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Abstract 
 

This paper presents a fourth-order nonlinear conjugate gradient method in equality constrained 
optimization. The idea is to transform the constrained problem into unconstrained type through the 
Lagrange multipliers scheme. Using four terms of Taylor series development, we approximate the 
transformed function (augmented Lagrange function). Lastly, we employ the new fourth-order nonlinear 
conjugate gradient method in equality constrained optimization to solve the optimization problem. We 
present the algorithm in steps and some properties of the gradients are proved, using classical results. 
Also, the convergence analysis has been proved under classical and known assumptions. Furthermore, we 
present the obtained numerical results and compare them to some existing results. The analysis of results 
confirms that the new method is accurate. 

 

Keywords: Fourth-order conjugate gradient method; equality constrained optimization; objective function; 
nonlinear polynomial approximation; Lagrange multipliers scheme. 

 
Mathematical subject classification (2010):  65K10. 
 

1 Introduction 
 
The equality constrained optimization of a smooth function, ,Q  in many variables remains an important 

problem in optimization theory. This is true since many scientists seek to solve this class of problems, in real 
life applications. Every equality constrained optimization problem [1] could be put in the form 
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)(xQOptimize
x                                                                                                                             

(1) 

 
subject to 
 

,...,,2,1,)( mibxw ii   

 

where )(xQ , m
i xW )( and .ib The general approach is to transform the problem into 

unconstrained type by Lagrange multipliers scheme and solve the zeros of the function gradient since the 
local minima occur at stationary points. A fourth-order nonlinear conjugate gradient method in equality 
constrained optimization finds the global minimum of the transformed function. The new method is 
characterized by the following. Consider the transformed case of problem (1):  
 

)(min xf
nx                                                                                                                  

(2) 

 

where f is a differentiable function. We note that ))((min)(max xfxf
nn xx



. In order to solve this 

unconstrained problem, we need to design a special algorithm that reduces the high storage and computation 
cost of some computed matrices [2]. Various types of conjugate gradient method have been used to solve 

unconstrained minimization problems [3]. Usually, a function F is constructed to approximate .f  If the 

objective function is not quadratic or the inexact line search is used, some of the conjugate gradient methods 
fail to converge globally [4,5]. The process of minimizing a non-quadratic objective function through the 
conjugate gradient method is called the nonlinear conjugate gradient method [6,7]. Many scholars have 
published their findings on this method [8,9,10]. New algorithms on nonlinear conjugate gradient method are 
available [11,12,13,14,15]. Every conjugate gradient method is an iterative scheme of the form 
 

...,2,1,0,1  kdxx kkkk                                                                                                   (3) 

 

where
0x  is an initial point, 

k is a step size and the search direction   
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)( kk xfg  and
k specifies the choice of conjugate gradient method [15]. It could take any of the 

following forms. 
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and 
 
Many of these conjugate gradient methods use inexact line search technique [21]. Others use exact line 
search approach [22]. Stoer [23]  studied the conjugate gradient method on a subspace and obtained a variant 
of the method with an inexact line search approach. The search for a reliable and accurate scheme motivated 
this work on a fourth-order nonlinear conjugate gradient method (FONCGM) in equality constrained 
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optimization. This method is presented in seven sections. Sections (two and three) discuss the transcription 
of the equality constrained problem to unconstrained type and FONCGM, respectively. In section four, we 
give the convergence analysis. Section five presents some test problems. Section six explains the numerical 
results while section seven ends this work with a conclusion. 
 

2 Transcription of Equality Constrained Optimization Problem  
 
We transform the constrained problem (1) into unconstrained problem of the form  
 

Optimize ),( xf                                                                                                                            (5) 

 

,Nx  m and f  is the Lagrange’s function defined by 

 

.))(()(),(
1





m

i
iii xWbxQxf  i , i  = 1, 2… m are the Lagrange multipliers. A solution to 

problem (1) can then be found by solving problem (5) if there exists a vector  
 

 = ( 1,  2 , … ,  m)  such that  
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 =  0                                                                        (6) 

 
and 
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 ),(
 =  0.                                                                      (7) 

 

Equations (6) and (7) will generate a set of mN   equations in mN   unknowns to be solved. As the 
dimensionality of the problem increases, we have many equations to solve simultaneously. The problem 
computation becomes very tedious, if analytic method is employed. Thus, we develop and apply the fourth-
order nonlinear conjugate gradient method where the objective function is the augmented Lagrange function 
defined by 
 





m
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ii

m
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iii xWbxWbxQxf
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1
))(()(),,(                                           (8) 

 
 is a scalar called the penalty parameter. The multipliers updates usually take the form 

 

))((1 xWb iiii                                                                                                              (9) 

 

Our approach is to choose initial vectors 00 ,x , a parameter k and use the new fourth-order nonlinear 

conjugate gradient method to optimize ),,( kxf   over .N The scalars k ...,,, 10  could be 

determined on the basis of results obtained during iteration process. The new fourth-order nonlinear 
conjugate gradient method in equality constrained optimization follows. 
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3 The Fourth-Order Nonlinear Conjugate Gradient Method (FONCGM) 
 
The fourth-order nonlinear conjugate gradient method is based on four terms Taylor series representation of

f  by .F This representation is expected to be a better approximation of f than the usual representation. 

The following is the representation of F at point .kx
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Using a vector 
kxxh  and )( k

i
i xfA  , in equation (10), we have 
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Using tensor notations presented in [24], we have 
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where )(xg  denotes the gradient of ,f  at point x , 
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T  denotes transpose. It follows that 
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Similarly, 
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Using )( 11   kk xFG , we present a fourth-order nonlinear conjugate gradient algorithm in which the 

directions of search, 
kDDD ...,,, 10

 are H  conjugate. That is, 

 

011  kk
T
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From the classical results, it follows that  
 

kkkkk DHGG 11                                                                                                                      (19) 

 

With a given 0x , k is computed such that 
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From equations  (12) and (15), 
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The algorithm is described below. 
 
Algorithm 1. (FONCGM) 
 

Step 1:  Select ||.||,2,0  Nx N  is Euclidean norm,
k ,0

 and 0 (a small number: 0.000001).   

Set ),,( 000 kxfG   , 00 GD  and .0k  

Step 2:  If ,|||| kG  stop. Choose ,kx otherwise go to step 3. 

Step 3:  Compute 
k such that )()( kkkk xFDxF   and go to step 4.  

Step 4:  Compute 
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Go to step 5. 
 

Step 5: Check for optimality of .G  
 

If ,||0 11    iii andG  go to step 6.If ,||0 11    iii andG  go to step 7. 

 

Step 6: Update   as follows. 
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Set .1 kk  Go to step 2. 
 

Step 7: Stop iteration. 1ix
 
is the final optimal point found 

 

Remark: Dai and Yuan [12] presented a nonlinear conjugate gradient algorithm for solving unconstrained 
optimization problems. Below is Dai-Yuan’s algorithm for problem (1). 
 

Algorithm 2. (Nonlinear conjugate gradient method) 
 

Step 1:  Select 2,0  Nx N and 0 . Set 00 gd  and .0k  

Step 2:  If ,|||| kg , stop. Take .kx Otherwise go to step 3. 

Step 3:  Compute 
k such that )()( kkkk xfdxf  , go to step 4.  

Step 4:  Compute ,
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Step 5:  Set .1 kk  Go to step 2. 
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4 Convergence Analysis 
 
We employ the convergence results of algorithm (2), as contained in the following lemma and theorem, to 
establish the convergence of algorithm (1). We assume that the objective function satisfies the following 
conditions. 
 

4.1 Assumptions 
 

I. f  is bounded below in 
N and is four times continuously differentiable in a neighborhood Z  

of the level set
 )()(: 0xfxfxL N 

 

II. The gradient, ),(xg  is Lipschitz continuous in ,Z namely, there exists a constant 0Lc such 

that 
.,||,||||)()(|| ZyxyxLcyfxf 
 

III. The extended hessian matrix )(xH  is positive definite. 

 

4.2 Lemma 
 

I. Suppose that 
0x  is a starting point for which the above assumptions are satisfied. Consider any 

method of the form (2), where
kD , a vector, is the descent direction and 

k satisfies the standard 

Wolfe conditions [18], then 
 

 


0
2

2

||||k k

k
T
k

D

DG

 
 

II. Suppose that 
0x  is a starting point for which the above assumptions are satisfied. Let 

 ...,2,1, kx k be generated by algorithm (1). Then, the algorithm either terminates at a 
stationary point or converges in the sense that 

 

III. 

0||)(||inflim 


k
k

xG

  

Theorem 1. Suppose that f  is continuously differentiable, bounded below and the norm of the Hessian 

matrix is bounded. The iteration  kx  is generated by algorithm (2) satisfies *xxk   as k and the 

Hessian matrix of f is positive definite. Let 
k be the relative error in the truncated conjugate gradient 
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Proof (Lemma (i)): 
 

Dai and Yuan proved this lemma for algorithm (2):  
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is obvious on using the assumptions of lemma (i), Dai and Yuan’s proof and k in place of 1k in equation 
(17). 
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Proof (Lemma (ii)): 
 
Dai and Yuan proved this lemma for algorithm (2). The proof is same since, from equation (16),
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Proof of theorem (1): The proof is available in many literatures. Noting that

),()()( kkkk xgxFxGG   the proof is same since the assumptions on algorithm (1) meet the 

requirements of this theorem. Using *,0 xxmM kk    and the results from NMC [25], we 

have 
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End of proof. 
 

5 Numerical Consideration 
 
To illustrate the behavior of the algorithm proposed in this paper, we wrote MATLAB codes for solving the 
following problems and ran them on a PC with Windows 7. The gradient tolerance is 0.000001. The 

problems are of the form (1) with the following expressions for )(xQ  and the constraints. 
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Problem 4 [27], problem (11) 
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Problem 9 [29], problem 10 
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The numerical results obtained for the new method vis-a-vis some classical methods (FOCGM, 
FR, DY, PRP) are presented in Table 1, (P: Problem; ITE: Number of iterations; TIME: Computer execution 

time (s); FN.: Function value at the end of iterations).  The stopping criterion is 000001.0||)(|| kxg

while the maximum number of iterations is 1000. 
 
Performance profiles have been introduced by Dolan and More’ [31]. The main idea is to show, graphically, 
the performance of various solvers on a given set of problems. That is, the curves are used to compare the 

efficiency of a set S  of solvers on a set P  of test problems. spt ,  
denotes the performance of a solver s  

(based on the number of iterations,  function evaluations, gradient  evaluations or execution  time) on the 
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where (.)n  denotes the number of elements of a set. The performance profiles  of the methods discussed in 

this paper are shown below. 
 

Nwaeze et al’s [32] line search method was used in all the computations since it satisfies the standard Wolfe 
conditions [19]. 
 

Table 1. Number of iterations and CPU time  in seconds 
 

P 
 

       FONCGM              FR              DY              PRP 
ITE TIM FN. ITE TIM FN. ITE TI FN. ITE TIM FN. 

1 10 0.07 1.15E- 9 0.06 1.97E-12 3 0.04 2.02E-15 3 0.04 1.33E-12 
2 5 0.04 6.59E-

16 
20 0.05 1.57E-15 12 0.05 2.69E-14 20 0.04 5.16E-16 

3 5 0.24 1.17E-9 20 0.35 8.86E-11 2 0.3 6.35E-10 2 0.29 4.61E-9 
4 330 20.10 0.02281

7 
336 20.56 0.02281

7 
336 20.5

8 
0.02281
7 

336 20.57 0.02281
7 5 138 2.15 1.91666

6 
180 2.95 1.91666

6 
180 3.08 1.91666

6 
175 2.55 1.91666

6 6 2 0.09 6.89E-
12 

4 0.13 2.39E-10 4 0.11 2.39E-10 19 0.16 1.12E-10 
7 600 3.17 2.9E-9 900 4.26 8.69E-9 900 3.34 1.78E-9 900 3.5 6.14E-10 
8 761 0.86 0.29354

9 
100
0 

1.03 0.29354
9 

100
0 

0.94 0.29354
9 

100
0 

1.1 0.29354
9 9 100

0 
46 1.93998

5 
100
0 

141 4.30065
6 

100
0 

27.3
8 

1.67661
7 

100
0 

28 4.11381
1 1

0 
171 0.30 1.58E-

13 
900 0.37 2.54E-14 501 0.08 9.55E-13 900 0.34 2.33E-15 

1
1 

202 2.74 2.47E-
14 

304 2.43 3.08E-13 323 2.81 2.39E-13 120 1.67 1.43E-12 
1
2 

9 0.35 0.05395 10 0.21 0.05395 10 0.21 0.05395 10 0.20 0.05395 
 

6 Discussions on Numerical Results 
 
Table 1 contains the numerical results obtained through the new method vis-à-vis some existing methods. 
Table 2 displays the convergence trend of algorithm (1) on problem (12). These results indicate that the new 
method compares favorably well with the other methods. The execution time depends on various methods 
used for evaluating the step lengths and the speed of computer processing unit. We observed that the new 
method is relatively faster in some of the iterations recorded for the tested problems. In confirmation, Figs. 1 
and 2 shows that the new method is fast and less costly as the number of function iterations per computed 
problem is relatively low. Finally, we saw that the results are accurate. 
 

Table 2. Solution of problem (12) by algorithm (1) 
 

Iteration )(xf  Sum of constraints 

1 0.900335462627903 4.000000000000000 
2 0.059832098605313 0.068911047490848 
3 0.054326438636889 0.004569764836374 
4 0.053979357005701 0.000052498245927 
5 0.053952294603960 0.000093989215249 
6 0.053950054179953 0.000036636879952 
7 0.053949865266059 0.000011504805313 
8 0.053949849268435 0.000004014424548 
9 0.053949847897123 0.000000713781098 
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Fig. 1. Performance profiles on number of iterations 
 

 
 

Fig. 2. Performance profiles on execution time 
 

7 Conclusions 
 
We hereby present a fourth-order nonlinear conjugate gradient method in equality constrained optimization 
to scientists and engineers. Some of the basic properties of the method have been explored and exploited. 
Numerical results show that the method is highly efficient and reliable.  
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