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Abstract 
We consider an electrostatic bow and arrow both charged positively. The bow 
is circular and horizontal the massive arrow is vertically aligned with the 
bow’s symmetry axis with its head up. The arrow is released freely, the electr-
ically charged ring repels the arrow and the gravity slows its uprise. The mass, 
length, and charge of the arrow as well as the size of the ring and its charge 
adjusted making the arrow oscillate up and down. The kinematic and dy-
namic quantities of the oscillations are calculated, and the relevant phase dia-
grams are depicted. In pursuing these goals, a Computer Algebra System 
(CAS) specifically Mathematica [1] is used. Among various scenarios, the 
case of a charged ring and a point charge is discussed. 
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1. Introduction 

The motivation to analyze this problem stems from the fact that we have an in-
terest in learning about the charged bodies’ interaction. This objective is exer-
cised in our work [2]. In our current investigation, two bodies, a charged arrow 
and a ring are considered. These shapes are considered because the output of the 
calculation is subject to transparent physical interpretations.  

Figure 1 depicts the schematic setting of the problem on hand. The circular 
charged ring held horizontally acts as a bow. Its size and charge can be adjusted 
accordingly. The charged arrow is aligned vertically along the symmetry axis of 
the ring. Its length, mass, and charge also may be adjusted at wish. The outline of 
the calculation conducive to the electrostatic repulsive force between these two 
bodies calls: 1) the electric field of the ring at a representative charge element on 
the arrow, and 2) the superposition of this field along the length of the arrow.  
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Figure 1. A charged ring of radius R is the bow and a charged arrow of length L is placed 
along its symmetry axis. 
 
Hence, the net force on the arrow is the difference between the mentioned cal-
culated repulsive electrostatic force and the gravity pull. It is obvious that by ad-
justing the relevant parameters, the net force may result in vertical oscillations. 
This is because although the gravity pulls stay the same, the electrostatic counte-
racting repulsive force varies depending on the proximity of the arrow to the 
ring. An ill-posed parametrization may either result in a departing arrow or ca-
tastrophically fall through the bow.  

With this bird’s eye view, the objectives of this article are crafted comprising 
three sections. In addition to the Introduction, Section 2 embodies the relevant 
formulation. This section also includes the relevant figures and helpful Mathe-
matica codes. Section 3 is the conclusions and comments and the lessons 
learned.  

2. Formulation and Analysis 

The electric field of a charged ring of radius R and charge Q along its vertical 
symmetry through its center along the z-axis at a distance z from the ring’s cen-
ter is [3], 
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where k is the electrostatic coupling constant, 
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The electrostatic force of this field on the entire charged arrow of length ℓ 
with a charge density of λ = q/ℓ is, 
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Figure 2 shows the impact of the length of the charged arrow on the case 
where the arrow had no length. For this purpose and the forthcoming calcula-
tions we choose a set of practical parameters, these are stored in valuesRingℓ. 
Units are SI. Specifically, the ring and the arrow are 5 cm and 30 cm, respective-
ly.  

valuesRingℓ={k→9.10^9,Q→10.10^(-6),q→1.10^(-6),m→50.10^(-3),ℓ→30.10^(-
2),r→5.10^(-2),g→10.}; 

cofℓ=kQq/mℓ/.valuesRingℓ; 
Plot[Evaluate[{z/(z^2+r^2)^(3/2),1/ℓ(1/sqrt(r^2+z^2)-1/sqrt(r^2+(z+ℓ)^2))}

/.valuesRingℓ],{z,0,1},PlotStyle→{Blue,Red},PlotRange→All,AxesLabel→{"z(distan
ce)","~Force"},GridLines→Automatic] 

Graphically, we have confirmed by running the ℓ to small values the red curve 
tends to match the blue curve as shown in Figure 3. Mathematically, in the limit 
of 0→ , as expected (2) →  (1). 
 

 

Figure 2. Generic behavior of the forces is shown vs. the distance, units are suppressed. 
The blue curve is the force between the ring and point charge, the red curve shows the 
impact of the arrow’s length. 
 

 

Figure 3. The blue curve is the ~Force of the charged ring at a point-like charge along the 
z-axis. The family of the red curves is the associated forces of the charged ring along the 
gradually stretched length of the arrow. 
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In Figure 3, the weakest curve is associated with the longest length and the 
strongest with the shortest, respectively.  

An arrow of mass m released freely is subject to the aforementioned electros-
tatic force as well the counteracting gravity pull. Applying Newton’s dynamic 
law gives, net m=F z . Where over double dots is the acceleration and the  

net electic m= −F F g . Where Felectric is subject to (2). Putting these together yields 
the equation of motion,  
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Applying Mathematica’s ND Solve, we solve (4) with initial conditions,  
( ) ( )0 0 0z z= = . This is shown in Figure 4. The RHS of (4) is shown in Figure 

5. 
solzztl=NDSolve[{(z''[t]==cofℓ(1/sqrt(r^2+z[t]^2)-1/sqrt(r^2+(z[t]+ℓ)^2))-g)

/.valuesRingℓ,z[0.]==0.,z'[0.]==0.},z[t],{t,0,5}]; 
plotzℓ=Plot[z[t]/.solzztℓ,{t,0,2.5},AxesLabel→{"t(s)","z(m)"}(*,AxesOrigin→{0,0

}*),PlotStyle→Black,GridLines→Automatic] 
 

 

Figure 4. The oscillatory character of the bouncing arrow. 
 

 

Figure 5. Display of the Fnet vs. time. 
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Figure 4 shows the arrow released from rest rises to about 1.4 m, it stops for a 
split second and falls back to the origin. The movement is oscillatory with a 1.2 s 
period.  

plotF=Plot[cofℓ(1/sqrt(r^2+z[t]^2)-1/sqrt(r^2+(z[t]+ℓ)^2))-g/.valuesRingℓ/.s
olzztℓ,{t,0,5},PlotStyle→Black,PlotRange→{-10,100}(*All*),AxesLabel→{"t(s)","For
ce(N)"},GridLines→Automatic] 

Figure 5 shows the variation of the applied net force on the arrow. As intui-
tively expected at the release time the force is at its maximum, while rising its 
strength weakens, at some instant, it reaches the minimum and then gradually 
gains its strength. The process in absence of dissipation repeats itself periodical-
ly. 

Solution (4) enables evaluating the relevant kinematic quantities such as the 
velocity and acceleration of the arrow. These are calculated and shown in Figure 
6.  

The shown graph is the pictorial behavior of the bouncing arrow. Based on 
the far left plot the other three plots are intuitively expected.  

With this information on hand, we plot relevant and useful classic phase dia-
grams. These are shown in Figure 7. We were curious about a specific case 
where the length of the arrow is shrunk to a point simplifying the problem to a 
ring-point interaction. Analysis shows the difference between the cases is mi-
nimal. I.e. an arrow with a typical practical length acts almost the same as the 
point charge.  

In Figure 7, the closed loop of the speed-position phase diagram is a typical 
profile of oscillations, the right plot is peculiar to the problem on hand. 
 

 

Figure 6. From left to right, respectively, the time-dependent profiles of the position, velocity, acceleration, and net force vs. time 
of the oscillating arrow. 

 

 

Figure 7. Phase diagrams of the oscillating arrow. 
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3. Conclusion and Comments 

The lesson learned from investigating this research-oriented project is that we 
have shown for the given scenario how the electrostatic interaction between two 
charged bodies is formulated. Utilizing this information, we extended the static 
setting to a dynamic situation conducive to determining its associated classic ki-
nematic quantities. Knowing the latter, the proposed scenario in light of the de-
termined quantities could become practical. As such the electrostatic bow and 
arrow problem is envisioned, its solution and formulation add to the body of 
knowledge. This project can be exercised and extended by replacing the circular 
bow with a charged square, rectangle, and ellipse. The calculation for the first 
two suggestions with the aid of the embedded Mathematic codes may be straight 
forward. However, in the latter case, due to curvature dependency of the charge, 
distribution would be challenging. These issues partially have been addressed 
[4]. Concerning crafting the Mathematica codes, graphs, etc. the interested 
reader may find [5] and [6] resourceful.  
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