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Abstract 
 

The choice of quantization method and the requirement to achieve a trade-off between compressed image 
quality and degradation are very crucial in the overall performance of a lossy image compression 
algorithm. In this paper, uniform and non-uniform scalar quantization schemes of biometric fingerprint 
image were studied. Comparative analyses of non-uniform quantization methods were also conducted and 
these include dither-based quantization and the Lloyd-Max quantization methods.  The quality of the 
quantized output fingerprint image was determined in terms of Signal-to-Quantization Noise Ratio 
(SQNR). The degree of distortion or quantization error was determined in terms of the Mean Square 
Quantization Error (MSQE). The non-uniform quantization method performed better than the uniform 
quantization method in terms of the SQNR and MSQE values. It was also found out that, the performance 
of dither-based non-uniform quantization on biometric fingerprint image is not as efficient as the Lloyd-
Max approach when the number of bits used in the quantization process increased. The results showed 
that the higher the number of bits used in the quantization process the higher the quality and the less the 
distortion in the resulting images. 

 

Keywords: Biometric fingerprint; image compression; quantization; dither. 

 

1 Introduction 
 
Transform-based image compression is aimed at reducing image redundancy and identifying insignificant 
image pixels by isolating the various frequencies of the image.  Image pixels frequencies are of paramount 
importance in the process of data coding because low frequency components which represent the 
approximation of the image correspond to the important or significant image features, whereas high 
frequency components which correspond to the details of the image (that is background and edges) are 
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mostly represented by coefficients which are less important or insignificant [1]. Thus, when wavelet 
transform isolates the various frequencies of image pixels, coefficients that correspond to high frequencies 
can be quantized heavily while coefficients that correspond to low frequencies are quantized lightly or not at 
all after which the quantized output is entropy coded [1].  This is the principle behind lossy compression 
scheme. 

 
The focus of this paper is on the quantization stage of an optimal compression system.  Quantization is the 
process of mapping a large set of input values to a smaller set, such as rounding values to some unit of 
precision [2]. The round-off or truncation error introduced by quantization is referred to as quantization error 
or quantization distortion and it is the difference between the actual input source value and quantized output 
value. Quantization is crucial to digital signal processing systems and it forms the core of lossy compression 
algorithms [2,3]. Whenever image data are captured, they have to be quantized in order to store and transmit 
them digitally. The natural image with its infinite level of detail is mapped to a finite number, depending on 
the desired accuracy of the operation. In information technology and digital communications, there is 
relentless quest for developing efficient quantization techniques for compression that deliver optimal results 
depending on the particular input data. Therefore, the quantization algorithm has to recognize and retain the 
important features of the input data and then discard the unimportant ones without any waste of quantization 
levels [1]. 

 
In lossy image compression application, quantization is used in two ways, namely [1]: 

 
i) If the data to be compressed is represented by large numbers, quantization is used to convert it to 

small numbers. This is because small numbers take less space than large numbers, thus compression 
is achieved by quantization; 

ii) If the data to be compressed is analog, quantization is used to digitize it into a discrete set of small 
numbers.  The smaller the numbers, the better the compression that is realized but also the greater 
the information loss. 

 
It is therefore, of paramount importance to achieve a trade-off between the degree of data loss and 
compression ratio in the design of a lossy compression algorithm.  In this research work, the source data for 
compression is a biometric fingerprint image.  The fingerprint image is represented by a set of real numbers 
and these can either be uniformly quantized or non-uniformly quantized [1]. The quantized sequence where 
each symbol or pixel value appears in the source data with equal probability is uniformly quantized.  
However, when the symbols in the source data are not uniformly distributed, the sequence of quantized 
values should be realized such that the sequence are distributed in the same fashion as the original source 
image and are non-uniformly quantized [1].   

 

2 Quantization 
 
Source image data for lossy compression often must be quantized for cost-effective storage through efficient 
quantization method. The source input image such as the grayscale biometric fingerprint image under 
consideration in this research work is represented in 8-bits and this must be quantized using less number of 
bits than the original 8-bits. This process results in some form of distortion which is known as quantization 
noise. Fig. 1.0 shows a simple block diagram of the quantization process and the associated quantization 
noise. 

 
In simple terms, a quantization process represents an input source of random variables with large symbols 
values with a quantized output with smaller symbol values. The quantized output is a close approximation of 
the source input signal. The output symbol values are predetermined values corresponding to the range of the 
input values and the number of bits allowed in the quantization process [4]. The design of a quantization 
system involves the specification of the decision intervals and corresponding output or representative levels 
and a mapping rule [4]. Since there are many possibilities to partition the input range, the focus of the 
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research is on the efficient quantization method that minimizes a certain criterion or cost function such as 
degree of distortion in the process. There are two types of quantization and these include: scalar and vector 
quantization.  
 

 

 

Fig 1.0. Block diagram of quantization process and the associated noise 
 

2.1 Vector Quantization 
 
In vector quantization, the source image is partitioned into equal-size blocks or vectors of pixels and the 
image encoder generates a list of blocks of the same size or lookup table, also known as codebook [1]. It 
should be noted that the process of generating and maintaining a codebook makes the vector quantization 
process a complex one [1]. Consequently, the implementation of a compression algorithm based on vector 
quantization is flawed by its high computational cost and complexity. Therefore, adopting a quantization 
method with less complexity such as scalar quantization that does not require codebook generation is 
advantageous in realizing a compression algorithm that is amenable to simple implementation.   
 

2.2 Scalar Quantization 
 
In scalar quantization, each input symbol of the source image is treated separately in producing the quantized 
output [5]. A quantizer can be specified by its input partitions or intervals and output levels (also called 
reconstruction values). If the input range is divided into levels of equal spacing, then the quantizer is termed 
as a uniform quantizer, and if not, it is termed as a non-uniform Quantizer [5].  
 

2.3 Uniform Quantization 
 
In a uniform quantizer, all source intervals or partitions are necessarily of the same size. A uniform quantizer 
has the following properties [3]: 
 

i) The decision boundaries are spaced evenly; 
ii) The reconstruction levels are also spaced evenly, with the spacing as the decision boundaries.  The 

reconstruction levels are the midpoints of the intervals. 
 

The constant spacing in a uniform quantizer’s decision boundaries and reconstruction levels is referred to as 
the step size. 
 

2.4 Lloyd Max non-uniform Quantization  
 
Lloyd-Max quantization procedure defines an optimal approach to non-uniform quantization process. The 
basic idea of the Lloyd-Max quantization procedure is to find the decision boundaries and reconstruction 
levels that minimize the mean square quantization error (MSQE). This approach solves the problem of 
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finding the decision boundaries {��} and the reconstruction levels {��} given N-level quantizer Q(x) on [a, b] 

so that the MSE given by Equation 1.0 can be minimized [3]. 
 

���� =  ∑ ∫ �� − ���
���

����
��(�)���

���                                                        (1.0) 

 
Where: 
 
��(�) = The Probability Density Function (PDF) of the source input, X 
��  = Decision boundary 

�� = Reconstruction level 

N = Quantization level 
Setting the derivative of Equation 1.0 with respect to �� to zero, and solving for ��: 
 

�� =  
∫ �

��

����
��(�)��

∫ ��(�)��
��

����

                (2.0) 

 
The reconstruction point for each quantization interval is the centroid of the probability distribution of the 
interval. Taking the derivative �� with respect to �� and setting it equal to zero, an expression for �� is 
obtained as follows: 
 

�� =
�������

�
                 (3.0) 

 
In summary, the Lloyd-Max algorithm quantizes a source input by first partitioning its symbols into N initial 
sets or intervals. It then calculates the average point or centroid of each interval. It constructs a new partition 
by associating each symbol with the closest centroid. The centroids are then re-calculated to obtain new 
partition. The algorithm iterates these steps until convergence is reached, that is when centroids no longer 
change. It should be noted that when the source input distribution is uniform, Lloyd-Max quantization can 
also be used to quantize the source and in this case, the decision intervals are all equal [4]. 
 

2.5 Dither-based non-uniform quantization 
 
When an image is quantized coarsely, a quantization noise or distortion occurs. One way to mitigate 
distortion is to modify the quantization process by adding a small amount of dither or random noise to the 
input image before quantization [4]. The dither can afterwards be subtracted from the quantized image. The 
dither perturbs the source input by a small amount such that pixels having more or less the same values in a 
neighborhood fall into different decision regions and are, therefore, assigned slightly different output levels. 
This is aimed at eliminating or minimizing the quantization noise [4]. Put differently, dither is an 
intentionally applied form of noise used to randomize quantization error with the objective of diffusing the 
error. This dither-based modification of non-uniform quantization process can be used to quantized image 
signals and its efficiency is dependent on the characteristics of the input source [4]. The dithering scheme 
can either be subtractive or non-subtractive. 
 

2.6 Subtractive dithering quantization scheme 
 
Suppose an independent signal ν called a dither signal is added to an input signal x before quantization, this 
will give a combined signal w = x + ν. Then the output of the quantization is Q(w). Thus, the quantization 
error � of the system is given by [6]: 
 

� = �(� + �) − (� − �)  
                             (4.0) 
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Where: 
 
Q(w) = Quantization output 
x = input signal 
v = dither signal 
 
If the independent signal ν is subtracted from the quantization output, then the output becomes: 

 
� = �(�) − �                      (5.0) 

 
Thus, the total error � of the dithered quantizer is given by [6]: 
 

� = �(�) − � − �                (6.0) 
 
This procedure is shown schematically in Fig. 2.0, and is called subtractive dithered quantization. 

 

 

Fig. 2.0. The Subtractive Dithered Quantization Schematic 
 
The most important limitation of subtractive dither is that it requires that the initially added dither signal be 
subtracted after quantization. In other words, it is required that all operations carried out on the dithered 
quantized signal before the dither is subtracted must also be performed on the dither signal. Consequently, 
subtractive dither is not a viable option in practice [6]. 
 

2.7 Non-subtractive Dithering Quantization Scheme 
 
The problem with subtractive dither was that one needed to keep track of the dither signal that was used in 
order to subtract it later. Since this is not feasible for most practical applications, alternative method is 
needed. The first logical step is to study the properties of the quantization system if the dither signal is not 
subtracted after quantization. This is the essence of non-subtractive dither. A schematic of this procedure is 
shown in Fig. 3.0. The total error � of the dithered quantizer is given by [6]: 
 

� = �(� + �) − �                (7.0) 
 
The dither-modified non-uniform quantization method was employed for lossy compression in this research 
work for the purpose of comparative study with the Lloyd-Max non-uniform quantization to determine 
which is more efficient for the quantization of biometric fingerprint image. 
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Fig. 3.0. The Non-subtractive dithered quantization schematic 
 

2.8 Review of Lossy Compression Methods 
 
The efficiency of the application of wavelet transform on image coding was significantly boosted by the 
introduction of embedded zero-tree wavelet (EZW) algorithm introduced by Shapiro [7]. The algorithm has 
since undergone significant improvements in the set partitioning in hierarchical trees (SPIHT) introduced by 
Said and Pearlman [8]. The EZW and SPIHT performed better than JPEG with most images. However, they 
both produced blurring effect on feature pattern of fingerprint images which renders the data useless for 
biometric application. Wavelet Scalar Quantization (WSQ) is a compression standard developed specifically 
for the compression of fingerprint images to improve the capability of preserving the fingerprint features for 
biometric pattern recognition. A compression ratio limit of 15:1 is specified for WSQ fingerprint 
compression standard [9]. In order words, its performance becomes unsatisfactory at compression ratio 
higher than 15:1 [10,11]. The embedded block coding with optimized truncation of embedded bit-streams 
(EBCOT) by Taubman [12] have resulted in modern wavelet image compression and coding techniques.  As 
a matter of fact, the latest Joint Photographic Expert Group (JPEG 2000) image coding standard was 
developed based on the EBCOT algorithm [13,14]. The EBCOT-based JPEG2000 as a robust general-
purpose compression standard has the limitation of not being able to adequately preserve the crucial 
biometric features of fingerprint images at high compression ratio and it has the problem of complex 
algorithm implementation. The JPEG was the earlier version of JPEG2000 standard and it was based on 
discrete cosine transform technique while the JPEG 2000 was based on wavelet transform technique [13-15].   
 
The differences between JPEG2000 and WSQ standards are in their wavelet transform decomposition 
structures and the entropy coding method used. In wavelet decomposition, JPEG 2000 applies Mallat’s 
algorithm or the pyramidal approach with Cohen Daubechies Feauveau (CDF), a variant Daubechies wavelet 
filter, while WSQ uses a fixed wavelet packet basis with the same CDF wavelet filter. WSQ uses raster 
scanning order, while JPEG2000 uses vertical bitplane scanning order [15]. More significantly, both 
standards are based on Daubechies wavelets and have been adopted as fingerprint compression standards.  
Arithmetic entropy coding method was used in JPEG2000 while Huffman coding was used in WSQ. 
However, for the quantization process, uniform scalar quantization was used in both compression standards 
[16]. It is noteworthy that JPEG 2000 is designed for general-purpose compression with significant 
flexibility. It has the disadvantage of complex algorithm implementation and high computation cost [16]. 
 
Based on the review of the existing lossy compression methods, vector quantization and uniform scalar 
quantization schemes were used. This accounted for the failure of the existing methods to preserve biometric 
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fingerprint features at compression ratio higher than 15:1. Therefore, the development of a more efficient 
method of quantization is justified.  

 

3 Aim and Objectives 
 
The aim of this research is to carry out a non-uniform quantization of decorrelated source fingerprint image 
using Lloyd-Max quantization procedure to achieve efficient lossy compression. The objectives of the study 
are as follows: 
 

i) Transformation of  the source fingerprint image to lower the correlation of its pixel values and 
eliminate interpixel redundancy; 

ii) Representation of large image pixel values with smaller quantized values to achieve efficient lossy 
compression of fingerprint image; 

iii) Evaluation of the efficiency of the quantization process on the basis of Mean Square Quantization 
Error (MSQE) and Signal to Quantization Noise Ratio (SQNR) metrics to determine the extent of 
image quality and degradation in the lossy compression process; 

iv) Comparison of the performance of uniform and non-uniform quantization methods, as well as, 
dither-based and Lloyd-Max non-uniform quantization schemes for biometric fingerprint 
compression. 

 

4 Methodologies 
 
The methodology adopted in this work is as follows: 
 

i) Source fingerprint image transformation with Coiflet wavelet filters; 
ii) Plot of histogram of source fingerprint pixel distribution; 
iii) Non-uniform quantization of transformed source coefficients; 
iv) Computation of the MSQE and SQNR values to compare the performance of uniform and non-

uniform quantization methods as well as dither-based non-uniform quantization and Lloyd-Max 
non-uniform quantization schemes.  

 

4.1 Source Fingerprint Image Transformation with Coiflet Wavelet Filters  
 
Table 1.0 shows the source fingerprint data which were transformed using the Coiflet wavelet filters (See 
Appendix I for the appearance of source images). The process of transformation was used to lower the 
correlation between the image pixels and eliminate interpixel redundancy.  
 

Table 1.0. Source fingerprint images [9] 
 

Filename Size (byte) Width (Pixel) Height (Pixel) 
Cmp00001.pgm 356360 589 605 
Cmp00002.pgm 638991 832 768 
Cmp00003.pgm 638991 832 768 
Cmp00004.pgm 612895 815 752 
Cmp00005.pgm 638991 832 768 
Cmp00006.pgm 638991 832 768 
Cmp00007.pgm 347725 545 638 
Cmp00008.pgm 600015 800 750 
Cmp00009.pgm 347151 512 678 
Cmp00010.pgm 197265 375 526 
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4.2 Histogram plot of source image 
 
Each source fingerprint image is made up of an array (a matrix) of pixel values.  The total number of pixel 
values in the array of transformed image coefficients were estimated and used to plot the histogram of the 
transformed image to determine the probability of occurrence of each image pixel or symbol.  From the 
information generated from the histogram, the distribution of the input source symbols was determined 
based on the probability density function (PDF) of the image pixel distribution. Fig. 4.0 (b) shows the 
histogram plot of the 8-bit source fingerprint input and Fig. 4.0 (a) shows the histogram plot of 5-bit 
quantized fingerprint output at quantization level 32.  The histogram plots were obtained using MATLAB 
image analysis tool. 
 

 
 

Fig. 4.0. Histogram Plot of 5 bpp Quantized Fingerprint Output (a) and 8 bpp Source fingerprint 
Input (b) 

 
The histogram plots represent the pixel frequency distribution of the source fingerprint input and the 
quantized output.  The two plots are nearly identical and the change is due to the difference between the 8-
bits input image and the 5-bits quantized image. From the histogram plot the source fingerprint pixel 
distribution is not uniform and consequent upon this, uniform quantization method did not yield the best 
result. The analysis plot of the quantization levels against the decision regions or partitions for the uniform 
and non-uniform quantization process are as shown in Figs 5.0 and 6.0 respectively.  It will be noticed from 
Fig 5.0 which represents the uniform quantization process that the process used equal quantization step sizes 
all through the source distribution to quantize the fingerprint image. Whereas in Fig. 6.0 the pixel values 
within the range of 0 to 50 are coarsely quantized with large step-size differently from the values in the 
range of 50 to 250 intensity values which are finely quantized with smaller step size for the non-uniform 
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quantization process. This is significant because the non-uniform quantization method used large 
quantization step-size on the range of pixels with insignificant values and lower step-size to quantize the 
range of pixels with significant values. The method achieved compression by discarding the insignificant 
pixels and retaining the significant ones. 
 

 
 

Fig. 5.0. Plot of the Uniform Quantization Output Levels at 5 bpp 
 

 
 

Fig. 6.0. Plot of the Non-uniform Quantization Output Levels at 5 bpp 
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4.3 Non-uniform quantization of transformed source fingerprint image 
 
The source fingerprints acquired for this analysis [9] were 8-bit grayscale images and this means that 256 
possible values of the image elements, that is 0 (black) to 255 (white). Lloyd-Max algorithm groups the pixel 
values of the source image into a number of partitions and measures the similarity between values in each 
partition. The algorithm starts by partitioning the source input set of values. It then calculates the average 
values, or centroid of each partition.  It constructs a new partition by associating each value with the closest 
centroid. Then the centroids are recalculated for the new partitions and the algorithm repeats until 
convergence which is obtained when the centroids no longer change.  
 
The Lloyd-Max quantization procedures involved the following steps: 
 

i) Divide symbols (possible values) into M sets and the resulting partition is called initial set; 
ii) The objective of Lloyd-Max algorithm is to minimize a distance metric within each set; 
iii) Applied to the source fingerprint image, the algorithm minimizes the error between the 

corresponding value (reconstruction level) of an interval to its border (the thresholds); 
iv) The thresholds are iteratively moved so that the partition changes iteratively, until there are no 

further changes or until convergence is reached. 
 
The flowchart in Fig. 7.0 was developed and represents the various steps in the implementation of the Lloyd-
Max quantization algorithm for lossy compression. The design parameters for the lossy compression 
algorithm areas shown in Table 2.0. 
 
In Table 2.0, the quantization level, M was initialized based on the number of bits per pixel (bpp) used in the 
quantization process. The number of bpp used were 1 bpp to 7 bpp and this was because the original 
grayscale fingerprint images were represented using 8-bits.  Therefore, in order to realize compression, the 
number of bpp lower than 8-bits should be used for quantization and this was done with the aim of achieving 
a tradeoff between image quality and the degree of degradation in the compression process. Since the 
quantization level M = 2b, where b is the number of bits used per pixel for the quantization, therefore M is 
initialized to 2, 4, 8, 16, 32, 64 and 128 (for b = 1, 2, 3, 4, 5, 6, 7).   
 
Based on the analysis flowchart in Fig. 7.0, MATLAB scripts were written to implement the various stages 
of the wavelet analysis of fingerprint image. The algorithm is detailed as follows: 
 

1. Choose an initial set of M representative levels xq,m.  Pdf is then divided into M intervals; 
2. Apply necessary centroid or threshold condition using Equation 8.0.  This calculates (new) 

thresholds for each interval (centroid of xq,m and xq,m+1); 
 

��,� =
��,������,�

�
                               (8.0) 

 
3. Apply necessary minimum MSQE condition using Equation 9.0; 

 

��,� =
∑ �(�)�(�)�

���

∑ �(�)�
���

                              (9.0) 

 
xq,m of each interval m=1, …, M is calculated to minimize MSQE.   
 
The Mean Square Quantization Error of interval m, using pdf  p (i) is given by: 
 

���� = ∑ ��(�) − ��,��
�

�(�)�
���                            (10.0) 

 
Where: i ranges over indices (u to v) in actual interval m; 
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x(u) = tq,m (lower threshold of interval m); 
x(v) = tq,m+1 (upper threshold of interval m); 
x(i) = current value in interval m; 
xq,m = representative level of internal; 
p(i) = P(x(i)):  probability of symbol x(i). 

 

4. The process is iterated.  Step 3 and 4 are repeated until no further decrease in total MSQE; 
5. Apply quantization on source image to output the quantized image. 

 

 
 

Fig. 7.0. Flowchart of the Lloyd-Max quantization procedures 
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Table 2.0. Design parameters for Lossy compression based on Lloyd max algorithm 
 

S/N Design parameters Values 
1. Wavelet Transformation Coiflets wavelets 
2. Bits Per pixel (bpp) 1 – 7 bits 
2. Quantization Levels, M M = 2b (where b = (bpp)) 
3. Quality Metrics SNR and MSQE 

 
After the iterative Lloyd-Max quantization procedure, the quality of the quantized output was estimated. 
 
In addition, for dither-based non-uniform quantization process, random noise or dither signal was generated 
using the MATLAB function ‘rand’ and applied as a non-subtractive dither to modify the non-uniform 
quantization process in order to diffuse the quantization error. This is expected to further minimize the 
MSQE in the quantization process provided the biometric fingerprint image signal is suitable for this 
scheme.  
 

5 Results and Discussions 
 
The results of uniform and Lloyd-Max non-uniform quantization methods for source fingerprint images 
based on the MSQE and SQNR metrics are as shown in Table 3.0. 

 
Table 3.0. Comparison of the Non-uniform Quantization and Uniform Quantization Methods on the 

Basis of Quality and Distortion Measures 
 

No. of Bits 
(Bits/Pixels) 

Non-uniform quantization Uniform quantization 
MSQE SQNR (dB) MSQE SQNR (dB) 

1 8527.2 -1.9204 1873.0 6.2924 
2 667.9327 9.1403 551.6564 10.8670 
3 64.416 19.2977 130.2040 17.0903 
4 15.4413 25.5008 32.5056 22.9594 
5 3.915 31.4603 8.2034 28.9540 
6 0.9247 37.7277 2.1361 34.8221 
7 0.1896 44.6083 0.6304 40.1349 

 
These results represent the MSQE and SQNR values which are the measures of the image distortion and 
quality respectively.  It was observed on the one hand that the SQNR values for non-uniform quantization 
increased from 19.2977 dB for 3 bpp to 44.6083 dB for 7 bpp whereas for the same range (3 bpp to 7 bpp) 
for uniform quantization, SQNR values increased from 17.0903 dB to 40.1349 dB.  On the other hand, the 
MSQE values for non-uniform quantization decreased from 64.414 for 3 bpp to 0.1896 for 7 bpp while for 
the same range (3 bpp to 7 bpp) for uniform quantization, MSQE values decreased from 130.2040 for 3 bpp 
to 0.6304 for 7 bpp.  It was also observed that the range of MSQE values for non-uniform quantization 
(64.416 – 0.1896) is much lower than that of uniform quantization (0.6304 - 130.2040) and higher range of 
SQNR values were recorded for non-uniform quantization as opposed to uniform quantization. These results 
indicated that the higher the number of bits used in the quantization process the higher the quality and the 
less the distortion in the resulting quantized images. Perhaps, more significantly, from 3 bpp and 7 bpp 
quantization, the results revealed that the non-uniform quantization consistently performed better than the 
uniform quantization method and this is depicted in the plots for SQNR and MSQE as shown in Figs. 8.0 
and 9.0. The MSQE values plotted against the number of bits per pixel (bpp) in the uniform and non-uniform 
quantization processes is shown in Fig. 8.0 and it was revealed that MSQE values for non-uniform method 
was lower than that of the uniform method but as the number of quantization bits approaches 8-bits, the 
MSQE values for both methods are almost equal. 
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Fig. 8.0. Plot of MSQE values for non-uniform and uniform quantization 

 
Fig. 9.0 shows the SQNR values plotted against the number of bits per pixel (bpp) in the uniform and non-
uniform quantization processes and it was revealed that SQNR values for non-uniform method were higher 
than that of the uniform method. 

 
In addition, the average MSQE and SQNR values at 5 bpp quantization for all the quantized fingerprint data 
showed that the performance of the non-uniform quantization is better than uniform quantization as the 
average MSQE and SQNR values for non-uniform quantizer are 3.4719 and 30.6351 dB respectively and 
that of uniform quantizer are 9.1580 and 27.8945 respectively. This is depicted in Table 4.0. Even though it 
was expected that these values will be the same for all source fingerprint image, it was observed that the 
variation in values was due to irregular quality of input source fingerprint data. 
 
Table 4.0. Average MSQE and SQNR Values for all Source Fingerprint Images at 5 bpp Quantization 
 

Source input Non-uniform Quantization Uniform Quantization 
MSQE SQNR (dB) MSQE SQNR (dB) 

Cmp00001.pgm 3.9150 31.4603 8.2034 28.9540 
Cmp00002.pgm 2.9210 32.5243 10.2271 28.9122 
Cmp00003.pgm 2.4440 27.1162 11.5165 23.8510 
Cmp00004.pgm 2.7147 30.8053 10.6563 27.3187 
Cmp00005.pgm 3.2589 31.8684 9.3364 28.8594 
Cmp00006.pgm 3.0199 33.0683 9.8932 29.4617 
Cmp00007.pgm 4.4182 30.5667 7.4407 28.8272 
Cmp00008.pgm 3.0144 30.2710 10.1557 27.1857 
Cmp00009.pgm 4.5747 28.7734 7.0335 27.4499 
Cmp00010.pgm 4.4372 29.8972 7.1167 28.1250 
Average 3.4718 30.6351 9.1580 27.8945 

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

M
SE

 V
al

u
es

Number of Bits Per Pixel

Non-Uniform 
Quantization 

Uniform Quantization



 
 
 

Emmanuel et al.; BJMCS, 10(3): 1-19, 2015; Article no.BJMCS.18438 
 
 
 

14 
 
 

 
 

Fig. 9.0. Plot of SQNR in decibels (dB) for non-uniform and uniform quantization 
 
The average SQNR value of 30.6351 dB is significant in that the quality of quantized images are satisfactory 
and this is because at SQNR value above 30.0 dB the degradation in the quantized images is visually 
imperceptible, that is the level of similarity between the original and quantized images is high. The SQNR 
values greater and equal to 30.0 dB are significant because at these values there is no visually perceptible 
difference between the original and the compressed images. 
 
Furthermore, between 1 bpp and 2 bpp quantization, the performance of both quantization methods became 
unsatisfactory as the level of distortion which is a function of the MSQE value increased exponentially and 
the quality of the quantized image which is a function of the SQNR value decreased exponentially. The 
significance of this is that below 3 bpp quantization the performance of both quantization methods became 
unsatisfactory. 
 
As shown in Table 5.0, the MSQE values obtained for dither-based non-uniform quantization scheme were 
higher than the ones obtained for Lloyd-Max scheme for the number of bits per pixel (bpp) from 2 to 7.  
However, for 1 bpp, the MSQE value obtained for dither-based quantization process was lower than that of 
Lloyd-Max method. Perhaps more significantly is the fact that the lower the bit number, the more the 
efficiency of the dither-based quantization process. On the other hand, the SQNR values for dither 
quantization scheme increased from 9.1082 dB to 35.0818 dB between 2 bpp and 7 bpp as opposed to higher 
SQNR values obtained for Lloyd Max scheme which increased from 9.1403 dB to 44.6083 dB for the same 
range of bit numbers. Whereas, for 1 bpp, the SQNR value obtained for dither scheme is -1.8637 dB and this 
value is higher than the value obtained for Lloyd-Max scheme which is -1.9204 dB. This means that the 
performance of dither-based non-uniform quantization on biometric fingerprint image is not as efficient as 
the Lloyd-Max approach for higher bpp values but as the bit number used in the quantization process 
decreases, the performance of dither-based scheme began to improve. These comparative inferences became 
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evident from the plot of the MSQE values obtained for both scheme as shown in Figs. 10.0 and 11.0. In Fig. 
10.0, it was observed that as the number of bits used in the quantization process decreases, the MSQE values 
obtained for dither-based quantization scheme got very close to the MSQE values for the Lloyd-Max 
quantization scheme.  This means that the performance of both schemes became very close as the number of 
bits for quantization process was decreased.   
 
Table 5.0. Comparison of the Dither-Based Non-uniform Quantization and Lloyd-Max Non-uniform 

Quantization Methods on the Basis of Quality and Distortion Measures 
 

No. of Bits 
(Bits/Pixels) 

Dither-based non-uniform quantization Lloyd-max  non-uniform quantization 
MSQE SQNR (dB) MSQE SQNR (dB) 

1 8416.7 -1.8637 8527.2 -1.9204 
2 672.9086 9.1082 667.9327 9.1403 
3 66.5738 19.1546 64.416 19.2977 
4 17.0952 25.0590 15.4413 25.5008 
5 5.4085 30.0569 3.915 31.4603 
6 2.4012 33.5835 0.9247 37.7277 
7 1.7006 35.0818 0.1896 44.6083 

 

 
 

Fig. 10.0. Plot of MSQE values for dither-based non-uniform quantization and Lloyd-Max  
non-uniform quantization schemes 

 
In the same vein, in Fig. 11.0, the gap between the SQNR values for dither-based quantization scheme and 
Lloyd-Max scheme gradually decreased as the number of bits was reduced from 7 bpp until the SQNR 
values became equal for both schemes at 3 bpp. Therefore, it stands to reason that discrete images with 
higher bit representation such as 16-bits and 24 bits are best suited for dither-modified quantization scheme 
because more number of bits will be available for manipulation in the process.  However, Lloyd-Max non-
uniform quantization is the preferred choice for 8-bit gray-scale biometric fingerprint image lossy 
compression based on the comparative analysis results.  
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Fig. 11.0. Plot of SQNR in decibels (dB) for dither-based non-uniform quantization and  
Lloyd-Max non-uniform quantization schemes 

 

6 Conclusions 
 
In this paper, uniform and non-uniform scalar quantization schemes of transformed fingerprint image were 
studied. Comparative analyses of non-uniform quantization methods were also conducted and these include 
dither-based quantization and the Lloyd-Max quantization methods. The quality of the quantized output 
fingerprint image was determined in terms of Signal-to-Quantization Noise Ratio (SQNR). The degree of 
distortion or quantization error was determined in terms of the Mean Square Quantization Error (MSQE). 
The non-uniform quantization method performed better than the uniform quantization method in terms of the 
SQNR and MSQE values. The best result was obtained for number of bits per pixel (bpp) higher than 2 bpp. 
In addition, the SQNR values for dither quantization scheme were lower than the values obtained for Lloyd 
Max scheme between 2 bpp and 7 bpp.  However, at 1 bpp, the SQNR value obtained for dither scheme was 
higher than the value obtained for Lloyd-Max scheme. This means that the performance of dither-based non-
uniform quantization on biometric fingerprint image is not as efficient as the Lloyd-Max approach for higher 
bpp values but as the bit number used in the quantization process decreases, the performance of dither-based 
scheme began to improve. Therefore, even though dither-modified quantization scheme may be well suited 
for discrete images with higher bit representation such as 16-bits and 24 bits, Lloyd-Max non-uniform 
quantization is the preferred choice for 8-bit gray-scale biometric fingerprint image lossy compression based 
on the comparative analysis results. 
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APPENDIX I 
 

Source Fingerprint Images (obtained from NIST) 
 

Filename Size (byte) Source Fingerprint Images 
Display 

Cmp00001.pgm 356360 

 

Cmp00002.pgm 638991 

 

Cmp00003.pgm 638991 

 

Cmp00004.pgm 612895 

 

Cmp00005.pgm 638991 

 

Cmp00006.pgm 638991 
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Cmp00007.pgm 347725 

 

Cmp00008.pgm 600015 

 

Cmp00009.pgm 347151 

 

Cmp00010.pgm 197265 
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