measures. The symmetrized Kullback-
Leibler divergence given by

KL2(vi,vj) =
1

2

{
KL(vi,vj) + KL(vj ,vi)

}
=

1

2

K∑
k=1

{
vik log

(
vik

vjk

)
+ vjk log

(
vjk

vik

)}
,

where

KL(vi,vj) =

K∑
k=1

vik log

(
vik

vjk

)
and KL(vj ,vi) =

K∑
k=1

vjk log

(
vjk

vik

)
,

is usually the default measure used by most authors. The Kullback-Leibler divergence is closely
related the mutual information

I(vi,vj) =
K∑

k=1

{
K∑
l=1

{
vik,jl log2

(
vik,jl

vikvjl

)}}
,

which has been used extensively in machine learning to define a distance known as the Variation
of Information, and defined by

VI(vi,vj) = H(vi) +H(vj)− 2I(vi,vj).

Many other non-information-theoretic similarity and variation measures operating on probabilistic
vectors can be used to further investigate several aspects of the categorical data at hand. One that
have been extensively used in the machine learning and data mining community is the Bhattacharya
distance [14] is given by

BC(vi,vj) = − log F(vi,vj),

where

F(vi,vj) =
K∑

k=1

√
vikvjk,

is known as the Bhattacharya coefficient or Fidelity coefficient. The Bhattacharya distance BC(vi,vj)
measures the overlap between vi and vj . The Bhattacharya distance has been immensely used in
various data mining and machine learning applications [15], [16], [17], [18]. It is interesting to note
that the Bhattachrya distance is related to total variation measure defined by

∆(vi,vj) =
1

2

K∑
k=1

|vik − vjk| =
1

2
∥vi − vj∥1

where ∥ · ∥1 is the ℓ1 norm. Another very commonly used distance is the Hellinger distance between
vi and vj is given by

Hellinger(vi,vj) =
1√
2

√√√√ K∑
k=1

(
√
vik −√

vjk)2 =
1√
2
∥
√
vi −

√
vj∥2,

where ∥·∥2 is the Euclidean norm or ℓ2 norm,
√
vi = (

√
vi1, · · · ,

√
viK) and

√
vj = (

√
vj1, · · · ,

√
vjK).
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Definition 2.1. Let Q denote an instrument (questionnaire) for which the realized matrix of
obtained responses is given by X with entries xij ∈ {1, 2, · · · ,K}. We propose an information-
theoretic measure of the reliability of Q, referred to as the information consistency ratio of Q and
given by

φ = 1−
min

i=1,··· ,n

{
H (ẑi)

}
max
z

{
H (z)

} = 1−
min

i=1,··· ,n

{
H (ẑi)

}
H
(

1
K
, · · · , 1

K

) = 1−
min

i=1,··· ,n

{
H (ẑi)

}
log2(K)

, (2.3)

where each ẑi = {ẑik, k = 1, 2, · · · ,K} defines an approximate probability distribution on the
sample space of possible responses, and H(·) is the entropy function, with

ẑik =
1

p

p∑
j=1

I(xij = k) and H(ẑi) = −
K∑

k=1

ẑik log2(ẑik). (2.4)

Lemma 2.1. Let z denote any probability measure defined on some K-dimensional sample space,
with each zk = Pr{Ek}, k = 1.2, · · · ,K. Let H(·) denote the entropy function, such that for every
z, we have H(z) = −

∑K
k=1 zk log2(zk). Then

max
z

{
H (z)

}
= log2(K).

Proof. Since entropy essentially measures uncertainty (disturbance), the probability measure for
which the uncertainty is the largest is the probability measure z∗ in which all the events are equally
likely, i.e., z∗k = Pr{Ek} = 1

K
, k = 1.2, · · · ,K.

max
z

{
H (z)

}
= H(z∗) = H

(
1

K
, · · · , 1

K

)
= −

K∑
k=1

1

K
log2

(
1

K

)
= log2(K).

Theorem 2.2. Let Q0 denote a special questionnaire whose items are all mutually independent
(unrelated). Then the corresponding information consistency ratio φ0 of Q0, is such that

lim
p→∞

φ0 = 0.

Proof. WithQ0 denoting a questionnaire whose items that are all mutually independent (unrelated),
the matrix of realized responses has entries xij that a realization of the discrete uniform distribution
on {1, 2, · · · ,K}, or specifically, xij ∼ uniform(1, 2, · · · ,K). It follows that for each i = 1, 2, · · · , n,
we must have

lim
p→∞

ẑik = lim
p→∞

{
1

p

p∑
j=1

I(xij = k)

}
=

1

K
, k = 1, 2, · · · ,K.

In other words, given enough questions (items), the empirical proportion of answers will converge
to its theoretical counterpart by the law of large number. We therefore have the uniform generation
of answers, the limiting distribution

lim
p→∞

ẑi = z∗ =

(
1

K
, · · · , 1

K

)
.

Finally, since all the response distributions will tend to converge to the same maximal measure z∗,

i.e. ẑi
D→ z∗, for i = 1, 2, · · · , n, we must have

min
i=1,··· ,n

{
H (ẑi)

}
P→ H(z∗) = max

z

{
H (z)

}
,

5
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and therefore

lim
p→∞

φ0 = 1−
min

i=1,··· ,n

{
H (ẑi)

}
max
z

{
H (z)

} = 1− H(z∗)

H(z∗)
= 1− 1 = 0.

Theorem 2.3. Let Q+ denote a special questionnaire whose items are all identical. Then the
corresponding information consistency ratio φ+ of Q+, is such that limφ+ = 1.

Proof. With Q+ denoting a questionnaire whose items that are all identical, the matrix of realized
responses has entries xij = c, for some constant c ∈ {1, 2, · · · ,K}. Then for each i = 1, 2, · · · , n,
there exists k+ ∈ {1, 2, · · · ,K} such that

ẑik =

{
1 k = k+
0 k ̸= k+

In other words, with Q+, the approximate distributions ẑi of the answers of each respondent are
of the form (1, 0, · · · , 0), or (0, 1, · · · , 0) or (0, 0, · · · , 1). Therefore, for Q+, we must have H(ẑi) =

0, i = 1, · · · , n, with the result being min
i=1,··· ,n

{
H (ẑi)

}
= 0, and therefore

φ+ = 1−
min

i=1,··· ,n

{
H (ẑi)

}
max
z

{
H (z)

} = 1− 0

H(z∗)
= 1− 0 = 1.

Definition 2.2. Let Yi represent the most frequently occurring answer in respondent i’s vector of
p answers. It is easy to see that Yi has the same sample space as each question/item, namely
the same Likert scale in our case. Using the random variables Yi, we can then define ŵ =
(ŵ1, · · · , ŵk, · · · , ŵK)⊤ in the same manner that we define vj earlier. More specifically, we have

Yi = argmax
k=1,··· ,K

{
1

p

p∑
j=1

I(Xij = k)

}
and ŵk =

1

n

n∑
i=1

I(Yi = k). (2.5)

The entropy of ŵ is given by

H(ŵ) = −
K∑

k=1

ŵk log2(ŵk). (2.6)

The random variable Yi is maximal in a set-theoretic sense, and and can be thought of as the
categorical analogue of the sum of numeric Xj’s. Using ŵ, an alternative definition of the information
consistency ratio φ is

φ = 1−
min

i=1,··· ,n

{
H (ẑi)

}
H (ŵ)

. (2.7)

An even more stringent measure of the information consistency ratio is given by

φ = 1−
max

i=1,··· ,n

{
H (ẑi)

}
H (ŵ)

. (2.8)
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Fig. 1. Comparative curves of φ and Cronbach alpha as measures of internal
consistency

3 Demonstration of Properties of φ

We use a simple simulation setup to empirically compare the different measures presented in this
paper. We set p = 50 and n = 1000 and we vary the ratio of perfectly reliable components from
10% to 100% by 10%. For i = 1, · · · , n and j = 1, · · · , n, draw the xij ’s uniformly with replacement
from {1, 2, · · · ,K}, that is,

Draw xij ∼ uniform(1, 2, · · · ,K).

Randomly replace 100c% of the columns of X with the same column of constant values, where
c ∈ {0.1, 0.2, · · · , 0.9, 1}. Table 1 shows the simulated values of the information consistency ratio
and Cronbach’s alpha coefficient for different fractions of of reliable components in the instrument.
Fig. 1 is a direct pictorial representation of the numbers from Table 1, and we can see that the
Cronbach alpha coefficient is less strick than the information consistency ratio.

Table 1. Simulated values of the information consistency ratio and Cronbach’s alpha
coefficient for different fractions of reliable components in the instrument

Fraction 10 20 30 40 50 60 70 80 90 100

φ1 0.230 0.270 0.330 0.440 0.520 0.630 0.740 0.900 1.000 1.000
φ2 0.000 0.000 0.020 0.080 0.140 0.240 0.360 0.520 0.720 1.000
φ3 0.230 0.270 0.330 0.440 0.520 0.630 0.740 0.900 1.000 1.000
φ4 0.000 0.000 0.020 0.080 0.140 0.240 0.360 0.520 0.720 1.000
Cronbach 0.380 0.700 0.820 0.910 0.940 0.960 0.980 0.990 1.000 1.000
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4 Discussion and Conclusion

We have proposed and developed an information-theoretic measure of internal data consistency and
demonstrated via straightforward simulation that it does indeed capture the amount of information
potentially contained in the data for the purposes of extracting all kinds of pattern from the data.
We have also provided several other measures of similarity over probabilistic vectors that we intend
to use to further refine our proposed information consistency ratio . We intend to conduct a larger
simulation study to establish our proposed measure on a much stronger footing. We also plan to
compare the predictive power of ICR to Cronbachs alpha coefficient on various real and simulated
data.
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