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Abstract 
 

The present paper deals with moving boundary problems by fixing the moving boundary by an 

assumption of the form ( ) 2,2 ≥= mtts mς , m is assumed power and ς  is an unknown. An iterative 
algorithm is then developed within the main algorithm to solve the phases that appear throughout the 
whole process with moving boundaries at each time step as phases with fixed boundaries. A two test 
problems are solved using the present method. The results due to the first test problem were compared 
with previous numerical results based on boundary integral formulation, while the results due to the 
second one was compared with available analytical solution. An overall good agreement is obtained for 
both two examples compared with the previous numerical and analytical results. 
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1 Introduction 
 
Phase change problem is a practical example of moving boundary problems and usually highly nonlinear 
due to the moving interface conditions [1-3]. Practical engineering problems are efficiently solved 
nowadays only by numerical methods, such as finite difference [4], finite element [5-7] and boundary 
elements [8-9]. Boundary integral method is very convenient to use for solution of Stefan problems in 
which, nodal points are located only on the boundaries and move together with the phase change interface, 
this means that, there is no need for any mesh adjustment [10-11]. The present paper deals with moving 

boundary problems by fixing the moving boundary by an assumption of the form ( ) 2,2 ≥= mtts mς , m is 

assumed power and ς  is an unknown. An iterative algorithm is then developed within the main algorithm 
to solve the phases that appear throughout the whole process with moving boundaries at each time step as 
phases with fixed boundaries. A two test problems are solved using the present method. The results due to 
the first test problem were compared with previous numerical results based on boundary integral 
formulation, while the results due to the second one was compared with available analytical solution. An 
overall good agreement is obtained for both two examples compared with the previous numerical and 
analytical results.  
 

2 Physical Background and Mathematical Formulation 
 
2.1 Physical background 
 
Melting and solidification are classical types of Stefan problems. Assume that we have a mould of finite 
length filled with liquid – in case of melting – and this mould is subjected to cooled air, then solidification 
starts appearing while the remaining still liquid and a moving interface between the two phases starts 
appearing and its position varies with time. Then the main unknown in this process is to trace the moving 
boundary with time. Once the moving boundary becomes known at each time step, then all other unknowns 
become easy to found. The problem underhand is classical melting or solidification Stefan’s problem in 
which a new technique to trace the moving boundary is developed within main algorithm to solve such 
problems. 
 
2.2 Mathematical formulation 
 
A domain Ω  consists of SΩ -solid phase- and 

l
Ω -liquid phase- representing the overall domain. The 

domain is bounded by a boundary Γ , while the two phases are separated by a moving interface mΓ , see   

Fig. 1. 
 
The mathematical formulation is as follows: 
 

( ) ( )
l,,

x,
x,2 si

t

tu
tu i

ii =
∂

∂
=∇α                                  (1) 

 
The subscripts ,i s= l  refer to solid and liquid phases respectively. On the fixed boundary, two boundary 
conditions are prescribed: 
 

( )
1foutu Γ∈∀= xx,                              (2) 
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In case of solidification, we have: 
 

( ) ( )
2

,, ftq
n

tu
K s Γ∈∀=









∂
∂

xx
x,

                   (3) 

 
Or in case of melting, we have: 
 

( ) ( )
2

,, ftq
n

tu
K Γ∈∀=









∂
∂

xx
x,

l
                   (4) 

 
In equations (2-4) 

21 ff Γ∪Γ=Γ
 
represent the boundary of the domainΩ . The boundary condition (3) or (4) 

depends mainly on the type of the problem under consideration. On the moving boundary, two boundary 
conditions are prescribed: 
 

( ) fmfm uutu ΓΓ∈∀= orxorx, ,                               (5) 
 

nLVρ±=fluxheat output -fluxheat Input                               (6) 
 

( ) iuu =0x,                            (7) 

 
Based on the boundary integral formulation for fixed boundary [8], for any point the integral equation takes 
the following form: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫∫ −+=
ττ

τξτξτξτξ
0 00 00

,,;,*,,;,*0,;,*0,,
lll

dxdttxutxqkdxdttxqtxukdxxuxuu   (8) 

 

 
Fig. 1. Problem domain 
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3 Numerical Iterative Algorithm 
 
In this section, the suggested iterative algorithm starting from determination the time at which phase change 
starts occurring up to the end of the process is shown in Fig. 2. As it appears, the first part of the developed 
algorithm is designed to determine the time at which phase change starts occurring within a prescribed error 
to ensure high accuracy of the computed results. 
 
The algorithm in few steps: 
 

1- Assume linear variation between the moving boundary and its speed, with 2=m  in the moving 
boundary equation. 

2- Assume an initial position and subsequently initial speed. 
3- Solve the two phases as fixed boundary problems with prescribed allowable error, then two 

possible outputs will occur, the first output is an achievement the prescribed error then move to 
next time step. The second output is a non-achievement of the prescribed error, then updating for 
both moving boundary position and its speed, then repeat again the process. 

 
The details of the proposed algorithm are shown in the flow chart in Fig. 2. 
 

4 Numerical Results 
 
In the present paper, two different examples are solved, the first one is melting problem and the results due to 
the present method are compared with previous numerical results. The second problem is oxygen 
concentration and the results are compared with previous analytical results. The details for both examples are 
in the next subsections. 
 

4.1 Example (1) 
 
A solid medium initially at uniform temperature, KU o

i 300= , the boundary 0=x  exposed to two different 

cases of input heat flux, constant, ( ) 6105×=tQ  and linear, ( ) ttQ 4103×=  respectively. Fig. 3 shows the 
movement of solid-liquid due to constant heat flux, and the resulting ablation surface due to the same heat 
flux is shown in Fig. 4. The same results due to linear case are plotted on the same plot as shown in            
Figs. 5-6. From the above figures, it is found that the solid-liquid interface has the same behavior in both 
constant and linear cases of heat flux that is concave upward. In case of linear heat flux input this concavity 
becomes more apparent than the constant case. In the contrary, the ablated interface behaves concave 
downward but in linear case this concavity increases. 
 
Also, It is found from the computation that the exponent m  has a direct effect in the obtained results where 
the deviation from the previous moving code results starts increasing by increasing m  but still acceptable 
up to 5=m . But this conclusion is not acceptable when tracing ablation interface, see Figs. 4 and 6, 
respectively. 
 

4.2 Example (2) 
 
Assume that the free surface of the solid 0=x , is exposed to a constant oxygen concentration oC , and 

initial oxygen concentration is zero. Assume that oxygen concentration in oxidized and metallic layers is 
denoted by 1C  and 2C  respectively, the state equations describing this process, see [12]. The following 
numerical data are used in the computations: 
 

               2
1 274.0 mD µ= , 2

2 166.0 mD µ= , 0.1=oC , 65.0=crC and 25.0][ =C . 
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Fig. 2. Flow chart of the suggested algorithm 

yes

 

No

 

yes

 

Next 
time step 

yes

 

21,,,0 εεtt j ∆=  

Solve fixed domain problem 

Do Ni ,1=  

( ) m
j utuE −= x,1

 

tttt m
j

F ∆+==−1
 

Guess ( )
Pred

x, 11 , −− FF
i Vts  

Solve BI-code for Fixed domain 

problem to get 
n

u

n

us

∂
∂

∂
∂

l,  

11 ε≤E  

No

 

Compute 








∂
∂

−
∂
∂

=− n

u
K

n

u
K

c
V s

sF
l

lρ
1

1Comp
 

1,1,
2

−− −= FiFiE EstComp ζζ  

Estimate 1, −Fiζ  

Compute 1, −Fiζ  

1 

Update moving boundary 
and its normal velocity 

No

 
22 ε≤E  

1 

( ) fF
i ts Γ>−1

 

Stop 

New time step 



 
 
 

Ahmed et al.; BJMCS, 15(1): 1-10, 2016; Article no.BJMCS.23880 
 
 
 

6 
 
 

120 124 128 132 136 140122 126 130 134 138

Time (Sec)

8.4

8.8

9.2

9.6

10

8.6

9

9.4

9.8

S
ol

id
-L

iq
ui

d 
In

te
rf

ac
e

Case: Constant input heat flux

BE-Moving Code 2009

BE-Fixed Code Present, m=2

BE-Fixed Code Present, m=3

BE-Fixed Code Present, m=4

BE-Fixed Code Present, m=5

 
 

Fig. 3. Solid-Liquid due to constant input heat flux 
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Fig. 4. Ablation surface due to constant heat flux 
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Fig. 5. Solid-liquid due to linear heat flux 
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Fig. 6. Ablation surface due to linear heat flux 



 
 
 

Ahmed et al.; BJMCS, 15(1): 1-10, 2016; Article no.BJMCS.23880 
 
 
 

8 
 
 

0 2 4 6 8 101 3 5 7 9

Time (hours)

0

20

40

60

80

100

10

30

50

70

90

O
xi

d
at

io
n

 fr
on

t (
M

ic
ro

n
s)

Location of oxidation front

Analytical Solution

Present Solution 2015

 
 

Fig. 7. Location of oxidation front 
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Fig. 8. Oxygen concentrations in both layers at time = 0.5 h 
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Fig. 9. Oxygen concentrations in both layers at time = 2.5 h 
 
Since the exact analytical solution to the planar oxidation problem is available, a comparison between exact 
solution and the present method is made as shown in Fig. 7. It is clear that there is a good agreement 
between the two solutions with small acceptable error. Follow up the results of the present method,          
Figs. (8-9) show the oxygen concentration in both layers at different times ht 5.0=  and ht 5.2= . It is clear 
from these figures that the behavior is the same but the distance from the surface increases by growing up 
the time.  
 

5 Conclusion 
 
Numerical methods, techniques, and algorithms are long way and has no end as long as there exist scientific 
research, and the present paper is a trial in this long way. The main idea is to solve the moving boundary 
problem as a fixed boundary by a prescribed treatment of the moving boundary. An iterative scheme based 
on the boundary integral equation for fixed boundary was developed with prescribed allowable error. It is 
found from the computations the following: 
 

1- The mathematics of the proposed technique is so simple compared with the boundary integral 
equation for domain with moving boundary. 

2- Global number of iterations ranges from 20 to 25 iteration per time step. 
3- Prescribed errors are small and acceptable for the practical applications. 
4- The proposed hybrid technique can be modified to cover higher dimensional problems. 
5- All moving boundary problems of like similarity moving interface can be easily solved using the 

proposed hybrid technique. 
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