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Abstract 
 

We develop a mathematical model to understand the dynamics of HBV-in host infection of individuals in 
vivo. The model incorporates the uninfected host cells, short lived infected cells, chronically infected 
cells, free virus particles, humoral immune response of HBV specific antibodies and cell mediated 
immune response of CTLs is analysed to gain its characteristic within human cell mechanism. At first we 
have analyzed the stability analysis of host cells and infected cells without the effect of immunity system 
and also discuss the graphical analysis with immunity system. Present study represents a mathematical 
model, which exhibit two equilibrium points namely, the virus free equilibrium (VFE) and virus present 
equilibrium (VPE). It is found that using Lyapunov function the virus free equilibrium (VFE) is globally 
asymptotically stable (GAS) when �� � 1. And also the virus present equilibrium point (VPE) is locally 
asymptotically stable when �� � 1. 
 

 
Keywords: Hepatitis B virus in host (HBV-in host); basic reproduction number; equilibrium points; local 

and global stability; Laypunov function. 
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1 Introduction 
 
Hepatitis B virus is a potentially life-threading liver infection caused by the hepatise B virus. It is a major 
global health problem. It can cause chronic infection (long-standing) and puts people at high risk of death 
from cirrhosis and liver cancer [1]. 
 
The infection has been preventable by vaccination since 1982 [2,3]. Vaccination is recommended by 
the World Health Organization in the first day of life if possible. Two or three more doses are required at a 
later time for full effect. This vaccine works about 95% of the time. About 180 countries gave the vaccine as 
part of national programs as of 2006 [4]. 
 
About one third of the world population has been infected at one point in their lives, including 240 million to 
350 million who have chronic infection [3,5]. Over 750,000 people die of Hepatitis B each year [3]. The 
disease is now only common in sub-Saharan Africa and East Asia; where between 5-10% of the adult 
population is chronically infected. High rates of chronic infection are also found in the Amazon and the 
southern parts of eastern and central Europe, in the Middle East and the Indian subcontinent, an estimate 2-
5% of the general population is chronically infected [3]. Less than 1% of the population in Western Europe 
and North America is chronically infected [1]. 
 
Transmission of hepatitis B virus results from exposure to infection blood or body fluids containing blood. 
Possible forms of transmission include sexual contact [6] blood transfusion and transfusion with other 
human blood product [7] are use of contaminated needles and syringes [8] and vertical transmission from 
mother to child (MTCT) during childbirth. Without intervention, a mother is also positive for HBsAg has a 
20% risk of passing the infection to her offspring at the time of birth. The risk is as high as 90% if the 
mother is also positive for HBeAg [9]. 
 
 The hepatitis B virus can survive outside the body for at least 7 days. During this time, the virus can still 
cause infection if it enters the body of a person who is not protected by the vaccine. The incubation period of 
the hepatitis B virus is 75 days on average, but can vary from 30 to 180 days. The virus may be detected 
within 30-60 days after infection and can persist and develop into Chronic Hepatitis B [1]. 
 
The likelihood that infection with the virus becomes chronic depends upon the age at which a person 
becomes infected. 30-50% of children infected before the age of 6 years develop chronic infection. 20-30% 
of adults who are chronically infected will develop cirrhosis and liver cancer [1]. 
 
Treatment strategies include drug therapy (for HBV) and liver transplantation in cases of end-stage liver 
disease. However, these treatments are expensive and can produce significant side effects [10]. It is known 
that many patients with liver transplants have experienced HBV re infection, illustrating that treatments may 
not result in a permanent cure [11]. There is still limited access to diagnosis and treatment of hepatitis B in 
many resource-constrained setting, and many people are diagnosed only when they already have advanced 
liver diseases. Liver cancer progresses rapidly and treatment option are limited. In low-income settings, most 
people with liver cancer die within months of diagnosis [3]. Thus, in order to analyze the with-host dynamics 
of HBV, mathematical modeling is introduced. 
 
Here we simplified a mathematical model of immune responds to HBV infection. This focuses on the control 
of the infection by the interferon, the innate and adaptive immunity. Much interest has been devoted to 
mathematical modelling of in vivo dynamics of viral infections. These in-host models are formulated to 
explore possible mechanisms and dynamical behaviours of the viral infection process. There is little 
evidence that humeral immunity plays a major role in the clearance of established infection. Cell-mediated 
immune responses, particularly those involving cytotoxic T-lymphocytes (CTLs) seems to be very important 
[12,13]. During HBV infection, the host immune response causes both hepatocellular damage and viral 
clearance. Although the innate immune response does not play a significant role in these processes, the 
adaptive immune response, in particular virus-specific cytotoxic T lymphocytes (CTLs), contributes to most 
of the liver injury associated with HBV infection. CTLs eliminate HBV infection by killing infected cells 
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and producing antiviral cytokines, which are then used to purge HBV from viable hepatocytes [14]. 
Although liver damage is initiated and mediated by the CTLs, antigen-nonspecific inflammatory cells can 
worsen CTL-induced immunopathology, and platelets activated at the site of infection may facilitate the 
accumulation of CTLs in the liver [15]. 
 
Here we construct a simplified, biologically justified, mathematical model of the dynamics of HBV infection 
and want to focus on three important components of the immune response; the interferon and cellular 
components of innate immunity and the adaptive immunity. Innate host responses during the early phases of 
viral infections are mainly characterized by the production of type-I interferon (IFN) and the activation of 
natural killer (NK) cells [14]. Innate immunity generally plays a role immediately after infection to limit the 
spread of the pathogen and initiate efficient development of an adaptive immune response. 
 
Our goal of this study is how the early virological and immunological events might influence the 
development of activation of adaptive immunity necessary to control HBV infection. All of these have the 
same goal of limiting the concentration of the virus and the damage of the system. 
 
The interaction between the HBV virus and both the innate and adaptive immune response determines the 
final outcome of the infection. Current treatments are effective in suppressing HBV viral replication but in 
most cases fail to clear the virus [10]. Increased knowledge of the virological and immunological events 
secondary to HBV infection allows us to define the mechanisms involved in viral clearance and persistence. 
 
Here, we explore the natural history of hepatitis B in host, and if possible the mathematical formulation of its 
dynamics in vivo and the construction of epidemiological aspects within a mathematical model. The paper is 
organized by, model formulation, analysis of the model, evaluation of the basic reproduction number and 
determines the existence and stability of the virus free and virus present endemic equilibrium of the model. 
 

2 Formulation of Model 
 
We design a mathematical model to understand the transmission dynamics and prevalence of HBV-in host. 
The model is constructed based on the characteristics of HBV-in host transmission. In our model, the total 
homogenously mixing population at time t, is denoted by N (t). The total host population is sub-individual 
into six epidemiological groups: ��	
 represent the uninfected target host cells at time t and short lived 
infected cells ��	
, chronically infected cells ��	
, and free virus particles  �	
. The A (t) represent the 
density of HBV specific antibodies produce by the humoral immune response at time t and Z (t) represents 
the density of CTLs produced by the cell mediated immune response at time t, so that 
 ��	
 = ��	
 + ��	
 + ��	
 + �	
 + A �t
 + Z �t
  
 
The susceptible host cell is decreased by infection, which can be acquired following effective contact with 
free virus particles, at a rate � given by 
 

� = �1 + �                                                                                                                                                          �1
 

 
The uninfected target cell consist of constant recruitment rate of uninfected healthy cells and the rate of 
infection is given by saturation functional response which describes the interaction of the virus with 
uninfected cells (at a rate ��1 − �
, and � � 0 where � is the vaccination efficacy, 0 ≤ � ≤ 1) and infected 
hepatocytes can be cured and move back into the target population at that rate � and host cells is decreased 
by the natural death rate, �. Thus the rate of uninfected target cell is given by 
 ���	 = � − �� − �1 − �
��1 + � +  �� 

 
The short-lived infected cells consist of the interaction of the virus with uninfected cells (at a rate ��1 −�
�1 −  
, and � � 0  where   is the fraction of infection depends on the short lived and chronically 
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infected cells, 0 �  � 1) and decreases by the death rate ! of the short-lived infected cells and infected 
hepatocytes can be cured and move back into the target population at the rate � and the density of CTLs 
produced by the cell mediated immune response of infected cells at the rate P and progression rate " of 
short-lived infected cells. Thus the governing equation is 
 ���	 = �1 −  
�1 − �
��1 + � − !� − �� − #�$ − "� 

 
The chronically infected cells consist of the interaction of the virus with uninfected cells (at a rate ��1 −�
 , and � � 0) and decreases by the death rate  % of the chronically infected cells and the density of CTLs 
produced by the cell-mediated immune response of chronically infected cells. It is further increased by the 
progression rate " of short-lived infected cells. Thus the governing equation is 
 ���	  =  �1 − �
��1 + � − %� − #�$ + "� 

 
The free virus particles consist of the average number of virus produced during the lifetime of short-lived 
infected cells. It is also increased by the average number of virus produced during the lifetime of chronically 
infected cells and decreases clearance the free virus (at rate &), by humeral immune response against HBV 
infection of free virus particles (at a rate q) and by the density of CTLs produced by the cell-mediated 
immune response of free virus particles. Thus the governing equation is   
 ��	 = �'!� + �(%� − & − )* − #$ 

 
The humeral immune response consists of the production rate of antibodies (at the rate �+ depends on the 
number of short-lived and chronically infected cells and decreases by the lost of the antibodies (at a rate �+). 
Hence 
 �*�	 = �+�� + �
* − �+* 
 

The cell mediate immune response consist of the export of precursor CTL cells from the thymus at the rate b 
and CTL cells also expand in response to viral antigen derived from infected cells such as short-lived and 
chronic infection (at a rate ,- and is decreased by the lost of CTL (at a rate �.). Therefore, the governing 
equation is 
 �$�	 = / + ,-�� + �
$ − �.$ 

 
Based on the characteristics of HBV transmission within in-host the non-linear differential equations 
(associated variables and parameters are describes in Table 1) are given by 
 

 
01
02 = � − �� − �-34
516

-786 +  �� 

 

  0'
02 = �-39
�-34
516

-786 − !� − �� − #�$ − "� 

  0:
02  = 9�-34
516

-786 − %� − #�$ + "�                                                                                                  (2) 

 

  06
02 = �'!� + �(%� − & − )* − #$ 

 

  �*�	 = �+�� + �
* − �+* 
 

  0;
02 = / + ,-�� + �
$ − �.$        
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2.1 Analysis of the model 
 
Consider the model (2), with absence of immune response (i.e. model (2) with # = ) = �+ = / = ,- = 0). 
Then the model (2) in the reduced form is: 
 

 ���	 = � − �� − �1 − �
��1 + �  

 

  0'
02 = �-39
�-34
516

-786 − !� − �� − "�                                                                                                    (3)       

                                                                                                                    

 ���	 =  �1 − �
��1 + � − %� + "� 
 

 
06
02 = �'!� + �(%� − & 

 

 
 
 

Fig. 1. Model diagram of HBV in-host cell structure 
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Table 1. Data summary and description of parameters of the model 
 

Parameters Description Values � Constant rate of production of healthy host cells 100 [16] � Natural death rate of healthy cells varies � The vaccination efficacy 0 ≤ � ≤ 1 � �. �+ 

The interaction rate 
The lost rate of antibody 
Production rate of antibodies 

0.01 [17] 
0.066 [17] 
0.43 [18] � �+ 

Cured rate of infected hepatocytes 
The lost rate of CTL cells 

4 [18] 
0.43 [19]   The fraction  of infection depends on the short lived 

and chronically infected cells 
0 ≤  ≤ 1 

! " 
The death rate  of the short-lived infected cells 
Progression rate of short lived to chronically infected 
cell 

0.5  [20] 
0.012  [21] 
 

P Cell-mediated immune response 0.5  [varies] 
A The death rate  of the chronically infected cells Varies & The free virus clearance rate 0.67  [22] 
Q The antibody neutralization rate Varies / The export of precursor CTL cells from the thymus 0.12  [23] � The saturation infection rate varies �' The average number of virions produced during the 

lifetime of short lived infected cell 
varies 

�( 
 ,- 

The average number of virions produced during the 
lifetime of chronically infected cell 
HBV specific CTL stimulation rate 

varies 
 
varies 

   
 
2.2 Existence and the local stability of virus free equilibrium points (VFE) 
 
The reduced model (2) has a VFE, obtained by setting the R.H.S of the equations in (2) to zero, which is 
given by 
 

<� = ��∗, �∗, �∗, ∗
 = ?�� , 0,0,0@. 
 

The local stability of <� can be established using the next generation operator method. The matrices F and Q 
for the new infection terms and the remaining transfer terms from the model at the VFE are respectively 
given by, 
 

B =
CD
DD
E0 0 ���1 −  
�1 − �
��1 + �
F
0 0 �� �1 − �
��1 + �
F
0 0 0 GH

HH
I

=
CD
DD
E0 0 ���1 −  
�1 − �
�
0 0 �� �1 − �
�0 0 0 GH

HH
I
 

 

             and          J = K! + � + " 0 0−" % 0−�'! −�(% &L 
 
The associated reproduction number, denoted by �� = ��BJ3-
 , where �  denotes the spectral radius 
(dominant eigenvalue in magnitude) of the next generation matrix BJ3-. It follows that 
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�� = ��BJ3-
 = ��M�1 − �
N �(! +  �(� + "�( + �'!�1 −  
OP��! + � + "
&  

 
Lemma 1: The disease free equilibrium, <�  of the model (2), is locally asymptotically stable (LAS) if �� � 1, and unstable if �� � 1. 
 
The threshold quantity , ��  is the reproduction number for the model. The epidemiological implication of 
Lemma 1 is that HBV in-host spread can be effectively controlled in the community (when �� � 1) if the 
initial sizes of the population of the model are in the basin of attraction of the disease free equilibrium <�. 
 
2.3 Global stability of VFE of the model 
 
Lemma 2: The model (2) does not undergo backward bifurcation at �� = 1 in the absence of  immunity 
(i.e., when # = ) = �+ = / = ,- = 0). 
 
The result given in lemma 2(discounting the possibility of backward bifurcation when  # = ) = �+ = / =,- = 0) suggest that the DEF, <�, of the model (2), may be globally asymptotically stable (GAS) when �� � 1 and # = ) = �+ = / = ,- = 0 this is explored below. 
 
Theorem 1: The DEF, <�, of the model (2), with # = ) = �+ = / = ,- = 0 is GAS in D if �� � 1. 
 
Proof:  Consider the Lyapunov function 
 B = Q-� + QF� + QR 
 
Where, 

             

Q- = "�( + �'!! + � + " , 
  QF = �( ,                    
 

  QR = 1                       
 
With Lyapunov derivative given by (when dot represent differential with respect to t) 
 BS = Q-�S�	
 + QF�S�	
 + QRS �	
 

 

                    = "�( + �'!! + � + " T�1 −  
�1 − �
��1 + � − !� − �� − ��$ − "�U
+ �( T �1 − �
��1 + � − %� − ��$ + "�U + 1V�'!� + �(%� − & − )$ − #$W 

 
 

               = ���"�( + �'!
�1 − �
��! + � + "
�1 + �
 − �� �1 − �
�"�( + �'!

��! + � + "
�1 + �
 − �"�( + �'!


! + � + " I�! + � + "
 + "��(
+ �'!� − & +  �(�1 − �
����1 + �
  

 

                  = 5Y6�Z[\7[]^
�-34

_�^7`7Z
�-786
 − 5Y69�-34
�Z[\7[]^


_�^7`7Z
�-786
 + 9[\�-34
5Y6
_�-786
                     

 

                     −"��( − �'�! + "��( + �'!� − & + 9[\�-34
5Y6
_�-786
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= ���"�( + �'!
�1 − �
 − �� �1 − �
�"�( + �'!
 − &��! + � + "
�1 + �
 +  �(���1 − �
�! + � + "
��! + � + "
�1 + �
  

 

=  �(�1 − �
��! +  �(�1 − �
��� + "�(���1 − �
 + ���1 − �
�'! − �� �1 − �
�'!��! + � + "
�1 + �
 − & 

                                               

  = a6
�-786
 V�� − 1W − a6

�-786
 � � a6
�-786
 V�� − 1W ≤ 0 

 

Thus, BS ≤ 0 if �� ≤ 1 with BS = 0 if and only if v=0 (since � = 56
-786 = 0). It follows, from the LaSalle’s 

Invariance Principle [24] that  → 0 %c 	 → ∞. 
 
2.4 Existence of virus present equilibrium point (VPE): 
 
In this section, the possible existence and stability of virus present  (positive) equilibria of the model (2)               
(that means, equilibria where at least one of the infected components of the model is non-zero) will be 
consider in the absence of immunity, that is when (# = ) = �+ = / = ,- = 0). 
 
Let <-= (�∗∗, �∗∗, �∗∗, ∗∗) represent any arbitrary virus present equilibrium of the model (2) with = ) =�+ = / = ,- = 0. Solving the equation of the system (2), we have the following virus present equilibrium 
point (VPE) 
 

 ���	 = � − �� − �1 − �
�� + ��                                                                                                                �4
 

  ���	 = �1 −  
�1 − �
�� − !� − �� − "�                                                                                                  �5
 

                                      0:
02 =  �1 − �
�� − %� + "�                                                                                                                         �6
 

  ��	 = �'!� + �(%� − &                                                                                                                              �7
 

 
From (4) we get the first equilibrium point, 
 � − ��∗∗ − �1 − �
�∗∗�∗∗ + ��∗∗ = 0 
 ⇒ � + ��∗∗ = V� + �1 − �
�∗∗W�∗∗ 
 

⇒ �∗∗ = � + ��∗∗
� + �1 − �
�∗∗                                                                                                                                �8
 

 
From (5) we get, �1 −  
�1 − �
�∗∗�∗∗ − �! + � + "
�∗∗ = 0 
 

⇒ �∗∗ = �1 −  
�1 − �
�∗∗�∗∗
�! + � + "
                                                                                                                      �9
 

 
From (6),  �1 − �
�∗∗�∗∗ − %�∗∗ + "�∗∗ = 0 
 

                ⇒  �1 − �
�∗∗�∗∗ − %�∗∗ + Z�-39
�-34
k∗∗1∗∗
�^7`7Z
 = 0 

 

⇒ �∗∗ = V �1 − �
�! + � + "
 + "�1 −  
�1 − �
W�∗∗�∗∗
%�! + � + "
                                                              �10
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And from the equation (7) we have, 
                                    �'!�∗∗ + �(%�∗∗ − &∗∗ = 0 

 

⇒ �'! �1 −  
�1 − �
�∗∗�∗∗
�! + � + "
 + �(% V �1 − �
�! + � + "
 + "�1 −  
�1 − �
W�∗∗�∗∗

%�! + � + "
 − &∗∗ = 0 
                                

⇒ N�'%!�1 −  
�1 − �
 + �(%V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO�∗∗�∗∗
%�! + � + "
− &%�! + � + "
∗∗ = 0 

 

⇒ ∗∗ = N�'%!�1 −  
�1 − �
 + �(%V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO�∗∗�∗∗
&%�! + � + "
        �11
  

 
So, we have positive virus present equilibrium points only where �� � 1. The expression for �, at the 
endemic steady state, denoted by  �∗∗, is given by 
 

�∗∗ = �∗∗
1 + �∗∗                                                                                                                                                �12
 

       ⇒ �∗∗�1 + �∗∗
 = �∗∗ 
       ⇒ − 1&�! + � + "
 m��−&! − &" − &� − ��!�∗∗�' + ��!�∗∗�'� + ��!�∗∗�' − ��!�∗∗�' �

− ���∗∗�: ! − ���∗∗�: � + ���∗∗�: !� + ���∗∗�: �� − ���∗∗�:"+ ���∗∗�:�"
n
= �N�'%!�1 −  
�1 − �
 + �(%V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO��∗∗

&%�! + � + "
  

 

 
 ⇒ �%V&�! + � + "
 + ��!�∗∗�' − ��!�∗∗�'� − ��!�∗∗�' + ��!�∗∗�' � + ���∗∗�: !+ ���∗∗�: � − ���∗∗�: !� − ���∗∗�: �� + ���∗∗�:" − ���∗∗�:�"W= �N�'%!�1 −  
�1 − �
 + �(%V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO��∗∗ 
 ⇒ �%V&�! + � + "
 + ��!�∗∗�'�1 − �
 − ��!�∗∗�' �1 − �
 + ���∗∗�: !�1 − �
 + ���∗∗�: ��1− �
 + ���∗∗�:"�1 − �
W= �%N�'!�1 −  
�1 − �
 + �(V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO��∗∗ 
 ⇒ �%V&�! + � + "
 + �1 − �
���!�∗∗�' − ��!�∗∗�' + ���∗∗�: ! + ���∗∗�: � + ���∗∗�:"
W= �%N�'!�1 −  
�1 − �
 + �(V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO��∗∗ 
 ⇒ �%V&�! + � + "
 + �1 − �
N��!�∗∗�'�1 −  
 + ���∗∗�: ! + ���∗∗�: � + ���∗∗�:"
W= �%N�'!�1 −  
�1 − �
 + �(V �1 − �
�! + � + "
 + "�1 −  
�1 − �
WO��∗∗ 
 ⇒ �V&�! + � + "
 + V�1 − �
N!�'�1 −  
 + �: ! + �: � + �:"OW���∗∗

= �N�'!�1 −  
�1 − �
 + �( !�1 − �
+�( ��1 − �
+�( "�1 − �
+�("�1 − �
− �( "�1 − �
O��∗∗ 
 ⇒ �V&�! + � + "
 + V�1 − �
N!�'�1 −  
 + �: ! + �: � + �:"OW���∗∗

= �M�1 − �
N�'!�1 −  
 + �( !+�( � + �("OP��∗∗ 
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⇒ �&�! + � + "
 o1 + �1 − �
N!�'�1 −  
 + �: ! + �: � + �:"&�! + � + "
 ���∗∗p
= �M�1 − �
N�'!�1 −  
 + �( !+�( � + �("OP��∗∗ 

 
 

⇒ � o1 + �1 − �
N!�'�1 −  
 + �: ! + �: � + �:"&�! + � + "
 ���∗∗p
= �M�1 − �
N�'!�1 −  
 + �( !+�( � + �("OP&�! + � + "
 ��∗∗ 

 

⇒ � T1 + ���� �U = ��� 

 

⇒ ���� �F + � − ��� = 0 

 

⇒ ���� �F + ��1 − ��
 = 0 

 

⇒ ���� � + �1 − ��
 = 0 

 

⇒ ���� � = �� − 1 

 

⇒ � = �� − 1
8qr5

 

 

⇒ � = ���� − 1
���  

 = 5
8 s1 − -

qrt    If �� � 1 	ℎvw � � 0. 
 
Lemma 3: The model (2) with # = ) = �+ = / = ,- = 0 has a unique virus present equilibrium point , 
given by <- whenever �� � 1. 
 

2.5 Local stability of VPE point: (HBV- in host without immunity system) 
 
The local stability of the virus present unique equilibrium point (VPE) <-, will now be explored for the 
reduced model (2). Using the substitution �∗∗ = �∗∗ − � − � − , gives the following reduced model: 
 ���	 = �1 −  
�1 − �
�1 + � V�∗∗ − � − � − W − �! + � + "
� 

      ⇒ ���	 = V−�1 −  
�1 − �
%- − x-W� + V−�1 −  
�1 − �
%-W� + �1 −  
�1 − �
V%F − %-W 

 

      ⇒ ���	 = �−y%- − x-
� + �−y%-
� + y�%F − %-
 

  0:
02 = 9�-34


-786 V�∗∗ − � − � − W − %� + "�                                                                                     (13) 
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⇒ ���	 = V− �1 − �
%- + "W� + V− �1 − �
%- − %W� +  �1 − �
V%F − %-W 

 

      ⇒ ���	 = �−w%- + "
� + �−w%- − %
� + wV%F − %-W 

 

                          ��	 = �'!� + �(%� − & 

 
Theorem 2: The unique virus present equilibrium point, <-  of the model (2), is locally asymptotically stable 
(LAS) if �� � 1. 
 
Proof: The proof is based on using the technique in [25], which employs a Krasnoselskii sub- linearity trick. 
The essentially entails that the linearization of the system (13), has solution of the form 
 z̅�	
 = z�| v}2                                                                                                                                    (14) 
 
Substituting a solution of the form (14) into the linearized system of (13), gives the following linear system 
 ~z- = �−y%- − x-
z- + �−y%-
zF + �%F − %-
zR                                                                              �15
 

 ~zF = �−w%- + "
z- + �−w%- − %
zF + V%F − %-WzR                                                                           �16
 
 ~zR = �'!z- + �(%zF − &zR                                                                                                                        �17
 

 

Where, �∗∗ = 56∗∗
-786∗∗ = %-,  51∗∗

-786∗∗ = %F,   �1 −  
�1 − �
 = y,  �1 − �
 = w, x- = ! + � + ". 

 
Firstly, all the negative terms in the equation (17) are moved to their respective left hand sides. Solving the 
equation of (17) and substituting the result into the remaining   equations we have, 
 
From (17) we have, ~zR = �'!z- + �(%zF − &zR 
 
                                        ⇒ �~ + &
zR = �'!z- + �(%zF 
 

                                  ⇒ zR = []^.�7[\�.��}7a
                                                                                                 (18
 

 
Firstly, all the negative terms in the equation (16) are moved to their respective left hand sides and solving 
the equation of (16). 
 

From (16) we get, ~zF = �−w%- + "
z- − �w%- + %
zF + V%F − %-W �[]^.�7[\�.��}7a
 � 
 

                           ⇒ ~zF + w%-zF + %zF + w%-z- + %-�'!�~ + &
 z- + %-�(%�~ + &
 zF    = "z- + %F�'!�~ + &
 z- + %F�(%�~ + &
 zF 

 

                           ⇒ T~ + �w%- + %
 + %-�(%�~ + &
U zF + Tw%- + %-�'!�~ + &
U z- = T" + %F�'!�~ + &
U z- + %F�(%�~ + &
 zF�19
 

 
Firstly, all the negative terms in the equation (15) are moved to their respective left hand sides and solve that 
equation.  

From (15), ~z- + y%-z- + x-z- + y%-zF = �%F − %-
 �[]^.�7[\�.��}7a
 � 
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⇒ V~ + �y%- + x-
Wz- + y%-zF + %-�'!�~ + &
 z- + %-�(%�~ + &
 zF = %F�'!�~ + &
 z- + %F�(%�~ + &
 zF 

     ⇒ T~ + �y%- + x-
 + %-�'!�~ + &
U z- + Ty%- + %-�(%�~ + &
U zF = %F�'!�~ + &
 z- + %F�(%�~ + &
 zF                �20
 

 

From (18) we have,  �1 + }
a� zR = []^

a z- + [\�
a zF. 

 
Adding the equations (19) and (20) we observe that, 
 

T~ + x- + �y + w
%- + 2%-�'!�~ + &
U z- + T~ + % + �y+w
%- + 2%-�(%�~ + &
U zF = T" + 2%F�'!�~ + &
U z- + 2%F�(%�~ + &
 zF 

 

   ⇒ T1 + ~x- + �y + w
%-x- + 2%-�'!x-�~ + &
U z- + T1 + ~% + �y + w
%-% + 2%-�:%%�~ + &
U zF
= T "x- + 2%F�'!x-�~ + &
U z- + 2%F�(�~ + &
 zF 

 

     ∴ V1 +  B-�~
Wz- + V1 +  BF�~
WzF = � Z
�� + F��[]^

���}7a
� z- + F��[\�}7a
 zF 

         V1 +  BR�~
WzR = []^
a z- + [\�

a zF.                                                                                               (21) 

 

Where,  B-�~
 = }
�� + ��7�
���� + F��[]^

���}7a
 
 

                BF�~
 = ~% + �y + w
%-% + 2%-�:�~ + &
 

 

                BR�~
 = ~& 

 

With,     � =
CD
DD
E ��[]^

��a
��[\�

��a 0
Z
� + ��[]^

�a
��[\a 0

[]^
a

[\�
a 0GH

HH
I
 

 
Note that, the notation  ��$�| 
  (with i=1, 2, 3) denotes the i-th co-ordinate of the vector ��$̅
. It should 
further be noted that the M matrix has non-negative entries and equilibrium <- = ��∗∗, �∗∗, �∗∗, ∗∗
 satisfies  <- = �<- . Furthermore, since the co-ordinate of <-  are all positive, it 
follows then that if $̅ is a solution of (21), then it is possible to find a minimal positive real numbers s, 
depending on $̅, such that  
 ‖$̅‖ ≤ c<-                                                                                                                                                         �22
 
 

Where  ‖$̅‖ = ),,( 321 ZZZ  with the lexicographic order and ∥ . ∥ is a norm in . Now we want to show 

that  �v �~
 � 0. Deny it, we distinguish two cases: ~ = 0 and ~ � 0. In the first case, the determinate of 
the homogeneous linear system (13) in the variable $� �� = 1,2,3
 corresponds to that Jacobean matrix.  
 
Then, for ~ = 0, the only solution of the system (21) is the trivial one which implies that ~ � 0. Assume 
now that ~ � 0, and �v �~
 � 0. Let B�~
 = minN|1 + B�~
|, � = 1,2,3 O. It is easy to prove that in this 
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case |1 + B�~
| � for all i, and therefore B�~
 � 1. Taking norms on both sides of (21), and using the fact 
that M is non- negative, we obtain the following inequatiy: 
 B�~
‖$̅‖ = �‖$̅‖                                                                                                                                          �23
 
 
Using (22) and (23), we get  
 B�~
‖$̅‖ ≤ c�<- = c<- 
 
which implies,  ‖$̅‖ ≤ �

��}
 <- � c<- 

 
But this contradicts the minimality of s. Therefore, �v �~
 � 0 . In this way we proved the following 
theorem. 
 
Theorem 3: If   �� � 1, then the positive endemic virus present equilibrium state <- of the system (2) is 
locally asymptotically stable on the set D. 
 
2.6 Global stability analysis of VPE 
 
Theorem 4: The unique VPE of the reduced model (13). Consider the following non-linear Lyapunov 
function: 
 

             
•••









−+








−= I

I

I

k
H

H

H
L

**

1

**

11
ρ  

                     = ?1 − �∗∗
� @ o��∗∗ + �1 − �
��∗∗∗∗

1 + �∗∗ −  ��∗∗ − �� − �1 − �
��1 + � +  ��p
+ �x- ?1 − �∗∗

� @ o�1 −  
�1 − �
��1 + � −     x-�p 
 

= ��∗∗ + �-34
51∗∗6∗∗
-786∗∗ −  ��∗∗ − �� − �-34
516

-786 +  �� − _�1∗∗
�
1 −    �-34
5�1∗∗
�6∗∗

1�-786∗∗
 +     `1∗∗'∗∗
1 + ��∗∗ +

�-34
51∗∗6
-786 − `1∗∗'

1 + `
�� ��-39
�-34
516

-786 −     x-� − �-39
�-34
516'∗∗
'�-786
 +    x-�∗∗�  

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + �-34
51∗∗6∗∗

-786∗∗ − �-34
516
-786 − �-34
5�1∗∗
�6∗∗

1�-786∗∗
 +     `1∗∗'∗∗
1 +     �-34
51∗∗6

-786 − `1∗∗'
1 +

`�-39
�-34
516
���-786
 − `�-39
�-34
516'∗∗

'�-786
   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + �-34
51∗∗6∗∗

-786∗∗ − π+ ��∗∗ − ��∗∗ − �-34
5�1∗∗
�6∗∗
1�-786∗∗
 +    `1∗∗'∗∗

1 +    �-34
51∗∗6
-786 −

`1∗∗'
1 + `

�� Vx-�∗∗W − `'∗∗
' x-�∗∗  

 
= 2��∗∗ −  �� − _�1∗∗
�

1 + �-34
51∗∗6∗∗
-786∗∗ − ���∗∗ + �-34
51∗∗6∗∗

�-786∗∗
 − ��∗∗� +     ��∗∗ − ��∗∗ −    �-34
5�1∗∗
�6∗∗
1�-786∗∗
 + `1∗∗'∗∗

1 +
�-34
51∗∗6

-786 − `1∗∗'
1 +  ��∗∗ −     `���'∗∗
�

'   
 

= 2��∗∗ −  �� − _�1∗∗
�
1 − �-34
51∗∗6∗∗

-786∗∗ ∙ 1∗∗
1 + ��∗∗ ∙ 1∗∗

1 + �-34
51∗∗6
-786 − �� ∙     1∗∗

1 + ��∗∗ −     `��'∗∗�
'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 − �-34
51∗∗6∗∗

-786∗∗ ∙ 1∗∗
1 + ��∗∗ ∙ 1∗∗

1 + �-34
516
-786 ∙ 1∗∗

1 − �� ∙     1∗∗
1 +    ��∗∗ − �x-�∗∗ ∙ '∗∗

'   

 
 



 
 
 

Nayeem and Podder; BJMCS, 15(1): 1-21, 2016; Article no.BJMCS.23120 
 
 
 

14 
 
 

 
 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ 1∗∗

1 ∙ −�� ∙ 1∗∗
1 + ��∗∗ − �x-�∗∗ ∙ '∗∗

'   
 
 

= 2��∗∗ −  �� − _�1∗∗
�
1 + �� ∙ 1∗∗

1 ∙ '∗∗
' − �� ∙ 1∗∗

1 + ��∗∗ − �x-�∗∗ ∙ '∗∗
'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + �−π + ��∗∗ + �-34
51∗∗6∗∗

-786∗∗ � ∙ '∗∗
' ∙ 1∗∗

1 − �� ∙ 1∗∗
1 +     ��∗∗ −      �x-�∗∗ ∙ '∗∗

'   

 
 

= 2��∗∗ −  �� − _�1∗∗
�
1 + �−��∗∗ − �-34
51∗∗6∗∗

-786∗∗ + ��∗∗ + −��∗∗ +     �-34
51∗∗6∗∗
-786∗∗ � ∙ '∗∗

' ∙      1∗∗
1 − �� ∙

1∗∗
1 + ��∗∗ − �x-�∗∗ ∙ '∗∗

'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − �� ∙ 1∗∗

1 + ��∗∗ − �x-�∗∗ ∙ '∗∗
'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − �−π+ ��∗∗ + �-34
51∗∗6∗∗

-786∗∗ � ∙ 1∗∗
1 +     ��∗∗ −    �x-�∗∗ ∙ '∗∗

'   

 
 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − ��∗∗ ∙ 1∗∗

1 + ��∗∗ − �x-�∗∗ ∙ '∗∗
'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − ��∗∗ ∙ 1∗∗

1 + �� ∙ '∗∗
' − �x-�∗∗ ∙ '∗∗

'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − ��∗∗ ∙ 1∗∗

1 + �−π + ��∗∗ +     �-34
51∗∗6∗∗
-786∗∗ � ∙ '∗∗

' −     �x-�∗∗ ∙ '∗∗
'   

 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ '∗∗

' ∙ 1∗∗
1 − ��∗∗ ∙ 1∗∗

1 + ��∗∗ ∙ '∗∗
' − �x-�∗∗ ∙ '∗∗

'   
 

= 2��∗∗ −  �� − _�1∗∗
�
1 + ��∗∗ ∙ 1∗∗

1 s1 − '∗∗
' t − ��∗∗ ∙ '∗∗

' �x- − 1
  

 

= ��∗∗ s2 − 1
1∗∗ − 1∗∗

1 t − ��∗∗ ∙ 1∗∗
1 s1 − '∗∗

' t − ��∗∗ ∙ '∗∗
' �x- − 1
  

 
Since the arithmetic mean exceeds the geometric mean, it follows then that  
 

2 − ��∗∗ − �∗∗
� ≤ 0 

 

Also, if we consider 
'∗∗
' � 1 then the sign of the quantity ��∗∗ ∙ 1∗∗

1 s1 − '∗∗
' t is positive. 

 
Considering the parameter values from Table 2, the value of k1 is greater than 1. So the last term of the 
above expression is also positive. 
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Hence  �S � 0 for �� � 1. Hence, L is a Lyapunov function of the system (13) on  
�

�r. Thus, by the Lyapunov 

function L and the LaSalle’s Invariance principle [24], every solution to the equation of the reduced model 
(13) approaches (VPE) as 	 → ∞ for  �� � 1. 
 

3 Numerical Simulation and Discussion  
 
In this section, we have drawn some graphical presentation using data from Table 1. Here we have collected 
some data from [26] and we assumed some data for our convenience. 
 
In Fig. 2, consider the different rate of immune response parameters (#, ), �+ , /, ,-) for the reduced model 
(2). We see that the total number of short lived infected cells are slowly decreases with immune response 
when R0 is less than 1 (i.e.R0=0.0831<1). 
 

 
 

Fig. 2. Short lived infected cells with immune response when R0=0.0831<1 
 

 
 

Fig. 3. Short lived infected cells without immune response when R0=0.3960<1 
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In Fig. 3, consider the absence of immune response parameters (# = ) = �+ = / = ,- = 0) for the reduced 
model (2). We see that the total number of short lived infected cells are also slowly decreases without 
immune response when R0 is less than 1 (i.e.R0=0.3960<1). But the reduced rate is comparatively slow than 
the role of immune response. 
 
In Fig. 4, consider the different rate of immune response parameters (#, ), �+ , /, ,-) for the reduced model 
(2). We see that the total number of short lived infected cells are slowly decreases within the initial time and 
after that it is increases and due to the immune response short lived infected cells are reduces when R0 is 
greater than 1 (i.e.R0=4.5856>1). 

 

 
 

Fig. 4. Short lived infected cells with immune response when R0=4.5856 >1 
 

 
 

Fig. 5. Short lived infected cells without immune response when R0=1.6619>1 
 
In Fig. 5, consider the absence of immune response parameters (# = ) = �+ = / = ,- = 0) for the reduced 
model (2). We see that the total number of short lived infected cells are slowly decreases within the initial 
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time and after that it is gradually increases due to absence of immune response when R0 is greater than 1 
(i.e.R0=1.6619>1). 
 

In Fig. 6, consider the different rate of immune response parameters (#, ), �+ , /, ,-) for the reduced model 
(2). We see that the total number of chronically infected cells are slowly decreases with immune response 
when R0 is less than 1 (i.e.R0=0.7919<1). 
 

In Fig. 7, consider the absence of immune response parameters (# = ) = �+ = / = ,- = 0) for the reduced 
model (2). We see that the total number of chronically infected cells are also slowly decreases without 
immune response when R0 is less than 1 (i.e.R0=0.7919<1). But the reduced rate is comparatively slow than 
the role of immune response. 
 

In Fig. 8, consider the different rate of immune response parameters (#, ), �+ , /, ,-) for the reduced model 
(2). We see that the total number of chronically infected cells are slowly decreases within the initial time and 
after that it is increases and also decreases due to the immune responses. In the long term the infected cells 
tends to a stable situation when R0 is greater than 1 (i.e.R0=7.8940>1). 
 

 
 

Fig. 6. Chronically infected cells with immune response when R0=0.7919<1 
 

 
 

Fig. 7. Chronically infected cells without immune response when R0=0.7919<1 
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In Fig. 9, consider the absence of immune response parameters (# = ) = �+ = / = ,- = 0) for the 
reduced model (2). We see that the chronically infected cells are gradually increases due to the absence of 
immune response and in the long term the infected cells tends to a stable situation when R0 is greater than 1 
(i.e.R0=7.8940>1). 
 

 
 

Fig. 8. Chronically infected cells with immune response when R0=7.8940>1 
 

 
 

Fig. 9. Chronically infected cells without immune response when R0=7.8940>1 
 

4 Summary of Contributions 
 
We rigorously analyzed (mathematically and numerically) the dynamics of HBV in vivo in our model. The 
model equations are solved numerically and the results are presented graphically based on our simulations. 
The immune response can be sufficient to clear the HBV infection from hepatocyte cells of an individual. 
But in the absence of immunity, the viral load is brought down to very low levels although not completely 
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cleared . Most important, we also showed that the virus-free equilibrium is stable while the virus present 
equilibrium is also stable depending on the various values of the model parameters. Some mathematical and 
epidemiological findings of our study are given below: 
 

1.  The model has a virus free equilibrium (VFE), which is asymptotically stable if �� � 1 and 
unstable if �� � 1. We also found that, the model has a unique virus present equilibrium point and 
discuss the local stability at VPE using Sub-linearity trick when �� � 1 and global stability of that 
point using non linear Lyaponuv functions when �� � 1. 

2.  The decreases rate of infected cells with immune response is comparatively better than that of 
without immune responses. 

 

5 Conclusion 
 
In this paper, we have proposed a deterministic model for the dynamics of HBV inside the body of an 
infected human host. The model describes the interaction of the virus with the uninfected and infected cells 
taking into without immune response. The infection rate is given by saturation functional response which is 
depends on total viral load. We have shown that the dynamics of the model is fully determined by threshold 
parameter R0. The model have shown a globally asymptotically stable virus free equilibrium (VFE) 
whenever a certain epidemiological threshold, known the basic reproduction number, is less than unity. It 
has a unique virus present equilibrium (VPE) whenever the threshold quantity exceeds unity. By 
constructing Lyapunov function and using Lasalle’s invariance principle, we have investigated the global 
stability of equilibrium of the model. We have proven that if R0≤ 1 the VFE is GAS and under certain 
condition VPE is also globally asymptotically stable if R0>1. Finally, numerical simulations have been 
performed the disease stability on the basis of immune response. 
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