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Abstract

We develop a mathematical model to understand the dynamit8V-in host infection of individuals i
vivo. The model incorporates the uninfected host cellsitdived infected cells, chronically infected
cells, free virus particles, humoral immune respooseHBV specific antibodies and cell mediated
immune response of CTLs is analysed to gain its charstadewnithin human cell mechanism. At first we
have analyzed the stability analysis of host cells afettied cells without the effect of immunity system
and also discuss the graphical analysis with immunity sysB¥esent study represents a mathematical
model, which exhibit two equilibrium points namely, the viftee equilibrium (VFE) and virus present
equilibrium (VPE). It is found that using Lyapunov function tlres free equilibrium (VFE) is globally
asymptotically stable (GAS) whety < 1. And also the virus present equilibrium point (VPE) is ligca
asymptotically stable wheR, > 1.

Keywords: Hepatitis B virus in host (HBV-in host); basipragluction number; equilibrium points; local
and global stability; Laypunov function.
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1 Introduction

Hepatitis B virus is a potentially life-threading livierfection caused by the hepatise B virus. It is a major
global health problem. It can cause chronic infection (Iaageing) and puts people at high risk of death
from cirrhosis and liver cancer [1].

The infection has been preventable by vaccination since 1982 [accination is recommended by
the World Health Organization in the first day of lifepifssible. Two or three more doses are required at a
later time for full effect. This vaccine works about 9584he time. About 180 countries gave the vaccine as
part of national programs as of 2006 [4].

About one third of the world population has been infectexhatpoint in their lives, including 240 million to
350 million who have chronic infection [3,5]. Over 750,000 peajie of Hepatitis B each year [3]. The
disease is now only common in sub-Saharan Africa and Eaat #biere between 5-10% of the adult
population is chronically infected. High rates of chronieeation are also found in the Amazon and the
southern parts of eastern and central Europe, in the Migileand the Indian subcontinent, an estimate 2-
5% of the general population is chronically infected [#ss than 1% of the population in Western Europe
and North America is chronically infected [1].

Transmission of hepatitis B virus results from exposarifiection blood or body fluids containing blood.
Possible forms of transmission include sexual contact [6)dblwansfusion and transfusion with other
human blood product [7] are use of contaminated needles andesy [8] and vertical transmission from
mother to child (MTCT) during childbirth. Without interveai, a mother is also positive for HBsAg has a
20% risk of passing the infection to her offspring at tinge of birth. The risk is as high as 90% if the
mother is also positive for HBeAg [9].

The hepatitis B virus can survive outside the body fdeadt 7 days. During this time, the virus can still

cause infection if it enters the body of a person whmwigprotected by the vaccine. The incubation period of
the hepatitis B virus is 75 days on average, but can vary 3®@mo 180 days. The virus may be detected
within 30-60 days after infection and can persist and develogdhtonic Hepatitis B [1].

The likelihood that infection with the virus becomes chrodepends upon the age at which a person
becomes infected. 30-50% of children infected beforeatfeeof 6 years develop chronic infection. 20-30%
of adults who are chronically infected will develop cirrhosid Aver cancer [1].

Treatment strategies include drug therapy (for HBV) awer Iltransplantation in cases of end-stage liver
disease. However, these treatments are expensive argariuce significant side effects [10]. It is known
that many patients with liver transplants have exper@ii®V re infection, illustrating that treatments may
not result in a permanent cure [11]. There is still EBdiaccess to diagnosis and treatment of hepatitis B in
many resource-constrained setting, and many people ageodied only when they already have advanced
liver diseases. Liver cancer progresses rapidly andnegatoption are limited. In low-income settings, most
people with liver cancer die within months of diagnosis [Blug;, in order to analyze the with-host dynamics
of HBV, mathematical modeling is introduced.

Here we simplified a mathematical model of immune resptméBV infection. This focuses on the control
of the infection by the interferon, the innate and adaptiwmunity. Much interest has been devoted to
mathematical modelling of in vivo dynamics of viral infeas. These in-host models are formulated to
explore possible mechanisms and dynamical behaviours of ithk infection process. There is little
evidence that humeral immunity plays a major rolehim ¢learance of established infection. Cell-mediated
immune responses, particularly those involving cytotoxic T-lyagytes (CTLs) seems to be very important
[12,13]. During HBV infection, the hostimmune responsgsea both hepatocellular damage and viral
clearance. Although the innate immune response does not plgypificant role in these processes, the
adaptive immune response, in particular virus-specific oxiotT lymphocytes (CTLs), contributes to most
of the liver injury associated with HBV infection. CTetiminate HBV infection by killing infected cells
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and producing antiviral cytokines, which are then used to pti8¥ from viable hepatocytes [14].
Although liver damage is initiated and mediated by the £Tntigen-nonspecific inflammatory cells can
worsen CTL-induced immunopathology, and platelets activatethe site of infection may facilitate the
accumulation of CTLs in the liver [15].

Here we construct a simplified, biologically justified, threematical model of the dynamics of HBV infection
and want to focus on three important components of the immespmonse; the interferon and cellular
components of innate immunity and the adaptive immunity.ténhast responses during the early phases of
viral infections are mainly characterized by theduation of type-I interferon (IFN) and the activation of
natural killer (NK) cells [14]. Innate immunity gendyaplays a role immediately after infection to limieth
spread of the pathogen and initiate efficient developmfeam adaptive immune response.

Our goal of this study is how the early virological and mmwlogical events might influence the
development of activation of adaptive immunity necessarytdral HBV infection. All of these have the
same goal of limiting the concentration of the virus drddamage of the system.

The interaction between the HBV virus and both the innatieagiaptive immune response determines the
final outcome of the infection. Current treatments afecéifie in suppressing HBV viral replication but in
most cases fail to clear the virus [10]. Increased knaydeaf the virological and immunological events
secondary to HBV infection allows us to define the na@itms involved in viral clearance and persistence.

Here, we explore the natural history of hepatitimBast, and if possible the mathematical formulation of its
dynamicsin vivo and the construction of epidemiological aspects witmmaghematical model. The paper is
organized by, model formulation, analysis of the modesluation of the basic reproduction number and
determines the existence and stability of the virus &m®d virus present endemic equilibrium of the model.

2 Formulation of Model

We design a mathematical model to understand the tranemidgnamics and prevalence of HBV-in host.
The model is constructed based on the characteristie®89fin host transmission. In our model, the total
homogenously mixing population at time t, is denoted by NTfie total host population is sub-individual
into six epidemiological group#l(t) represent the uninfected target host cells at timedt short lived
infected celld(t), chronically infected cell§(t), and free virus particlds (t). The A (t) represent the
density of HBV specific antibodies produce by the hurionanune response at time t and Z (t) represents
the density of CTLs produced by the cell mediated immusigorese at time t, so that

N() = H(®) + 1(t) + C(&) + V() + A (D) + Z (©)

The susceptible host cell is decreased by infection,hwbéa be acquired following effective contact with
free virus particles, at a radegiven by

gV

“1+av M

The uninfected target cell consist of constant recruitmate of uninfected healthy cells and the rate of
infection is given by saturation functional response which dessrthe interaction of the virus with
uninfected cells (at a rafy1 — ¢), anda > 0 whereg is the vaccination efficacy, € ¢ < 1) and infected
hepatocytes can be cured and move back into the targelapiopiat that rate and host cells is decreased
by the natural death rate, Thus the rate of uninfected target cell is given by

dH (1 - 0o)BHV

T — uH

S I
dt Ttav °

The short-lived infected cells consist of the inte@ctof the virus with uninfected cells (at a rA@ —
0)(1 —¢), anda > 0 whereg is the fraction of infection depends on the short lived ehibnically
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infected cells, & ¢ < 1) and decreases by the death ft# the short-lived infected cells and infected
hepatocytes can be cured and move back into the target populttioe ratep and the density of CTLs
produced by the cell mediated immune response of infected atethe rateP and progression ratgof
short-lived infected cells. Thus the governing equation is

dl _ (1—-¢)(1—d)BHV
dt 1+aV

— 81 — pl — PIZ — 1l

The chronically infected cells consist of the interactdrthe virus with uninfected cells (at a r@&él —
o), anda > 0) and decreases by the death ratef the chronically infected cells and the density of CTLs
produced by the cell-mediated immune response of chronicddigted cells. It is further increased by the
progression ratg of short-lived infected cells. Thus the governing equation is

dC (1 —o0)BHV
E —W—QC—PCZ-FT]I

The free virus particles consist of the average numbeira$ produced during the lifetime of short-lived
infected cells. It is also increased by the average nuofbérus produced during the lifetime of chronically
infected cells and decreases clearance the free viruatég), by humeral immune response against HBV
infection of free virus particles (at a rate q) and by tensity of CTLs produced by the cell-mediated
immune response of free virus particles. Thus the governingieqist

14
=7 = Nl + NeaC —yV — qVA - PVZ

The humeral immune response consists of the productiorofatstibodies (at the rate, depends on the
number of short-lived and chronically infected cells dadreases by the lost of the antibodies (at gugte
Hence

dA— (I+0)A A
dt =ay Ha

The cell mediate immune response consist of the exporeofiggor CTL cells from the thymus at the rate
and CTL cells also expand in response to viral antigen defreen infected cells such as short-lived and

chronic infection (at a ratg and is decreased by the lost of CTL (at a pgje Therefore, the governing
equation is

dz
E=b+C1(I+C)Z_MzZ

Based on the characteristics of HBV transmission withimast the non-linear differential equations
(associated variables and parameters are describes enTljadrie given by

a_ JH — (1-0)BHV

dt 1+aV + pI

A - Q-0Q-DBY 51 b1 — PIZ — 7l

dat 1+aV

4 _ eQ-DBWY _ o¢ — PCZ 47l @)

dat 1+aV

& = N,81 + N.aC —yV — qVA— PVZ

dA

L=b+a(+07Z-p,Z
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2.1 Analysis of the model

Consider the model (2), with absence of immune responsen@del (2) withP =q =a, =b = ¢; = 0).

Then the model (2) in the reduced form is:

dH (1 —=0)BHV
ac TTH 1+av
Al _ A-9)A-)BHY _ o o
dt 1+aV oI —pl —nl
dac 1—0)BHV
= —(p( )P —aC +nl

dt 1+aV

= = N8I + NeaC —yV

al

PIZ PCE

iy +q4)¥
s o Iz

Fig. 1. Model diagram of HBV in-host cell structure

®3)
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Table 1. Data summary and description of parameters of the model

Parameters Description Values

T Constant rate cproduction of healthy host ce 100[16]

u Natural death rate of healthy cells varies

o The vaccination efficacy 0<o<1

B The interaction ra 0.01[17]

Uy The lost rate of antibody 0.066 [17]

ay Production rate of antibodies 0.43 18]

o Cured rate of infected hepatocy 4118

Ua The lost rate of CTL cells 0.43[19]

@ The fraction of infection depends on the shortlived 0<¢ <1
and chronically infected cells

) The death rate of the short-lived infected cells 0.5 [20]

n Progression rate of short lived to chronically infected 0.012 [21]
cell

P Cell-mediated immune response 0.5 [varies]

A The death rate of the chronically infected ¢ Varies

y The free virus clearance rate 0.67 [22]

Q The antibody neutralization rate Varies

b The export of precursor CTL cells from the thyi 0.12 [23]

a The saturation infection rate varies

N,

The average number of virions produced during the varies
lifetime of short lived infected cell

N, The average number of virions produced during the varies
lifetime of chronically infected cell
() HBV specific CTL stimulation rate varies

2.2 Existence and thelocal stability of virusfree equilibrium points (VFE)

The reduced model (2) has a VFE, obtained by setting the RfHI® equations in (2) to zero, which is
given by

T
& =HNICLV) = (;,0,0,0).

The local stability ok, can be established using the next generation operator métiediatrices F and Q
for the new infection terms and the remaining transfengefrom the model at the VFE are respectively
given by,

pr(l— )1 —-o0) pr(l— @)1 —o0)
, oo S| |00 ra—
= Brp(l—o0) |[= Brp(l—o)
|l0 0 u(l + av)? J| |l0 0 u J|
0 0 0 0 0 0

§+p+n 0 0
and Q= -n a O]
—N;6 —N.a vy

The associated reproduction number, denotedRpy: p(FQ~1), wherep denotes the spectral radius
(dominant eigenvalue in magnitude) of the next generation nia@iX. It follows that
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pr{(1 — 0){@N.5 + oNp + nN. + N;5(1 — ¢)}}
u@@+p+n)y

Ry =p(FQ™") =

Lemma 1. The disease free equilibriurg, of the model (2), is locally asymptotically stable (LAS)
R, < 1, and unstable iR, > 1.

The threshold quantityR, is the reproduction number for the model. The epidemiologpli¢ation of

Lemma 1 is that HBV in-host spread can be effectivelyrotiad in the community (wheR, < 1) if the
initial sizes of the population of the model are in theibaf attraction of the disease free equilibriggn

2.3 Global stability of VFE of the model

Lemma 2: The model (2) does not undergo backward bifurcatiaR,at 1 in the absence of immunity
(i.e., whenP =qg=a, =b =¢; =0).

The result given in lemma 2(discounting the possibility ofkbeed bifurcation whenP =g =a, = b =
¢; = 0) suggest that the DEE,, of the model (2), may be globally asymptotically staflGAS) when
Ry, <landP = q = a, = b = ¢; = 0 this is explored below.

Theorem 1: The DEF,g,, of the model (2), witP =g =a, =b =c;, =0is GASinD if R, < 1.

Proof: Consider the Lyapunov function

F =f11+f2C+f3V

Where,
NN, + N;6
h=%7 '
p+n
fZ =N,
;=1

With Lyapunov derivative given by (when dot represent déffiéial with respect to t)

F=fI)+ L0+ V()

_ N+ N6 (1 —9)(1 —0)BHV B

61—p1—pIZ—r]I]

T S+p+n 1+aV
o(1—0)BHV
+N, [w— aC — pCZ + nl] +1[N,81 + N.aC — yV — qVZ — PVZ]

BV (N + N;6)(1 — o)  prVe(l —a)(qN. + N;§)  (MN; + N,5)
= - - 16 +p+n)+nIN,
u@@+p+nA+al) u@+p+nA+aV) §+p+n

(ch(l - O')ﬂTL'V
+ N8I —yV + ST

— BV (INctN18)(1-0) _ BnVe(1-0)(Nc+N18) | ¢N(A-0)prv
u(S+p+n)(1+av) u(S+p+n)(1+av) u(l+av)

pNc(1-0)BrV

1IN = N8 +IN + NySI = yV + ¢ ==
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_ BV (N, + N,6)(1 — o) — V(1 — a)(yN + N,;8) —yVu(@S + p+m)(L + aV) + oNprV (1 — ) (8 + p + 1)
B u@+p+mA+ar)

_@N.(1—0)BnVs + oN.(1 — o)frVp + NN V(1 — o) + rV(1 — o)N,8 — V(1 — a)N;8 v
- u@+p+md+aV) -

oy T I 4 yv _
T (A+av) [Ro — 1] (1+av) aV < (1+av) [Ro—1] <0

Thus,F < 0if R, < 1 with F = 0 if and only if v=0 (sincel = % = 0). It follows, from the LaSalle’s

Invariance Principle [24] thdt —» 0 as t — .

2.4 Existence of virus present equilibrium point (VPE):

In this section, the possible existence and stability fsvpresent (positive) equilibria of the model (2)
(that means, equilibria where at least one of the iefecomponents of the model is non-zero) will be
consider in the absence of immunity, that is whes-(q = a4 = b = ¢; = 0).

Lete,= (H™,I™,C*™, V™) represent any arbitrary virus present equilibrium of rtredel (2) with=q =
a, = b =c¢; = 0. Solving the equation of the system (2), we have thevdtlg virus present equilibrium
point (VPE)

dH

E=n—uH—(1—o)AH+pI 4
dl

E:(l—(p)(l—a)lH—&—pI—nl (5)
dc

= = (1 - 0)AH —aC +l (6)
dv

— = N8l + NeaC —yv @

From (4) we get the first equilibrium point,
T—uH™ — (1 —a)A"H" + pI™ =0
>+ pl” =[u+ (1 —o)A*|H*

. w4+ pl™* g
= [ A —
u+ (1 —o)a (8)

From (5) we get(1 —p)(1 —a)A"H* = (S +p+n)I™ =0

_ (@)1 - )1H"

: I** 9

6+p+m €)
From (6),¢(1 — o)A™H™ —aC** +nl* =0

sk P E* sk ﬂ(l—w)(l—ﬂ)l**H** _

ﬁ(p(l—U)/‘{H —aC +W—O
1—-a)(0+p+n)+n(1 - 1—-0)]A"H™

Lo o=@ +p+m)+n0—9)A-0)] (10)

a(+p+n)
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And from the equation (7) we have,
NSI"™ + N.aC*™* —yV** =0

A-o)A-orH” e -0)@+p+n)+nd— @) -o)A"H"

= N,§ + N,
! G+p+n) ¢ al@+p+n)

yv** — O

- {N;a6(1 —9)(1—0) + Nealp(1-0)(E+p+n) +n(1 - @)1 —a)JA"H"
a(6+p+n)

—ya(+p+nmV™=0

_ {Njad(1—)A —0) + Naalp(1—0)(+p+1) +n(1 — )1 — ) JA"H"

>
ya(6 +p+n)

an

So, we have positive virus present equilibrium points amhereR, > 1. The expression fot, at the
endemic steady state, denoted &Y, is given by

ﬁv**

/1** -
1+ alV*

(12)
>+ aV™) =BV
2> —————(A—yS —yn—yp — aASH™*N; + aASH**N;6 + aASH**N;¢p — aASH*N; o
y(6+p+n)(( Y8 —yn—vyp i i % 19
— adH"*Nc@d — aAH* Nep + aAH*Nepdo + aAH**Negop — aAH™ Nen
+ a/lH**NCUn))
_BNa8(1 = 9)(A —0) + Nealp( = )8+ p+m) +n(1 — 9)(A — ) BAH™
ya(d +p+m)

Aly(§+p+1) +addH*N, — eASH*N,0 — cdSH** N,¢ + aAd6H*Nywa + elH™N.¢6 + aAH™N.op — alH N @b — aAH"* N gap + aAH* Ny — aiH**N_an]
=

y(§+p+n)
_Biad(1 - ¢)(1-0) + Nealp(1 - a) (6 +p +7) +1(1 - ¢)(1- o) }AH"

ya(d+p+n)

= Aaly(6+p+n) +alSH*N, — aASH**N,0 — aASH**N;p + aASH**N;po + aAH**N;¢@b
+ alH**Nepp — aAH**N;@pb8c — aAH**Nopap + aAH**Nen — aAH *Ngon)
= p{N,ad(1 — 9)(1 — 0) + Nea[p(1 = 0)(§ + p+ 1) +n(1 — 9)(1 — o) JAH™

> Aaly(6+p+1n) +aAdH*N,(1 — 0) — aASH**N;p(1 — 0) + aAH*N 8 (1 — o) + aAH*Npp(1
- 0) + adH*Nen(1 — 0)]
= pa{N,6(1 — 9)(1 — 0) + N[p(1 = 0)(§ +p+ 1) +n(1 — 9)(1 — o) JAH™

> Maly(+p+n)+ 1 —0)(@ASH*N; — aA6H** N, + alH**N; @8 + aAH** N pp + aAH**N:1)]
= pa{N,6(1 — 9)(1 — 0) + Nc[p(1 = 0)(§ +p+ 1) +n(1 — 9)(1 — o) JAH™

> Aaly(G+p+n)+ 1 —0){aA6H*N;(1 — @) + aAH** N8 + aAH*Ng@p + aAH**N:n)]
=Ba{N,;6(1 - )1 —0) + N[p(1—0)(6+p+n) +1n(1— )1 —a)}AH""

2 Ay@+p+n)+[(1=0)SN,(1— ) + NepS + Newp + NenHlaAH™
=p{N,6(1 - )1 —0) + No9S(1 — 0)+N.pp(1 — 0)+N.pn(1 — 6)+Nn(1 — o)
= Neon(1 — 0)}AH™

2 Ay +p+n)+[(1=0)SN,(1 —¢) + NepS + Neop + NenHlaAH™
= .B{(l - 0'){N16(1 - <P) + Nc(p6+Nc(pp + Ncn}}/‘{H**
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(1 —-0){6N,(1 — @) + NcoS + Neop + Nen
>Ay(6+p+ 1+ AH™
Y@ +p n)[ N CETED)) a

= B{(1 — O){N,6(1 — @) + N.p5+N.pp + N.n}}AH™

. /1[1 N (1= 0){6N,(1 — @) + NcS + Newp + Nen
Y@ +p+mn)
_ B{(1 = o) {N,6(1 - @) + NoS+Ncpp + Nen}}
B Y& +p+mn)

|

AH**

aR,
:~A[1+—A]=ROA
B
aR
5>—L2241-RA=0
B
aR,
S — 12 +A1—-Ry) =0
B
aR,
=>T/1+(1—R0)=0

Ry _r -1
=>—1=R,—
ﬁ 0

Ro_l
=>1= Ry
B
Ry—1
L, BB -1
aRy
B

(1—%) If Ry > 1 then 1 > 0.

a

Lemma 3. The model (2) wittP = q = a4, = b = ¢, = 0 has a unique virus present equilibrium point ,
given bye; wheneverR, > 1.

2.5 Local stability of VPE point: (HBV- in host without immunity system)

The local stability of the virus present unique equilibripoint (VPE)e;, will now be explored for the
reduced model (2). Using the substitutiéti = N** — I — C — V, gives the following reduced model:

Al (1- )1 -0)pV

[N* —T—-C-=V]—-(+p+nI

dt u 1+aV
=2 =[-0-00-0a -kl +[-(1 - )1 - Da]C+ 1 - )1 -0l - a]V
dl
> i (—=ma; — kI + (—ma,)C + m(a, — a,)V
dac _ (p(l—o’) EE N _ _
— =" —IN"—1-C=V]-aC+nl (13)

10
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= = (1~ )y + 1l + [=p(1 ~ s —alC + p(1 — 0z — a1V
dc
~w "

= (—na, + I + (—na; — a)C +nla, — a,]V

dv
P N;6I + N.aC —yV

Theorem 2: The unique virus present equilibrium poigt, of the model (2), is locally asymptotically stable
(LAS) if Ry > 1.

Proof: The proof is based on using the technique in [25], which employasn#&selskii sub- linearity trick.
The essentially entails that the linearization of tysesn (13), has solution of the form

Z(t) = z5e% (14)

Substituting a solution of the form (14) into the lineariggstem of (13), gives the following linear system

0z, = (—may — ky)z; + (—-may)z, + (a; — a;)z; (15)

0z, = (—na, + )z, + (—na, — a)z, + [a, — a,]z; (16)

0z3; = N6z, + N.az, —yzs a7
Where 1™ = 1va =ay, 1f§v =a,, 1-p)A1—-0)=mp(1l—-0)=nk =8§+p+1.

Firstly, all the negative terms in the equation (17)raoved to their respective left hand sides. Solving the
equation of (17) and substituting the result into the remainiggat®mns we have,

From (17) we havelz; = N,6z, + N.az, — yz3

= (0 +y)z3 = N;65z; + N.az,

N;6z1+Ncaz,

=273 = o 19)

Firstly, all the negative terms in the equation (16)racxed to their respective left hand sides and solving
the equation of (16).

From (16) we getfz, = (—na, + 1)z, — (na;, + a)z, + [a, — a4] [M]

6+y)

a,N,6 a,N.a aN6 a,N.a

a; N 1Ne 20Vp 2V¢
= 0z, + na,z, + az, + na,z 1+ Z, = L+ z
e ) R () R R ) S R i

a,N.a a,;N;6§ a,N;8 a,N.a

=160+ (na; +a) + ] +[  t—— [ 7,(19)

! @ +7) G5 e (A %) KRR U e

Firstly, all the negative terms in the equation (15)raow¥ed to their respective left hand sides and solve that
equation.

From (15),0z, + ma,z, + k,z; + ma,z, = (a, — a;) [M]

(6+y)

11
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N,6 a;N.a a,N;6 a,N.a
= [0 + (ma, + ky)]z, + ma,z ! Z, = z z
PTG Y T A T e T ern T e n
[0 +( k)4 a,;N;6§ ] + [ a;N.a a,N;8 + a,N.a 20)
ma Z ma Z Z
RN CES%) i O ) K G SR IR e
o], —Ms Nea
From (18) we have[l + ;] z3="-12 + 22
Adding the equations (19) and (20) we observe that,
[9 k4 () 1N,6] + [9 Fa+ (men) 2a,N.a [ 2a,N;6 L+ 2a,N.a
m n)a a m-+n)a Z
. RCESI SIS K KR IS | KO ) i

(m N n)a1 2a,N,6 [ (m+n)a; 2a;Nca
142 et
[ k(0 +7) “ “ “@+) -
[ 2a,N,8 ] 2a;N,
Z:
ky k1(9 +7) ©+y) ’
. _[n  2a2Ni8 202N¢
[+ Bz + 1+ Bz = [+ 500 0+ 52
[+ Fy(@)z; =22+, -
14 Y
4 mimay | 2a1N16
Where, Fy () = .-+ ==+ 0>
Foy <8y rtma | 24
2 a @ +v)
0
F3(0) =—
14
a@Ni8 - aaNea o]
kyy kv
) _|N , a2Ni6  azNc
With, M_|a+ ay 14 Ol
[ Ni§ Nea OJ
’y y

Note that, the notatiod (Z,) (with i=1, 2, 3) denotes thieth co-ordinate of the vectdd (Z). It should

further be noted that the M matrix has non-negative emtri and equilibrium
& = (H™, 1™, C™ V™) satisfiese; = Me; . Furthermore, since the co-ordinate spfare all positive, it
follows then that ifZ is a solution of (21), then it is possible to find a minirpakitive real numbers s,
depending o1z, such that

IZ|l < se; (22)

Where ||Z|| = (Z_l,Z_Z,Z_3) with the lexicographic order anid || is a norm inC . Now we want to show

that Re (6) < 0. Deny it, we distinguish two cases= 0 andf # 0. In the first case, the determinate of
the homogeneous linear system (13) in the varigb{é = 1,2,3) corresponds to that Jacobean matrix.

Then, foré = 0, the only solution of the system (21) is the trivial evidich implies tha® # 0. Assume
now thatd # 0, andRe () = 0. LetF(8) = min{|1+ F(6)|,i = 1,2,3}. It is easy to prove that in this

12



Nayeem and Podder; BJMCS, 15(1): 1-21, 2016; Azrticd.BIMCS.23120

case|l + F(8)| > for all i, and therefor&(6) > 1. Taking norms on both sides of (21), and using the fact
that M is non- negative, we obtain the following inequatiy:

F@OIZIl = MIIZ|| (23)
Using (22) and (23), we get
F(O)||Z|| < sMg, = sg;

. . . = S
which implies, || Z]| < %51 < s&

But this contradicts the minimality of s. TherefoRe, (8) < 0. In this way we proved the following
theorem.

Theorem 3: If R, > 1, then the positive endemic virus present equilibrium staté the system (2) is
locally asymptotically stable on the $&t

2.6 Global stability analysis of VPE

Theorem 4: The unigue VPE of the reduced model (13). Consider the foipwion-linear Lyapunov
function:

T LA VI B
H LT

H*™ - (1=0)BH"V** " (1 —0o)BHV
_(1_H [“H T e w7 !
"\ [(1- 1—0)BHV
+£(1 __) A-pU-0pHv
L I 1+aV

_ gy g Q=@BHTVE L (1-0)BHV _HEH™?E O (A-0)BHTPV pH™I™ -
= uH™ + 1+av** pl uH 1+av +pl H H(1+aV™) + H +pHT A+
(A-0)BH™V _ pH™I i[(l—q))(l—o)BHV_ k I_(1—¢)(1—0)BHVI**+ k I**]

1+av H k1 1+av 1 1(1+av) 1
— 2uH* — yH — BET? | A-0)BHTVT  (-0)BHV  (-0)B(HT)V™ pH™I™ A-0)BH™V _ pH™I
=4u IS H 1+av** 1+av H(1+aV*) H 1+av H
p(1-9)(1-0)BHV _ p(1-¢)(1—0)BHVI™™

ki(1+av) 1(1+av)
_ o, _RHET?E | (A-0)BHMVF v e (A=0)BH™MZV pH™ I A-0)BH™V
=2uH uH H 1+av* n+ pH pl H(1+av**) H 1+av
PH™I | p w] _ PIT L ras
—* P [k 1] - kil
e gy BET? L Q=@BHTVE L (=)BHTV oo _pe_ A=@BETVT | pHTI”
= 2uH KH H + 1+av* [HH + A+av™) pl ]+ HH pl H(1+av*™) H +
A=)H™V _ pH | e R

1+aV H 1
oyl gy BT Q-@BHTVT HT L Y (=o)BHTV L HT o pkat™?
=2uH uH H 1+av ™ H+p1 H 1+av pl H+p1 I
- o _ g — BET?  (A=0)BHTVT HT o HT  (A-0)pHv HT . HT o _ o 17
= 2uH uH H 1+av* a TP wav P L pkil I
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H(H™)? _ (1-¢)BH" V™ . H*

= 2pH” — pH == - "+ pl™]
o
pklf T
_ o _ WHTE (A-g)BHTV HT o HT . (1-@)BH™ V" .
= 2uH . ,uH H t+av™ H +pl H +[,uH + (1+av*) pl RH™
o1 |- £ =kt
55y 2 H™ 1
= 2uH" — pH =M g pp e pl B prt — ey I
k2 P — *k *k
H I H I
- o BET? T e o (Am0)BHTVT) 1 OHT O HT o _ o 17
= 2uH"™ — uH [ 2B D oy plyl™ - =
- o g BT T e (A-0)BHTVT B e A-o)pH™V™) I HT
= 2uH uH H +[uH Traye TP A —pHT + 1+av* ] I e
g
1
*#3 2 ok ok . .
=2MH**_MH ﬂ(H ) +pl**'IT'H7_ .H _pkll**.IT
- (H**)Z o I** H** - (1_ )BH**V** H** - - I**
=2ul” = pH =2 pre D g OB pr— phyt S
P H— u(H**)z o 17 HT o HT - I
=2uH™ — p +pl™ = pl —pky 0T
55\ 2 ok ok . I
= 2uH" — pH =2y ppe DL ey pr D phe
. WH™? | ITHT L HT [ o, Q-@BHTVT] I o I
= 2uH™ = pH = ===+ pI™ T T = pl H+[ m+uHT + 1+av* ] I pkil I
P H— u(H**)z o 17 HT o H e ] - I
=2uH™ — p ol = pl - =Pk
- (H**)Z o H** 1** - I**
=2uH" — uH - 4 pp -H(l—T)—pI (e = 1)
. N e e
= (2= 5= 0) o1 (=) ol G = 1)

Since the arithmetic mean exceeds the geometria nitfallows then that

H H**
- <0

2 —
H* H —

Also, if we considef’l— < 1 then the sign of the quantipy** -HH (1 — 17) is positive.

Considering the parameter values from Table 2,vtilae of k is greater than 1. So the last term of the
above expression is also positive.

14
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Hence L < 0 for R, > 1. Hence, L is a Lyapunov function of the system) @3 DE. Thus, by the Lyapunov
0

function L and the LaSalle’s Invariance princip®], every solution to the equation of the redunezdiel
(13) approaches (VPE) as» « for Ry > 1.

3 Numerical Simulation and Discussion

In this section, we have drawn some graphical ptetien using data from Table 1. Here we have ctdld
some data from [26dnd we assumed some data for our convenience.

In Fig. 2, consider the different rate of immunepense paramete(®, q, a,, b, c;) for the reduced model
(2). We see that the total number of short lived irddatells are slowly decreases with immune response
when R is less than 1 (i.eqR0.0831<1).

Short lived infected cells with immune response and R0O=0.0831

Total number of short lived infected hepatocyte cells
o o
o ~
| |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (hours)

Fi

0. 2. Short lived infected cellswith immune response when Ry=0.0831<1

Short lived infected cells without immune response and R0O=0.3960

0.9 b

0.8 ~

0.6 b

0.5 b

0.4 b

0.3 ~

0.2 b

Total number of short lived infected hepatocyte cells
IS]
Q3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (hours)

Fig. 3. Short lived infected cells without immune response when Ry=0.3960<1
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In Fig. 3, consider the absence of immune resppasemeter¢P = q = a4, = b = ¢; = 0) for the reduced
model (2).We see that the total number of short lived irddctells are also slowly decreases without
immune response wheny B less than 1 (i.e R0.3960<1). But the reduced rate is comparativiely shan
the role of immune response.

In Fig. 4, consider the different rate of immunepense paramete(®, q, a,, b, c;) for the reduced model
(2). We see that the total number of short lived irddatells are slowly decreases within the initiasdetiand
after that it is increases and due to the immuspaese short lived infected cells are reduces vitieis
greater than 1 (i.e )R4.5856>1).

Total nunrber of short lived infected hepatocyte cells

— " | | |
o] 5 10 15 20 25 30 35 40 45 50
Time (hours)

Fig. 4. Short lived infected cellswith immune response when Ry=4.5856 >1

Short lived infected cells without immune response and RO=1.6619
T T T T T T T T T

0.4 B

0.2 B

Total nunber of short lived infected hepatocyte cells
o
©
|

L L L
o] 10 20 30 40 50 60 70 80 90 100
Time (hours)

Fig. 5. Short lived infected cells without immune response when Ry=1.6619>1

In Fig. 5, consider the absence of immune resppasemeter¢P = q = a4, = b = ¢, = 0) for the reduced
model (2).We see that the total number of short lived irddatells are slowly decreases within the initial

16
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time and after that it is gradually increases dualisence of immune response wherisRgreater than 1
(i.e.R=1.6619>1).

In Fig. 6, consider the different rate of immunepense paramete(8, q, a,, b, c,) for the reduced model
(2). We see that the total number of chronically iréectells are slowly decreases with immune response
when R is less than 1 (i.eqR0.7919<1).

In Fig. 7, consider the absence of immune resppasemeter¢P = q = a4, = b = ¢, = 0) for the reduced
model (2).We see that the total number of chronically iréectells are also slowly decreases without
immune response wheny B less than 1 (i.eR0.7919<1). But the reduced rate is comparativiely shan
the role of immune response.

In Fig. 8, consider the different rate of immunepense paramete(®, q, a,, b, c;) for the reduced model
(2). We see that the total number of chronically irdeatells are slowly decreases within the initiadetiand
after that it is increases and also decreasesdaltietimmune responses. In the long term the ietecells
tends to a stable situation whepiRgreater than 1 (i.e,R7.8940>1).

Chronically infected cells with immune response and RO=0.7919
1 T T

ToEa nunber of dyonicdly infected hepatocyte oells

o 1 2 3 4 5 6 7 8 9 10
Time (hours)

Fig. 6. Chronically infected cellswith immune response when Ry=0.7919<1

Chronically infected cells without immune response and RO=0.7919
1 T T T T T T T T T

o 1 2 3 a4 5 6 7 8 9 10
Time (hours)

Tata nunber of dronically infedted hepeatooyte odlis

Fig. 7. Chronically infected cells without immune response when Ry=0.7919<1
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In Fig. 9, consider the absence of immune resp@asameteryP = q = a4 = b = c¢; = 0) for the
reduced model (2We see that the chronically infected cells arelgadly increases due to the absence of
immune response and in the long term the infectdld tends to a stable situation whegifkgreater than 1
(i.e.R=7.8940>1).

Chronically infected cells with immune response and RO=7.8940

Toa nuber of dronically infected hepatocyte oells

100 150
Time (hours)

Fig. 8. Chronically infected cellswith immune response when Ry=7.8940>1

Chronically infected cells without immune response and R0O=7.8940

o} 10 20 30 40 50 60 70 - - ny
Time (hours)

Total nunrber of chronically infected hepatocyte cells

Fig. 9. Chronically infected cells without immune response when Ry,=7.8940>1
4 Summary of Contributions

We rigorously analyzed (mathematically and numdsitéhe dynamics of HBV in vivo in our model. The
model equations are solved numerically and thelteeare presented graphically based on our sinmnsti
The immune response can be sufficient to cleaHB¥ infection from hepatocyte cells of an individua
But in the absence of immunity, the viral load isught down to very low levels although not comglgt
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cleared . Most important, we also showed that fhesvfree equilibrium is stable while the virus geat
equilibrium is also stable depending on the varieaisies of the model parameters. Some mathematichl
epidemiological findings of our study are givendvel

1. The model has a virus free equilibrium (VFE)iceh is asymptotically stable ®, < 1 and
unstable ifR, > 1. We also found that, the model has a unique \prasent equilibrium point and
discuss the local stability at VPE using Sub-liitgarick whenR, > 1 and global stability of that
point using non linear Lyaponuv functions whign> 1.

2. The decreases rate of infected cells with imentesponse is comparatively better than that of
without immune responses.

5 Conclusion

In this paper, we have proposed a deterministicehfmt the dynamics of HBV inside the body of an
infected human host. The model describes the ictieraof the virus with the uninfected and infectadls
taking into without immune response. The infectiate is given by saturation functional responsectvlis
depends on total viral load. We have shown thatgmamics of the model is fully determined by tiad
parameter R The model have shown a globally asymptoticallgbk virus free equilibrium (VFE)
whenever a certain epidemiological threshold, kndlae) basic reproduction number, is less than uitity.
has a unique virus present equilibrium (VPE) whemnethe threshold quantity exceeds unity. By
constructing Lyapunov function and using Lasali@'¢ariance principle, we have investigated the glob
stability of equilibrium of the model. We have peovthat if R< 1 the VFE is GAS and under certain
condition VPE is also globally asymptotically s@ahf Ry>1. Finally, numerical simulations have been
performed the disease stability on the basis ofumeresponse.
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