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ABSTRACT 
 

In this paper, we get the set of symmetry of Plateau differential equation. Using Lie 
symmetry method to obtain the classical symmetry operators. Also, we get one-
dimensional optimal system of the Plateau equation and reduction Lie invariants, 
corresponding to infinitesimal symmetries. 
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1. INTRODUCTION  
 
One of the most important discoveries of Sophus Lie, in differential equation is to show that, 
it is possible to transform non-linear conditions in a system, to linear conditions, by 
infinitesimal invariants, corresponding to the symmetry group generators, of the system [1]. 
In this article, our aim is to obtain a set of symmetries of Plateau equation [2,3]: 
 �1 + ������� − 2������� + �1 + ������� = 0                                                                    �1� 
 
Which it governs, under appropriate hypotheses the plane motion of a fluid. The function � 
appearing in the equation is so-called kinetic potential [4] and the special case of the plateau 
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equation may be used to derive a relation from the interfacial geometry of watting fluid in a 
capillary [5]. Minimal surfaces are defined as surfaces with zero mean curvature. The 
minimal surfaces PDE of the surface given by equation � = ���, �� has the Plateau equation 
form [6,7]. The classical Lie symmetries are obtained using the Lie symmetry method. This 
requires the utilization of computer softwares, because working with continuous groups has 
computations that follow from the algorithmic process. Having the symmetry group of a 
system of equations, has a lot of advantages, one of which is the classification of the 
solutions of the system. This classification is to consider, two solutions in one class if they 
can be converted to each other, by an element of the symmetry group. If we have an 
ordinary system, the symmetry group will help us to obtain the exact solution. If the equation 
is order one, it is possible to get the general solution, but it is not the case for PDE, unless 
the system is convertible to a linear system. Another application of the symmetry group is 
the probable reduction of the number of independent variables and the ideal condition is 
converting to ODE. 
 
2. LIE SYMMETRY OF PLATEAU EQUATION 
 
The method of determining the classical symmetries of a partial differential equation is 
standard and is described in [8,9,10]. To obtain the symmetry algebra of (1), we take an 
infinitesimal generator of symmetry algebra of the form: 
 

� = ���, �, �� ��� + ���, �, �� ��� + ���, �, �� ���                                                               �2� 

 
Using the invariant condition, i.e., applying the fourth prolongation ���� to (1), the following 
system of 15 determining equation yields: 
 �� − �� = 0,               ��� − ��� = 0              ��� − ��� + ��� = 0,   �� + �� = 0,               ��� + ��� = 0,             ��� − 2��� + ��� = 0,   �� + �� = 0,               ��� + ��� = 0,            ��� − 2��� + ��� = 0,   �� + �� = 0,            ��� − 2��� + ��� = 0,   ��� − 2��� + ��� = 0,   �� − �� = 0,          ��� + ��� + ��� = 0,    ��� − 2��� + ��� = 0.   

                 �3� 

 
By solving the above system we will have the following theorem. 
 
Theorem 2.1:  The Lie group of point symmetries of the Plateau equation, has a Lie algebra 

generator in the form of the vector field �, with the following functional 
coefficients. 

 ���, �, �� = ��� − ��� + ��� + � ,���, �, �� = ��� + ��� + ��� + �!,���, �, �� = −��� − ��� + ��� + �". 
 
Where �# ,   $ = 1, ⋯ ,7 are arbitrary constants. 
 
Theorem 2.2: The infinitesimal generators from the Lie one-parameter group of the 
symmetries of the Plateau equation are as follows: 
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�� = ���,     �� = ���,     �! = ���,     �� = � ��� − � ��� ,
�� = � ��� − � ��,   � = � ��� − � ���,   �" = � ��� + � ��� + � ��� . 

 
These vector fields produce a Lie algebra space ' with the following commutator Table: 
 

Table 1. Commutation relations satisfied by infinitesimal generators 
 [ .  ,   . ] *+ *, *- *. */ *0 *1 �� �� �! �� �� �  �"  

0 0 0 −�� �! 0 −�� 

0 0 0 �� 0 �! −�� 

0 0 0 0 −�� −�� −�! 

�� −�� 0 0 �  −�� 0 

−�! 0 �� −�  0 �� 0 

0 −�! �� �� −�� 0 0 

�� �� �! 0 0 0 0 
 
3. GROUP INVARIANT SOLUTIONS OF PLATEAU EQUATION 
 
To obtain the group of transformations which are generated by infinitesimal generators    �# , $ = 1, ⋯ ,7, we should solve the first order system involving first order equations in 
correspondence to each of the generators simultaneously. 
 
By solving this system, the one parameter group of 23�4�: 6 → 6 generated by �# , $ =1, ⋯ ,7  involved in theorem (2.2) is obtained in the following way; 
 2�  ∶   ��, �, ��   ↦    �� + 4, �, ��,                                                  2�  ∶   ��, �, ��   ↦    ��, � + 4, ��,                                                  2!  ∶   ��, �, ��   ↦    ��, �, � + 4�,                                                  2�  ∶   ��, �, ��   ↦    �� sin 4 + � cos 4 , � cos 4 − � sin 4, � �,2�  ∶   ��, �, ��   ↦    �� sin 4 − � cos 4 , �, � cos 4 + � sin 4 �,2  ∶   ��, �, ��   ↦    ��, � cos 4 − � sin 4 , � cos 4 + � sin 4 �,2"  ∶   ��, �, ��   ↦    �� ?@, � ?@, � ?@�.                                         

 

 
Therefore, we will have the following theorem: 
 
Theorem 3.1:  If � = ���, �� is one solution of Plateau equation, then the following functions 

that have been produced through acting 23�4� on � = ���, �� will also be the 
solution of Plateau equation. 

 2��4� . ���, ��  =    ��� + 4, ��,                                                2��4� . ���, ��  =    ���, � + 4�,                                                2!�4� . ���, ��  =    ���, �� − 4,                                                2��4� . ���, ��  =    ��� sin 4 + � cos 4, � cos 4 − � sin 4�,2"�4� . ���, ��  =    ��� ?@, � ?@�?A@.                                      
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4. OPTIMAL SYSTEM OF ONE-DIMENSIONAL SUBALGEBRAS OF PLATEAU 
EQUATION 

 
Now we want to obtain one-dimensional optimal system of the Plateau equation using its 
symmetry group. The optimal system is in fact a standard method for the classification of 
one-dimensional sub-algebras in which each class involves conjugate equivalent members 
[11]. Also, they involve the group adjoint representation which establishes an equivalent 
relation among all conjugate sub-algebra elements. In fact, the classification problem for 
one-dimensional sub-algebra is the same as the problem of the classification of the 
representation of its adjoint orbits. In this way, the optimal system is constructed. The set of 
invariant solutions corresponding to a one-dimensional sub-algebra is a list of minimal 
solutions, where all the other invariant solutions can be obtained by transformations [12]. To 
calculate the adjoint representation, we consider the following Lie series: 
 

BC�exp�4 �#��G� =   �G − 4 HCIJ�G + 4�2  HCIJ� �G −  ⋯ , 
 
for the vector fields �#  , �G in which  HCIJ�G = [�# , �G] is the Lie algebra communicator, 4 is the 
group parameter, $ , K = 1, ⋯ ,7 ([8], pp 199). Now, we consider an optional member from ' of 
the form � = H��� + ⋯ + H"�",  and for simplicity we write H = �H�, ⋯ , H"� ∈  ℝ"; therefor, the 
adjoint action can be considered as a type of linear transformation group of vectors, so we 
have the following theorem: 
 
Theorem 4.1:  The one-dimensional optimal system of Lie algebra ' for the Plateau equation 

is: 
 �1�: �� + H �  ,       �2�: �� + H ��,        �3�: �! +  H ��,        �4�: �� + H �" ,�5�: �� + H �",        �6�: � + H �",         �7�: H �".                                                   
 
Where H ∈ ℝ is arbitrary constant. 
 
Proof.  We define the map Q#@ ∶  R → R by  � ↦ BC �exp�4 �#��� as a linear map, for$ = 1, ⋯ ,7. 
So the matrices 6#@ corresponding to each of theQ#@, $ = 1, … ,7, in relation to the basis {��, ⋯ , �"} will be as follows: 
 6�@  =   V − 4�W�� + W"��,                                                                                                                           6�@  =   V + 4�W�� + W ! − W"��,                                                                                                               6!@  =   V − 4�W�� + W � + W"!�,                                                                                                               6�@  =  cos 4 �W�� + W�� + W�� + W  � + sin 4 �W�� − W�� + W� − W �� + W!! + W�� + W"",   6�@  =  cos 4 �W�� + W!! + W�� + W  � + sin 4 �−W�! + W!� − W� + W �� + W�� + W�� + W"",6 @  =  cos 4 �W�� + W!! + W�� + W��� sin 4 �−W�! + W!�+W�� − W��� + W�� + W  + W"",       6"@  =   ?@�W�� + W�� + W!!� + W�� + W�� + W  + W"".                                                                      

 

 
In it, W#Gs are 
 7 × 7-elementary matrixes, for$, K = 1, … , 7 ; on the condition that the �$, K�-entry of W#G is 1, 
and others are zero. Suppose � = H��� + ⋯ + H"�", in this case, we will have the map 
combinations as follows: 
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Q"@" ∘ Q @ ∘ Q�@� ∘ Q�@� ∘ Q!@! ∘ Q�@� ∘ Q�@� ∶ � ↦ [cos 4� cos 4� ?@Z  H� + �sin 4� cos 4 − cos 4�          sin 4� sin 4 �?@Z H� +  �− sin 4� sin 4 − cos 4� sin 4� cos 4 � ?@Z H!] �� + ⋯          +[��4� sin 4� − 4� cos 4� � cos 4� − 4! sin 4�� ?[Z  H� +  �−4� sin 4� − 4� cos 4�� cos 4 +�−�4� sin 4� − 4� cos 4� � sin 4� − 4! cos 4�� sin 4  ?@Z H� +  �−�−4� sin 4�                 −4� cos 4�� sin 4 +  �−�4� sin 4� − 4� cos 4�� sin 4� − 4! cos 4�� cos 4 � ?@Z  H!            +H"] �".                                                                                                                                            
 

 
We can simplify � as follows:  
 
If H� ≠ 0 then we can vanish the coefficient of �", ��, ��, �� and �_3 using Q�@�, Q�@�, Q!@!, Q�@� 
and Q�@� by substitution 4� = ^Z^_ , 4� = − ^`^_ , 4! = ^a^_ , 4� = arctan ^e^_, and 4� = − arctan ^f^_. And 

if necessary, we can suppose H� = 1 through the scaling of �. In this case, � is reduced to 
form (1). If H� = 0 and H� ≠ 0, then we can vanish the coefficient of ��, �", � , and �! using Q�@�, Q�@�, Q!@!, and Q @  by substitution 4� = ^`^e , 4� = ^Z^e , 4! = ^g^e, and 4 = − arctan ^f^e. And if 

necessary, we can suppose H� = 1 through the scaling of �. In this case, � is reduced to 
form (2). If H� = 0 and H� = 0 and H! ≠ 0, then we can vanish the coefficient of ��, � , and �" 
using Q�@�, Q�@�, and Q!@! by substitution 4� = − ^a^f , 4� = − ^g^f, and 4! = ^Z^f. And if necessary, 

we can suppose H! = 1 through the scaling of �. In this case, � is reduced to form (3). And if H� = 0, H� = 0, H! = 0, and H� ≠ 0, then we can vanish the coefficient of ��, and �  using Q�@�, and Q @  by substitution 4� = − arctan ^g^`, and 4 = − arctan ^a^g. And if necessary, we can 

suppose H� = 1 through the scaling of �. In this case, � is reduced to form (4). And if H� = 0, H� = 0, H! = 0, H� = 0, and H� ≠ 0, then we can vanish the coefficient of � , using Q�@�, by substitution 4� = arctan ^g^a. And if necessary, we can suppose H� = 1 through the 

scaling of �. In this case, � is reduced to form (5). And if H� = 0, H� = 0, H! = 0, H� = 0,H� = 0, and H ≠ 0, if necessary, we can suppose H = 1 through the scaling of �. In this 
case, � is reduced to form (6). And if H� = 0, H� = 0, H! = 0, H� = 0, H� = 0, and H = 0, 
then � is reduced to form (7).  
 
5. SIMILARITY REDUCTION OF PLATEAU EQUATION 
 
The Plateau equation has been stated with the ��, �; �� coordinate, but we are looking for a 
new coordinate that the equation will reduce, if we write it in the new coordinate. This new 
coordinate is obtained through �i, �� dependent invariant corresponding to the infinitesimal 
symmetry generator. If we state the Plateau equation with the new coordinate, using the 
chain rule, a reduced equation will result. Now we calculate the invariants corresponding to 
the symmetry generators existing in the optimal system. The first status for the one element 
of the optimal system is �". It has the determining equation in the form 

j�� = j�� = j�� .  Solving 

this equation will result in the two invariants of i = �� , � = ��. Now, if we consider ���, �� =��i�� as a function of  i = ��, we can state the derivatives of � with respect to � and �, in the 

form of � and i and the derivatives of � with respect to i. If we substitute it in the Plateau 
equation, the Plateau equation turns to an ordinary equation as: �1 + i� + ����kk = 0. In the 
Table below, the invariants corresponding to each of elements of symmetry group and 
optimal system have been calculated. By substituting i# and �# and the derivative of �# in 
respect to i#, in place of �, �, � and the derivative of � in respect to �, �, in the Plateau 
equation, it turns into an ODE. 
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Table 2. Similarity reduced equations to ODE 
 lmn on pn qn lrs �� �� �� �� �  �" �! + ��  

� � �� + �� � � � �A� �� + �� 

� � � �� + �� �� + �� � �A� � + arctan�� �⁄ � 

��i� ��i� ��i� u��i� − �� u��i� − �� � ��i� ��i� − arctan�� �⁄ � 

�kk = 0 �kk = 0 i �kk + �k +  2i �k! = 0 � �kk − �k� − 2� = 0 � �kk − �k� − 2� = 0 �1 + i� + ����kk = 0 �2i + 2i���kk + 4i��k! + �2i + 3��k = 0 

 
In the above Table, it has been tried to calculate the reduced ODE corresponding to each of 
invariants. Also, some solutions of these ODE's (after transfer them into ��, �; �� coordinate) 
have been given as examples. 
 ���, �� =  H� + v ,                                                                                                                     ���, �� =  H� + v ,                                                                                                                     ���, �� =  H� + v� ,                                                                                                                   ���, �� =  −$ � + H�  ,                                                                                                                               

���, �� =  w���� + 1  $  ,                                                                                                              
���, �� =  − H�−� + $ ���� + ��   ,                                                                                                      
���, �� =  H�� + $ ��xA��y��#z ,                                                                                                  

             

 
 

        

���, �� = ��  {8H� − 4�� + 2H?}~�� + 2H�?A}~��   ,                                                            
���, �� =  ��  {8H� − 4�� + 2H?�~�� + 2H�?A�~��  ,                                                           

���, �� =  ± ln�−2H� + �� + �� + u��� + ������ + �� + 4H��  $� + v ,                 
 

���, �� = ln
�
�H + 2H��� + ��� − 4 + 2 {�−4 + H��� + �����1 + �� + ��� √H

2√H �
�

+ 12 arctan
�
� −8 + �H − 4���� + ���

4 {�−4 + H��� + �����1 + �� + ���    �
� + v

              

 
6. CONCLUSION 
 
In this paper we obtained the Lie point symmetries of the Plateau equation by using the Lie 
symmetry method. Also computed the one-dimensional optimal system. This led to reducing 
the Plateau equation to ODE's and computing the invariants of Plateau equation. 
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