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Abstract 
 

Based on an assumption of multivariate normal priors for parameters of multivariate regression model, 
this study outlines an algorithm for application of traditional Bayesian method to estimate regression 
parameters. From a given set of data, a Jackknife sample of least squares regression coefficient estimates 
are obtained and used to derive estimates of the mean vector and covariance matrix of the assumed 
multivariate normal prior distribution of the regression parameters. Driven to determine whether Bayesian 
methods to multivariate regression parameter estimation present a stable and consistent improvement over 
classical regression modeling or not, the study results indicate that the Bayesian method and Least 
Squares Method (LSM) produced almost the same estimates for the regression parameters and coefficient 
of determination (to 4.dp) with the Bayesian method having smaller standard errors. 
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1 Introduction 
 
In recent years Bayesian methods have become widespread in many domains including computer vision, 
signal processing, and information retrieval and genome data analysis. The availability of fast computers 
allows the required computations to be performed in reasonable time, and thereby makes the benefits of a 
Bayesian treatment accessible to an ever broadening range of applications [1]. 
 
Bayesian inference allows informative priors so that prior knowledge or results of a previous model can be 
used to inform the current model. Bayesian inference can also avoid problems with model identification by 
manipulating prior distributions. Classical Statistical inference with any numerical approximation algorithm 
does not have prior distributions, and can become stuck in regions of flat density, causing problems with 
model identification. 
 
Bayesian inference considers the data to be fixed, which is true for real life data, and parameters to assume 
values within a specified range according to a prior distribution. LSM considers the unknown parameters to 
be fixed, and the data to be random. Estimation is not based only on the data at hand, but together with 
hypothetical repeated samples of similar data. The Bayesian approach delivers the answer to the right 
question in the sense that Bayesian inference provides answers conditional on the observed data and not 
based on the distribution of estimators or test statistics over hypothetical samples not observed [2].  
 
Clearly, Bayesian methods have become widespread in many domains. Studies by [3,4] apply Bayesian 
method of moments (BMOM) which does not assume likelihood functions and prior density. In their study, 
[3] demonstrated how the BMOM can be employed to analyze parametric and semiparametric models. Also, 
[4] carried out Bayesian analysis of regression errors. [5] focused on using Bayesian inference with assumed 
multivariate normal prior to estimate missing data and their covariance matrix in choice conjoint experiment. 
[6] provided Bayesian interpretations for White's (errors) heteroskedastic consistent (HC) covariance 
estimator, and various modifications of it, in linear regression models. For existing literature on Bayesian 
data analysis, readers can refer to the work by [7] on Bayesian theory for normally distributed random 
variables.  
 
The least squares estimation procedure has been used in problems that arise in many scientific investigations 
involving the study of observations whose theoretical mean values are known functions of parameters which 
are to be estimated ([8,9,10], etc). Suppose ��, ��, … , �� and let the available data consist of � observations ��, ��, … , �	 with the expected values 
��� = ℎ����, ��, … , ��, � = 1, 2, … , �. The least squares estimates 
are the values of ��, ��, … , �� that minimize = ∑ [�� − 
���]�	���  ; which are often obtained by solving the 

equations  
��
��� = 0, � = 1, 2, … , �. 

 
This paper seeks to compare the results from a classical LSM approach to that of a Bayesian approach.  
 

2 Model Specification 
 
The multiple linear regression model of a response variable � and � predictor variables  �,  �, ⋯ ,  �  for a 
sample size of � is given by 
 �� =  #$ + #� �� + #� �� +  ⋯ + #� �� + &�, � = 1, 2, ⋯ , �                                                        �1 

 
      = '( )� + &�                                                                                                                                                 �2                                                        
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where   ' = � #$,  #�, #�, ⋯ , #�  (;  )� = � 1,  �� ,  �� , ⋯ ,  �� ( and &�~ ,�0, -�,   
 
The multiple regression assumes that the errors are independent and distributed according to the normal 
distribution with zero mean and a constant variance denoted by -�. As a consequence of this, coupled with 
the assumption of fixed  �,  �, ⋯ ,  �  and #$,  #�, #�, ⋯ , #�; the ��s are also independent with each having a 
normal distribution with mean and variance given respectively '()�  and -� �� = 1, 2, ⋯ , �.   The least 
squares estimator for  ' = �#$,  #�, #�, ⋯ , #�′  is given by  '0 = �)()12 )′3 ; ) is an � × � matrix with ith 
row )�  and 3 = ���, ��, … , �	′ [8]. 
 
However if the components of ' can assume values within a given range based on a prior distribution 
instead of fixed parameters as in LSM of estimating the regression parameters, then the conditional density 
function for each of the ��′5 is given by 
 

6���|', )� =   �
√�9:  ;1 <

=>=�?�1'@)�=
 ;|��| ≥ 0                                                                                 �3  

 
The conditional joint density function of  �� , � = 1, 2, ⋯ , � is given by; 
 

6�C|', )� =   ∏ �
√�9:  ;1 <

=>=�?�1'@)�=	���      , C = ���, ��, … , �	                                �4 

 
Now suppose the random vector ' has a multivariate normal distribution with mean vector F =�G$, G�, G�, ⋯ , G�( and covariance matrix H  ; that is ' = � #$,  #�, #�, ⋯ , #�  ( ~ ,�I��F , H; then the joint 
density function of C and the coefficients   ' is given by; 
 

6�C|', )�   = �2J-�1K
=;1 <

=>= ∑ �?�1'@)�=K�L< × �2J1MNOP<
= QN|H|1�/�;1�/��'1S@TU<�'1S 

                = V;1 <
=>= ∑ W?�1'@)�X=1<

=Y∑ Z��K�L< �[�1NS�N=I� ∑ �[�1S�W[\1NS\XZ�\ N�]\ ^K�L< ;                                  (5) 
  

where,  V =  �2J-�1K
=  �2J1MNOP<

= QN|Σ|1�/�       
 
Now let,   
            

` =  �
:= ∑ ��� − '()a�	��� = �

:= ∑ �	��� �� − #$ − ∑ #b b��b�� �                                             

    = �
:= ∑ ��� +	��� 	

:= #$� + �
:= ∑ ∑ #b� b�� − �

:=	����b�� c#$ ∑ �� + ∑ ∑ #b b���	����b��	��� d 
                 + �

:= ∑ ∑ ∑ #b	����e�bI��1�b�$ #e b� e�                                                                                   (6)                                                                                                  

 
Also, let  f = �' − F(Σ1��' − F                 

                    =  ∑ gbb�b�$  W#b − GbX� + 2 ∑ ∑ gbe�e�bI��1�b�$ W#b − GbX�#e − Ge,  Σ1� = Wg�bX        

                    = ∑ gbbW#b� − 2Gb#b + Gb�X + 2 ∑ ∑ gbeW#b#e − Ge#b − Gb#e + GbGeX�e�bI��1�b�$�b�$             

                       = ∑ gbb#b��b�$ − 2 ∑ gbbGb#b + ∑ gbb�b�$�b�$ Gb� + 2 ∑ ∑ gbe#b#e −    2 ∑ ∑ gbe�e�bI��1�b�$�e�bI��1�b�$ Ge#b −
2 ∑ ∑ gbeGb#e�e�bI�1�b�$ + 2 ∑ ∑ gbeGbGe�e�bI��1�b�$                                                                                      (7)                             

 
So that,  
 

 ` + f = M 	
:= + g$$Q #$� + ∑ h �

:= ∑  b�� + gbb	��� i�b�� #b� 

+ 2 j j k 1
-� j  b� e� +  gbe

	
��� l�

e�bI�
�1�
b�$ #b#e − 2 k 1

-� j �� + mb
	
��� l #$ 

                     −2 ∑ h �
:= ∑  b��� + mb	��� i #b + n�b��                                                                                (8) 
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where mb = ∑ gb����� G� , o = 0, 1, 2, ⋯ , � ,  gbe = geb  for o p 5  and n  is a constant term independent of 
 #b , �o = 0,1,2, ⋯ , �. 
 
Clearly, 
 ` + f = q�' is a quadratic form of the matrix H[1� in ' = �#$, #�, #�, ⋯ , #�( . Therefore the posterior 
distribution of ' is of the form 
 

6�'|C, ) = V;1<
=��'                                                                                                                       (9) 

 
Hence it follows the multivariate normal distribution with mean vector given by 
 

 F[ = − �
� Σ'r                                                                                                                                   (10) 

 
where, H[ is a �� + 1 × �� + 1 matrix with an inverse H[1� = �s�b whose elements are given as; 
 

s$$ =  	
:= + g$$,  o = 1, 2 3, ⋯ , � 

 sb$ =  �
:= ∑  b�	��� + gb$,  o = 1, 2 3, ⋯ , � 

 s$b =  �
:= ∑  b�	��� + g$b ,  o = 1, 2 3, ⋯ , �                                                              (11) 

 s�b =  �
:= ∑  �t bt	t�� + g�b,  � p o 

 s�� =  �
:= ∑  �t�	��� + g�� ,  u = 1, 2 3, ⋯ , � 

 
and r is a column vector of order �� + 1 with uvw element given as; 
 

x$ = −2 y 1
-� j ��

	
��� + j g$bGb

�
b�$ z 

xt = −2 h �
:= ∑ ��	���  t� + ∑ gtbGb�b�� i ,  u = 1, 2 3, ⋯ , �                                                       (12) 

 

2.1 Estimation of F and H 
 
To estimate the parameters of the prior distribution of the regression parameters, we used jackknife samples 
as follows.  
 
Let  #{t = �#{$t , #{�t, #{�t, ⋯ , #{�t ; u = 1, 2 3, ⋯ , � be the uvw jackknife estimate of the regression parameters 
from a given dataset which consist of a response variable � and predictor variables   �,  �, ⋯ ,  � . Then      
the estimate of the mean vector F  of the random vector  ' = �#$, #�, #�, ⋯ , #�(  is given as 

 
 
where 
 

 Ĝb = �
	 ∑ #b�	���  , o = 0,1, 2 3, ⋯ , �                                                (13) 

 
and an estimate of the covariance matrix of ' given by  
 

  H0[  =  �
	1� ∑ W'0b − F}bX	b�� W'0b − F}bX( =   Wg~�bX.                                  (14) 

 
The estimate of the standard error of the �vw coefficient based on the Bayesian estimate is the square root of 
the �vw diagonal element of  H0[. That is  
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5;W#{�X = �g~�� , � = 0, 1, 2, … , �                                                                                                          �15 
 

3 Results 
 
To compare the LSM and the Bayesian method, we used a set of data based on a sample of size 63 from [2]. 
The data include one response variable, Sales Price, and four predictor variables namely, Square Feet, 
Rooms, Bedrooms, Age (See Appendix for data). The multiple regression model in equation (1) was fitted to 
the data to obtain the parameter vector ' estimates through the Least Squares method. 
 
Based on equations (13) and (14), jackknife estimates of the mean vector and covariance matrix of the 
random vector ' were computed from the same data as follows respectively. 
 F} = (11.3763, 0.0539, -13.3180, -0.3815, 5.8404) and   

 

H0 =
��
��
�    4.0974 −0.0009 −0.5721 −0.0022 −0.1996−0.0009   0.0000 −0.0001    0.0000 −0.0004−0.5721 −0.0001    0.4854    0.0002 −0.1024−0.0022   0.0000    0.0002    0.0002 −0.0014−0.1996 −0.0004 −0.1024 −0.0014    0.1796��

��
�
 

 
The inverse of H0 is given by, 
 

H01� = Wg�bX =
��
��
�       16.4841        22011.8900        45.5908        641.2054          94.812222011.8940 30094728.4200 61474.6287 860629.5473 128436.9868       45.5908         61474.6300      128.9556      1786.3398         265.1956     641.2054       860629.5500   1786.3398   31627.9544       3755.6499       94.8122       128436.9900     265.1956     3755.6499         556.9152��

��
�
 

 
Now based on the set of equations (11) an estimate of the posterior distribution of  ' is given by, 
 

H0[ =
��
��
�   3.8700 −0.0008 −0.5503 −0.0023 −0.1959−0.0008    0.0000 −0.0002   0.0000 −0.0004−0.5503 −0.0002    0.4782   0.0002 −0.1003−0.0023    0.0000    0.0002   0.0002 −0.0014−0.1959 −0.0004 −0.1003 −0.0014    0.1747��

��
�
 

 
Also from the set of equation (12), we have an estimate of the vector r  given as; 
 

r0 =
��
��
�        1087.88801495893.4600        3019.4140     40087.1390        6369.1730��

��
�
 

 
From equation (10), a Bayesian estimate of the parameter vector ' is given as 
 

F}[ =
��
��
�   11.3775     0.0539−13.3181−  0.3814      5.8407��

��
�
 

 
The estimates of the standard errors of the coefficients were also computed based on equation (15) and 
compared with those of the least squares standard errors as shown in Table 1. 
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3.1 Comparison of the LSM and Bayesian method 
 
Table 1 shows the coefficient estimates and the corresponding standard errors for the Least Squares model 
and the Bayesian Model. 
 

Table 1. Estimates of the coefficient of the two models 
 

Variable  name Least squares Bayesian 
Coefficients Standard error Coefficients Standard error 

Intercept 11.3755 12.2752 11.3775 1.9672 
Square. feet 0.0538 0.0085 0.0539 0.0015 
Bedrooms -13.3119 6.2096 -13.3181 0.6916 
Age -0.3813 0.1182 - 0.3814 0.0126 
Rooms 5.8476 2.6646 5.8407 0.4180 

 
The following table (Table 2) consists of variance results of the Least Squares model. 
 

Table 2. Analysis of variance of the least squares model 
 

 Df SS MS F Significance F 
Regression 4 55155.70 13788.92429 34.351239 1.0778E-14 
Residual 58 23281.77 401.4098083   
Total 62 78437.47       

 
The analysis of variance for the multiple regression model gives an F statistics value of  34.3512 with a 
corresponding P-value of 1.0778;1��  which is significant at 5% significance level. The coefficient of 
determination (n� value from the LSM is 0.7032 indicating 70.32% of the variability in the response data is 
explained by the predictor variables. 
 
The sum of squares due to error (SSE) of the Bayesian model is computed as follows, 
 

jW�� − ���X� = 23281.7800 
��

���
 

 

Now our total sum of squares is  ��� = ∑ W�� − �X� = ����� 78437.4660. 
 
The coefficient of determination of the Bayesian model is given by 
 

n� = 1 − ��

��� = 1 − 23281.7800

78437.4660 

                            = 0.7032 
 
Clearly the coefficients of determination �n� values) for the two models are almost the same. 
 

4 Discussion and Conclusion 
 
From Table 1, it can be seen that estimated coefficients '0 are almost the same for the Least Squares model 
and the Bayesian model. In estimating the coefficient of determination ��, of the two fitted models, they 
both reported almost the same values.  
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This study reveals that, though the Least Squares method is just sufficient for estimating the coefficients of 
the regression parameters, the Bayesian estimates recorded comparatively very small standard errors; 
making the Bayesian method more robust. The use of additional information provided by the assumption of 
multivariate normal prior distribution of the '′� accounted for the smaller standard errors of the Bayesian 
estimates. 
 
Future studies may consider using Bootstrap estimates for the parameters of the prior distribution of ' and 
consider a smaller data set to see whether same results will occur. It is anticipated that same finding will 
result in these situations. The main contribution of this work is to provide a means of using traditional 
Bayesian methods to estimate parameters of multiple regression coefficients under the assumption of 
multivariate normal prior distribution as against the existing simulation methods.  
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1]  Bishop CM, Tipping ME. Bayesian regression and classification, advances in learning theory: 

Methods, models and applications. NATO Science Series III: Computer and Systems Sciences.         
2003;190. 
 

[2]  Rossi PG, Allenby RM. Bayesian statistics and marketing. New York: John Wiley & Sons; 2005. 
 

[3]  Zellner A, Tobias J, Ryu HK. Bayesian method of moments (BMOM) analysis of parametric and 
semiparametric regression models. South African Statistical Journal. 1999;33:41-70. 
 

[4]  Zellner A. Bayesian method of moments (BMOM) analysis of mean and regression models. Springer 
New York. 1996;61-72. 
 

[5]  Zeithammer R, Lenk P. Bayesian estimation of multivariate-normal models when dimensions are 
absent. Quantitative Marketing and Economics. 2006;4(3):241-265. 
 

[6]  Poirier DJ. Bayesian interpretations of heteroskedastic consistent covariance estimators using the 
informed Bayesian bootstrap. Econometric Reviews. 2011;30(4):457-468. 
 

[7]  German A, Carlin BJ, Stern SH, Rubin BD. Bayesian data analysis. Florida: Chapman and Hall/CRC; 
2003. 
 

[8]  Bowerman BL, O’Connell TR. Applied statistics. Von Hoffman Press Inc; 1997. 
 

[9]  Seber GAF, Wild CJ. Nonlinear regression. Wiley, New York; 2003. 
 

[10]  Van de Geer S. Least squares estimators. In Everitt BS, Howell DC, (eds.). Encyclopedia of statistics 
in behavioral science. Wiley and Sons. 2005;2:1041–1045. 

 
 
 
 
 
 



 
 
 

Mettle et al.; BJMCS, 15(1): 1-8, 2016; Article no.BJMCS.23145 
 
 
 

8 
 
 

Appendix A: Data used for the analysis 
 

No Sales 
price 

Square 
feet 

Bed 
room 

Age Rooms No Sales 
price 

Square 
feet 

Bed 
room 

Age Rooms 

1 53.5 1008 2 35 5 33 63 1053 2 24 5 
2 49 1290 3 36 6 34 60 1728 3 26 6 
3 50.5 860 2 36 8 35 34 416 1 42 3 
4 49.9 912 3 41 5 36 52 1040 2 9 5 
5 52 1204 3 40 6 37 75 1496 3 30 6 
6 55 1204 3 10 5 38 93 1936 4 39 8 
7 80.5 1764 4 64 8 39 60 1904 4 32 7 
8 86 1600 3 19 7 40 73 1080 2 24 5 
9 69 1255 3 16 5 41 71 1786 4 24 8 
10 149 3600 5 17 10 42 83 1503 3 14 6 
11 46 864 3 37 5 43 90 1736 3 16 7 
12 38 720 2 41 4 44 83 1695 3 12 6 
13 49.5 1008 3 35 6 45 115 2186 4 12 8 
14 105 1950 3 52 8 46 50 888 2 34 5 
15 152.5 2086 3 12 7 47 55.2 1120 3 29 6 
16 85 2011 4 76 9 48 61 1400 3 33 5 
17 60 1465 3 102 6 49 147 2165 3 2 7 
18 58.5 1232 2 69 5 50 210 2353 4 15 8 
19 101 1736 3 67 7 51 60 1536 3 36 6 
20 29.4 1296 3 11 6 52 100 1972 3 37 8 
21 125 1996 3 9 7 53 44.5 1120 3 27 5 
22 87.9 1874 2 14 5 54 55 1664 3 79 7 
23 80 1580 3 11 5 55 53.4 925 3 20 5 
24 94 1920 3 14 5 56 65 1288 3 2 5 
25 74 1430 3 16 9 57 73 1400 3 2 5 
26 69 1486 3 27 6 58 40 1376 3 103 6 
27 63 1008 2 35 5 59 141 2038 4 62 12 
28 67.5 1282 3 20 5 60 68 1572 3 29 6 
29 35 1134 2 74 5 61 139 1545 3 9 6 
30 142.5 2400 4 15 9 62 140 1993 3 4 6 
31 92.2 1701 3 15 5 63 55 1130 2 21 5 
32 56 1020 3 16 6       

Data from Bowerman and O’Connell, (1997) 
_______________________________________________________________________________________ 
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