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Abstract
Computational quantummechanics basedmolecular andmaterials design campaigns consume
increasinglymore high-performance computer resources,making improved job scheduling efficiency
desirable in order to reduce carbon footprint orwasteful spending.We introduce quantummachine
learning (QML)models of the computational cost of common quantum chemistry tasks. For 2D
nonlinear toy systems, single point, geometry optimization, and transition state calculations the out of
sample prediction error ofQMLmodels ofwall times decays systematically with training set size.We
present numerical evidence for a toy system containing two functions and three commonly used
optimizer and for thousands of organicmolecular systems including closed and open shell
equilibrium structures, as well as transition states. Levels of electronic structure theory considered
include B3LYP/def2-TZVP,MP2/6-311G(d), local CCSD(T)/VTZ-F12, CASSCF/VDZ-F12, and
MRCISD+Q-F12/VDZ-F12. In comparison to conventional indiscriminate job treatment, QML
basedwall time predictions significantly improve job scheduling efficiency for all tasks after training
on just thousands ofmolecules. Resulting reductions inCPU time overhead range from10% to 90%.

1. Introduction

Solving Schrödinger’s equation, arguably one of themost important computing tasks for chemistry and
materials sciences, with arbitrary accuracy is anNPhard problem [1]. This leads to the ubiquitous limitation that
accurate quantum chemistry calculations typically suffer from computational costs scaling steeply and
nonlinearly withmolecular size. Therefore, even ifMoore’s lawwas to stay approximately valid [2], scarcity in
computer hardwarewould remain a critical factor for the foreseeable future. Correspondingly, chemistry and
materials based computer projects have been consuming substantial CPU time at academic high-performance
computer centers on national and local levels worldwide. For example, in 2017 research projects from chemistry
andmaterials sciences used∼25%and∼35%of the total available resources at Argonne Leadership Computing
Facility [3] and at the SwissNational SupercomputingCenter (CSCS) [4], respectively. In 2018,∼30%of the
resources at theNational Energy Research ScientificComputingCenter [5]were dedicated to chemistry and
materials sciences and even∼50%of the resources of the ARCHER [6] super computing facility over the past
month (May 2019). Assuming a global share of∼35% for the usage of the Top 500 super computers (illustrated
infigure 1) over the last 25 years, this would currently correspond to∼0.5 exaFLOPS (floating point operations
per seconds) per year. But also onmost of the localmedium to large size university or research center computer
clusters, atomistic simulation consumes a large fraction of available resources. For example, at sciCORE, the
University of Basel’s computer cluster, this fraction typically exceeds 50%. Acquisition, usage, andmaintenance
of such infrastructures require substantial financial investments. Conversely, any improvements in the efficiency
withwhich they are being usedwould result in immediate savings. Therefore a lot of work is done to constantly
improve hardware and software ofHPCs, e.g. at the International Supercomputing ConferenceNVIDIA
announced the support of the AdvancedRISCMachines (Arm)CPUs, which allows to build extremely energy
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efficient exascale computers, by the end of the year [7]. Computer applications on suchmachines commonly rely
on schedulers optimizing the simultaneouswork load of thousands of calculations.While these schedulers are
highly optimized to reduce overhead, there is still potential for application domain specific improvements,
mostly due to indiscriminate and humanly biased run time estimates specified by users. The latter is particularly
problematic when it comes to ensemble set-ups characteristic formolecular andmaterials design computer
campaignswith very heterogeneous computer needs of individual instances. One could use the scaling behavior
ofmethods to get sorted lists w.r.t wall times and improve scheduling by grouping the calculations by run time.
For example the bottleneck of amulti-configuration self-consistent field calculation (MCSCF) is in general the
transformation of theCoulomb and exchange operatormatrices into the new orbital basis during themacro-
iterations. This step scales as nm4 with n the number of occupied orbitals andm the number of basis functions.
All Configuration Interaction Singles Doubles (CISD) schemes that are based on theDavidson algorithm [8]
scale formally as n m2 4, where n the number of correlated occupied orbitals andm the number of basis functions
[9]. As thesemethods (and basis sets) contain different scaling laws and geometry optimizations additionally
depend on the initial geometry, amore sophisticated approachwas applied: In this paper, we showhow to use
quantummachine learning (QML) tomore accurately estimate run times in order to improve overall scheduling
efficiency of quantumbased ensemble computer campaigns.

Since the early 90s, an increasing number of research efforts from computer science has dealt with
optimizing the execution of important standard classes of algorithms that occur inmany scientific applications
onHPCplatforms [11–13], but alsowith predictingmemory consumption [14], or,more generally, the
computational cost itself (see [15, 16] for two recent reviews). Such predictivemodelsmay even comprise direct
minimization of the estimated environmental impact of a calculation as the target quantity in themodel [17].
MLhas already successfully been applied, however, towards improving scheduling itself [18], or entire computer
workflows [19, 20]. Furthermore, a potentially valuable application in the context of quantum chemistrymay be
the run time optimization of a given tensor contraction scheme on a specific hardware by predictivemodeling
techniques [21]. Another noteworthy effort has been the successful run timemodeling and optimization of a
self-consistentfield (SCF) algorithmon various computer architectures in 2011 [22] using a simple linearmodel
depending on the number of retired instructions and cachemisses. Already in 1996, Papay et al contributed a
least square fit of parameters in graph based component-wise run time estimates in parallelized self consistent
field computations of atoms [23]. Other noteworthywork in the field of computational chemistry is the
prediction of the run time of amolecular dynamics code [24], or the prediction of the success of density
functional theory (DFT) optimizations of transitionmetal species as a classification problembyKulik et al [25].
In the context of quantum chemistry and quantummechanical solid state computations, very little literature on
the topic is found. Thismay seem surprising, given the significant share of this domain on the overall HPC

Figure 1.Computer resource growth of 500 fastest public supercomputers [10]. Estimated use by chemistry andmaterials sciences
corresponds to 35%, corresponding to 2017 usage on SwissNational Supercomputing Center [4].
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resource consumption (see figure 1). To the best of our knowledge, there is no (Q)ML study that predicts the
computational cost (wall time, CPU time, FLOP count) of a given quantum chemicalmethod across chemical
space.

Today, a large number ofQMLmodels relevant to quantum chemistry applications throughout chemical
space exists [26–28]. Common regressors includeKernel Ridge Regression [29–34] (KRR), Gaussian Process
Regression [35] (GPR), or Artificial Neural Networks [34, 36–40] (ANN). For the purpose of estimating run
times of newmolecules, and contrary to pure computer science approaches, we use the samemolecular
representations (derived solely frommolecular atomic configurations and compositions) in ourQMLmodels as
formodeling quantumproperties. As such, we view computational cost as amolecular ‘quasi-property’ that can
be inferred for new, out-of-sample inputmolecules, in complete analogy to other quantumproperties, such as
the atomization energy or the dipolemoment.

In general, a quantum chemistry SCF calculation optimizes the parameters of amolecular wave function
with a clearminimum in the self-consistent systemof nonlinear equations. I.e. the computational cost of a single
point quantum chemistry calculation should be a reasonably smooth property over the chemical space.
Pathological cases of SCF convergence failure are normally avoided by the careful choice of the quantum
chemistrymethod for the single point (SP) calculation of a given chemical system. For geometry optimization
(GO) and transition state (TS) searches on the other hand it ismuch harder to control the convergence, as a
multitude of localminima and saddle pointsmay exist on the potential energy surface defined by the degrees of
freedomof the atomic coordinates in themolecule.

We therefore first investigated the performance ofMLmodels to learn the number of discrete steps of
commonoptimizers applied to theminimum search of nonlinear 2D functions that are known to cause
convergence problems formany standard optimizers. In a second step, we investigated the capabilities ofQML
to learn the computational cost for a representative set of quantum chemistry tasks, including SP, GO, andTS
calculations. To provide numerical evidence for hardware independence of the cost of quantum chemistry
calculations, we trained amodel on FLOPS as a ‘clean’measurement.

2.Data

AllQML approaches rely on large training data sets. Comprehensive subsets of the chemical space of closed shell
organicmolecules have been created in the past. TheQM9 [41] data set ofDFToptimized 3Dmolecular
structures was derived from theGDB17 [42] data set of SimplifiedMolecular Input Line Entry System (SMILES)
strings [43, 44]. This data set contains drug likemolecules of broad scientific interest. GDB17 is an attempt to
systematically generatemolecules asmathematical graphs based on rules ofmedicinal chemistry, removing the
bias of pre-existing building blocks in structure selection. QM9 itself is a well established benchmark data set for
quantummachine learningwheremany differentMLmodels were tested on [29, 32, 39, 45–53] and also
containsmanymolecules which are commercially available and reported onmany chemical data bases. Further
relevant data sets in the literature include, among others, reaction networks [54], closed shell ground state
organometallic compounds [55], or non-equilibrium structures of small closed shell organicmolecules [56].
Yet, regions of chemical space thatmay involvemore sophisticated and costly quantum chemistrymethods,
such as open shell and strongly correlated systems [57, 58] or chemical reaction paths, are still strongly
underrepresented. For this study, we first generated two toy systems of nonlinear functions known to be difficult
formany standard optimizationmethods.We usedKRR to predict the number of optimization steps needed to
find the functions’ closestminimum for a systematically chosen set of starting points. The test case of optimizing
analytical functions explores the fundamental question of learning computational cost of a nonlinear
optimization problemoutside the added complexity of quantum chemistry calculations.We then have
generatedmeasures of the computational cost associated to seven taskswhich reflect variances of three common
use cases: single point (SP), geometry optimization (GO) and transition state (TS) search calculations.

2.1. Toy system
Todemonstrate that it is possible to learn the number of steps of an optimization algorithm, we apply our
machine learningmethod to two cases from function optimization theory: quantifying the number of steps for
an optimizer. The functions in question are the Rosenbrock function [59]

= - + -f x y x y x, 1 100 12 2 2( ) ( ) ( ) ( )

and theHimmelblau function [60]

= + - + + -f x y x y x y, 11 7 . 22 2 2 2( ) ( ) ( ) ( )

The functions are shown in the top rowoffigures 4(b) and (c).We applied three representative optimizers in
their SciPy 1.3.1 [61] implementation on both functions: the ‘NM’ simplex algorithm (Nelder-Mead [62]), the
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gradient based ‘BFGS’ algorithm [63], and an algorithmusing gradients and hessians (Conjugate Gradient with
Newton search ‘N-CG’ [64]). For every function and optimizer we performed 10 200 optimizations from
different starting points on aCartesian grid over the domain-  x y5 , 5 in steps of 0.1. Theminimumof the
Rosenbrock function and the fourminima of theHimmelblau function lie within this domain. Figure 4(b) row
two, three, and four show a heatmap of the number of optimization steps forNM, BFGS, andN-CG,
respectively, for Rosenbrock (left column) andHimmelblau (right column). Generally, theminimum searches
on theHimmelblau function requiredmuch fewer steps (mostly reached after a few tens of iterations).While the
gradient based optimizer BFGS clearly outperformsNM for both functions, theN-CGoptimization of the
Rosenbrock function did not convergewith a iteration limit of 400 for a set of points in the region of x<−0.5
and y>2.5. A very small step size for theN-CG algorithm implementation in SciPy in the critical region is
responsible for the slow convergence.

2.2.Quantumdata sets
Wehave considered coordinates coming from three different data sets (QM9,QMspin, QMrxn) corresponding
tofive levels of theory (CCSD(T),MRCI, B3LYP,MP2, CASSCF) and four basis set sizes.Molecules in the three
different data sets consist of the following:

(i) QM9 contains 134k small organic molecules in the ground state local minima with up to nine heavy atoms
which are composed ofH, C,N,O, and F. All coordinates were published in 2014 [41]. Here, we also report
the relevant timings.

(ii) QMspin consists of carbenes derived fromQM9molecules containing calculations of the singlet and triplet
state, respectively, with a state-averagedCASSCF(2e,2o) reference wave function (singlet and triplet ground
states with equal weights). The entirety of this data set will be published elsewhere, herewe only provide
timings andQM9 labels.

(iii) QMrxn consists of reactants and SN2 transition states of small organic molecules with a scaffold of C2H6

whichwas functionalizedwith the following substituents:−NO2, –CN, –CH3, –NH2, –F, –Cl and –Br. The
entirety of this data set will be published elsewhere, herewe only provide timings and geometries.

2.3.Quantum chemistry tasks
The three data sets were then divided into the seven following tasks for which timings were obtained (see also
table 1):

QM9CC DZ
SP 5736 PNO-LCCSD(T)-F12/VDZ-F12 [65–67] single point energy timings. Details of the calculation
results other than timings are subject of a separate publication [68].

QM9CC TZ
SP 3497 PNO-LCCSD(T)-F12/VTZ-F12 single point energy timings.

QMspinMRCI
SP 2732 single point calculations usingMRCISD+Q-F12/VDZ-F12 [69–72]. Details of the

calculation results other than timings are subject of a separate publication [73].

QM9B3LYP
GO 3724 geometry optimization timingswith initial B3LYP/6-31G* [74, 75] geometries optimizing at the
B3LYP/def2-TZVP level of theory.

QMrxnMP2
GO 8148 geometry optimization timings onMP2/6-311G(d) level of theory.

QMspinCASSCF
GO 1595CASSCF(2e,2o)[Singlet]/VDZ-F12 [76, 77] geometry optimization timings.

QMrxnMP2
TS 1561 timings of transition state searches onMP2 level of theory.

Further details on the data sets can be found in section 1 of the supplementary information (SI), which is
available online at stacks.iop.org/MLST/1/025002/mmedia. A distribution of the properties (wall times) of the
seven tasks is illustrated infigure 2. Single point calculations (the two QM9CC

SP tasks) and the geometry
optimization (task QM9B3LYP

GO )havewall times smaller than half an hour. In general, the smaller the variance in
the data, the less complex the problem and the easier it is for themodel to learn thewall times. For geometry
optimizations andmore exact (alsomore expensive)methods (task QMspinMRCI

SP and QMspinCASSCF
GO ) the

average run time is∼9 h.With a larger variance in the data the problem ismore complex (higher dimensional)
and the learning ismore difficult (higher off-set).

2.4. Timings, code, and hardware
The calculationswere run on three computer clusters, namely our in-house computer cluster, the Basel
University cluster (sciCORE) and the Swiss national supercomputer PizDaint at CSCS.We used two electronic
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Table 1. Seven tasks used in this work generated from three data sets (QM9,QMspin, QMrxn), using three use cases (SP, GO, TS) on different levels of theory and basis sets.

Task QM9CC DZ
SP QM9CC TZ

SP QMspinMRCI
SP QM9B3LYP

GO QMrxnMP2
GO QMspinCASSCF

GO QMrxnMP2
TS

Use case SP GO TS

Data set QM9 QMspin QM9 QMrxn QMspin QMrxn

Level CCSD(T) CCSD(T) MRCI B3LYP MP2 CASSCF MP2

Basis set VDZ-F12 [78] VTZ-F12 [78] VDZ-F12 [78] def2-TZVP [79, 80] 6-311G(d) [81–83] VDZ-F12 [78] 6-311G(d) [81–83]
Size 5736 3497 2732 3724 8148 1595 1561

Code Molpro Molpro Molpro Molpro ORCA Molpro ORCA
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structure codes to generate timings.Molpro [84]was used to extract bothCPU andwall times for data sets (i) and
(ii), andORCA [85]was used to extract wall times for data set iii). Further information of the data sets, the
hardware, and the calculations can be found in sections 3 and 4 of the SI.

The retired floating point operations (FLOP) count of the local coupled cluster calculation task QM9CC DZ
SP

was obtained as follows: the number of FLOPs have been computedwith the perf Linux kernel profiling tool2 for
data set QM9CC DZ

SP . perf allows profiling of the kernel and user code at run timewith little CPUoverhead and
can give FLOP counts with reasonable accuracy. FLOP count is an adequatemeasure of the computational cost
when the program execution is CPUbound by numerical operations, which is given in the PNO-LCCSD(T)-F12
implementation [65–67, 86] inMolpro.

3.Methods

3.1.Quantummachine learning
In this study, we used kernel basedmachine learningmethodswhichwere initially developed in the 1950s [87]
and belong to the supervised learning techniques. In ridge regression, the input ismapped into a feature space
andfitting is applied there.However, the best feature space is a priori unknown, and its construction is
computationally hard. The ‘kernel trick’ offers a solution to this problemby applying a kernel k on a
representation space that yields inner products of an implicit high dimensional feature space: theGram
matrix elements k x x,i j( ) of two representations Î x between two inputmolecules i and j are the inner
products á ñi j, in the feature space. For example,

s
= -

-
k x x

x x
, exp 3i j

i j 1⎛
⎝⎜

⎞
⎠⎟( )

∣∣ ∣∣
( )

or

s
= -

-
k x x

x x
, exp

2
4i j

i j 2
2

2

⎛
⎝⎜

⎞
⎠⎟( )

∣∣ ∣∣
( )

withσ as the length scale hyperparameter, represent commonlymadekernel choices, theLaplacian (equation (3))
orGaussian kernel (equation (4)). Fitting coefficientsa can then be computed in input space via the inverse of
the kernelmatrix = kK x x,ij i j[ ] ( ):

a l= + -K I y, 51( ) ( )

whereλ is the regularization strength, typically very small for calculated noise-free quantum chemistry data.
Hence, KRR learns amapping function from the inputs xi, in this case the representation of themolecule, to

a property y x
q q
est ( ), given a training set ofN reference pairs =yx ,i i i

N
1{( )} . Learning in this contextmeans

interpolation between data points of reference data yx ,i i{( )}and target data yx ,q q
est{( )}. A new property y

q
est can

then be predicted via thefitting coefficients and the kernel:

å a=y kx x x, . 6
q q

i

N

i i q
est ( ) · ( ) ( )

For the toy systems, a Laplacian kernel was used, the representation corresponding simply to the starting
point (x=(x, y)) of the optimization runs. For the purpose of learning of the run times, we used twowidely used

Figure 2.Wall time distribution of all tasks using kernel density estimation.

2
Perf of the Linux kernel version 3.10.0-327.el7.x86_64 tools was used.Perfmeasures the number of retired FLOP (as a certain amount of

speculative executionsmay be negated, given that logical branches cannot be evaluated between instructionswithin a clock cycle).
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representations, namely Bag of Bonds (BoB) [45]with a Laplacian kernel. BoB is a vectorized version of the
CoulombMatrix (CM) [29] that takes theCoulomb repulsion terms for all atom to atomdistances and packs
them into bins, scaled by the product of the nuclear charges of the corresponding atoms. This representation
does not provide a strictly uniquemapping [32, 88]whichmay deteriorate learning in some cases (vide infra).
The second representation usedwas atomic FCHL [50]with aGaussian kernel. FCHL accounts for one-, two-,
and three-body terms (whereas BoB only contains two-body terms). The one-body term encodes group and
period of the atom, the two-body term contains interatomic distancesR, scaled byR−4, and the three-body
terms in addition contain angles between all atom triplets scaled byR−2.

To determine the hyperparametersσ andλ, the reference data was split into two parts, the training and the
test set. The hyperparameters were optimized onlywithin the training set using random sub-sampling cross
validation. To quantify the performance of ourmodel, the test errors,measured asmean absolute errors (MAE),
were calculated as a function of training set size. The leading error term is known to be inversely proportional to
the amount of training points used [89]:

» a NMAE . 7b ( )

The learning curves should then result in a decreasing linear curvewith slope b and offset alog :

» -a b Nlog MAE log log , 8( ) ( ) ( ) ( )

where a is the target similarity which gives an estimate of howwell themapping function describes the system
[32] and b is the slope being an indicator for the effective dimensionality [90]. Therefore, goodQMLmodels are
linearly decaying, have a low offset alog( ) (achieved by usingmore adequate representations and/or base-line
models [91]), and have steep slopes (large b).

For each task,QMLmodels of wall timeswere trained and subsequently tested on out-of-sample test set
whichwas not part of the training. As input for the representations the initial geometries of the calculations were
used. To improve the predictions of geometry optimizations for the task QMspinCASSCF

GO , we split the individual
optimization steps into the first step (GO1) and the subsequent steps (GO2), because thefirst step takes on
average∼20%more time than the following steps (formore details we refer to section 1.4 of the SI). For learning
the timings of the geometry optimization taskGO2, we took the geometries obtained after thefirst
optimization step.

As input for the properties, wall timeswere normalizedwith respect to the number of electrons in the
molecules. Figure 3 shows thewall time overhead (CPU time towall time ratio) for calculations runwith
Molpro. To remove runs affected by heavy I/O, wall time overheads higher than 3%, 5%, 10%, 30%, and 50%
were excluded from the tasks QM9CC DZ

SP , QM9CC TZ
SP , QMspinMRCI

SP , QMspinCASSCF
GO , and QM9B3LYP

GO ,
respectively. In order to generate learning curves for all the seven tasks, all timings were normalizedwith respect
to themedian of the test set to get comparable normalized (MAE). The resultingwall time out-of-sample
predictionswere used as input for the scheduling algorithm.Whenever theQMLmodel predicted negative wall
times, the predictionswere replaced by themedian of all non-negative predictions.

Figure 3.Wall to CPU time ratio (using kernel density estimation) forMolpro calculations to identify runswith highwall time
overhead due to heavy I/O load on clusters.
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AllQML calculations have been carried outwithQMLcode [92].Wall times andCPU times (Molpro) and
wall times (ORCA) for all the seven tasks, as well asQML scripts can be found in the SI.

3.2. Application: optimal scheduling
3.2.1. Job array and job steps
Inmany cases, efforts in computational chemistry ormaterials design require the evaluation of identical tasks on
differentmolecules ormaterials. Distributing those tasks across a computer cluster is typically done in one of
twoways.When using job arrays, the scheduler assigns computer resources to each calculation separately, such
that the individual calculation is queued independently. This approach typically extends the total wall time, and
has little overheadwith the jobs themselves but leads to inefficiencies for the scheduler since the individual wall
time estimate of each job needs to be (close to) themaximum job duration.

In the second approach, there are only few jobs submitted to the scheduler and tasks are executed in parallel
as job steps. Thefirst approach has little overheadwith the jobs themselves but can lead to inefficiencies. The
second approach yields inefficiencies due to lack of load balancing. These two commonmethods require no
knowledge of the individual run time of each task, and usually rely on a conservative run time estimate in
practice.

3.2.2. Scheduling simulator
Using theQMLbased estimated absolute timings turns the scheduling of the remaining calculations into a bin
packing problem. For this problemwe used the heuristic first fit decreasing (FFD) algorithmwhich takes all run
time estimates for all tasks, sorts them in decreasing order and chooses the longest task that fits into the
remaining time of a computer job (formore details on FFD, see section 2 in the SI). If there is no task left that is
estimated tofit into a gap, then no task is chosen and resources are released early.

We implemented a job scheduling simulator assuming idempotent uninterruptible tasks for all three job
schedulers: conventional job arrays, conventional job steps, and our newQMLbased job scheduler. Using a
simulator is particularly useful because the duration of the job array and job step approaches depend on the
(random) order of the jobs, and therefore requires averaging overmultiple runs.We used this simulator in the
context of two environments: our university cluster sciCORE (denoted S)where users are allowed to submit
single-core jobs and the Swiss national supercomputer (CSCS, denoted L)where users are only allowed to
allocate entire computer nodes of 12 cores. In all cases, we assumed that starting a new job via the scheduler takes
30 s and that every job queues for 1 h. These numbers have been observed for queuing statistics of sciCORE
andCSCS.

4. Results and discussion

4.1. Toy system
From the total data set (10 200 optimizations) 3200were chosen randomly for every combination of optimizer
and function and the prediction error was computed for different training set sizesN. Figure 4(a) shows the
learning curves for the Rosenbrock (‘Rosen’) and theHimmelblau (‘Him’) functions.Well behaved learning
curves were obtained for both functions and all optimizers. TheMLmodels forHim-BFGS andHim-N-CG
have a lower offset because the variance of the data set is smaller (between 0 and 25 optimization steps) than for
the others (∼50 to 120 steps). The offset of Rosen–Newton-CG can be explained by the truncated runswhich
caused a non smooth area in the function space (x<−0.5 and y>2.5)which leads to higher errors.

In addition to the learning curves, we computed the relative prediction errors of the different optimization
runs. These results are shown infigure 4(c). As expected, the errors get larger when the starting point is close to a
saddle point: small changes in the starting point coordinatesmay lead to very different optimization paths. These
discontinuities naturally occur for any optimizer based on the local information at the starting point and can be
consistently observed infigure 4(b). Additional discontinuities can also be observed depending on the optimizer.
For all these regions larger relative errors for KRR can be observed (shown infigure 4(c)) illustrating that small
prediction errors rely on a reasonably smooth target function. In summary, we can show that KRR is capable of
learning the discrete number of optimization steps which is a strong indication that the computational cost of
quantum chemistry geometry optimization and transition state searches should be learnable in principle .

4.2.Quantummachine learning
4.2.1. Single point (SP) wall times
In the following, learning of thewall times for the different quantum chemistry tasks is discussed, the learning of
the correspondingCPU times has also been investigated and results of the latter are given in the SI. Figure 5 (left)
shows the performance ofQMLmodels of wall times using learning curves for the SP use case. For the two
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similar tasks QM9CC DZ
SP and QM9CC TZ

SP , the timings of the smaller basis set was consistently easier to learn, i.e.
smaller training set required to reach similar predictive accuracy. Similarly to physical observables [50], the use
of the FCHL representation results in systematically improved learning curve off-set with respect to BoB. It is
substantiallymore difficult to learn timings ofmulti-reference calculations (task QMspinMRCI

SP ), nevertheless,
learning is achieved, and BoB initially also exhibits a larger off-set than FCHL, but the learning curves of the
respective two representations converge for larger training set sizes.More specifically, for training set size
N= 1600, BoB/FCHL basedQMLmodels reach an accuracy of 3.1/1.8, 4.3/2.4, and 33.7/31.8% for
QM9CC DZ

SP , QM9CC TZ
SP , and QMspinMRCI

SP , respectively. Corresponding respective averagewall times in our
data-sets, distributions shown infigure 2, average at∼6, 15, and 480 min. To the best of our knowledge, such
predictive power in estimating computer timings has not yet been demonstrated for commonquantum
chemistry tasks.

The extraordinary accuracy that ourmodel can reach in the prediction of thewall times for the QM9CC DZ
SP

and QM9CC TZ
SP quantum chemistry tasksmay be explained by the underlying quantum chemical algorithm.

Figure 4. 2Dnonlinear toy systems consisting of the Rosenbrock (‘Rosen’) andHimmelblau (‘Him’) functions andminimum search
with three optimizers (Nelder-Mead (NM), BFGS, andNewton-CG (N-CG)). (a) Learning curves showing the prediction error of
KRR for Rosen (solid lines) andHim (dashed lines) function using starting point (x, y) as representation input. (b)Top row shows the
function values for Rosen (left) andHim (right). Row two, three, and four show the number of optimization steps (encoded in the heat
map) for 10 200 starting points forNM, BFGS, andN-CG, respectively. (c)Row two, three, and four show the relative prediction error
of theMLmodel trained on the largest training set sizeN = 3200 forNM, BFGS, andN-CG, respectively.

Figure 5. Learning curves showing normalized test errors (cross validatedMAEdivided bymedian of test set) for seven tasks using BoB
(solid) and FCHL (dashed) representations. Themodel was trained onwall times normalizedw.r.t. number of electrons.Horizontal
lines correspond to the performance estimating all calculations havemean run time (standard deviation divided bymeanwall time of
the task).
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The tensor contractions in the local coupled cluster algorithm are sensitively linked to the chemically relevant
many-body interactions expressed in the basis of localized orbitals. Therefore, the computational cost can be
suitably encoded by atom-basedmachine learning representations.

In order to investigate the relative performance of BoB versus FCHL further, we have performed a principal
component analysis (PCA) on the respective kernels (training set sizeN= 2000) for task QMspinMRCI

SP . The
projection onto thefirst two components is shown infigure 6, color-coded by the training instance specificwall
times, andwith eigenvalue spectra as insets. For FCHL, the decay of the eigenvalues is very rapid (tenth
eigenvalue already reaches 0.1). From the PCAprojection, the number of heavy atoms emerges as a discrete
spectrumofweights for the first principal component. The second principal component groups constitutional
isomers. This reflects the importance of the one-body terms in the FCHL representation. The data covers well
both components and the color variousmonotonically. All of this indicates a rather lowdimensionality in the
FCHL feature space which facilitates the learning. The kernel PCAplot of the FCHL representation shows that
the learning problem is smooth in representation space and that there is a correlation between the property
(computational cost) and the representation space. By contrast, the BoB’s PCAprojection onto the first two
components displays a star-wise patternwith linear segments which indicate thatmore dimensions are required
to turn the data into amonotonically varying hypersurface. The eigenvalue spectrumof BoB decaysmuchmore
slowlywith even the 100th eigenvalue still far above 1.0. All of this indicates that learning ismore difficult, and
thereby explains the comparatively higher off-set.

4.2.2. Geometry optimization (GO)wall times
Learning curves in figure 5 (middle) shows that it is, in general, possible to buildQMLmodels of GO timings for
the tasks considered.We obtained accuracies for BoB/FCHL forN=800 of 50.0/43.3, 61.7/57.6, and 50.7/
41.2% for tasks QM9B3LYP

GO , QMrxnMP2
GO , and QMspinCASSCF

GO , respectively.
Interestingly, the comparatively larger off-set in the learning curves, however, indicates that it ismore

difficult to learnGO timings than SP timings. This is to be expected sinceGO timings involve not only SP
calculations for various geometries but also geometry optimization steps. In otherwords, theQMLmodel has to
learn the quality of the initial guesses for subsequentGOoptimizations. This cannot be expected to be a smooth
function in chemical space. Furthermore, themapping froman initial geometry (used in the representation for
theQMLmodel) to the target geometry can vary dramatically when the initial geometry happens to be close to a
saddle point (or a second order saddle point in the case of TS searches, see next section): very slight changes in
the initial geometry (or in the setup of the geometry optimization)may lead to convergence to very different
stationary points on the potential energy surface. Thismakes the statistical learning problemmuch less well
conditioned than for single point calculations, which also reflects in the larger variance of the geometry
optimization timings compared to single point calculations. As such, GO timings represent a substantiallymore
complex target function to learn than SP timings. Note that for any task (even for the toy system applications)we
require a differentQMLmodel. The cost of theGOdepends on the initial geometry and the convergence criteria.
The latter varies only slightly within a data set. The former is part of the representation of themolecular structure
and therefore captured by ourmodel. The input structures for the task QMrxnMP2

GO are derived from the same
molecular skeleton and are therefore very similar. The same holds for task QM9B3LYP

GO and QMspinCASSCF
GO which

Figure 6.PCAplots of kernel elements for BoB (left) and FCHL (right) for data set QMspinMRCI
SP . Theweights of the twofirst principal

components for themolecules in the data sets are plotted against each other and correspondingwall times are encoded as a heatmap.
Insets show the first 100 eigenvalues on a log scale.
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are derived fromQM9molecules. The convergence criteria also stay the same for all calculations within a data set
andwould only cause amore difficult learning task if amachinewas trained over several different data sets.We
also showedwith the toy system that it is possible to learn the number of steps for different optimizer starting
fromdifferent areas on the surface (see figure 4(b)). To further improve the performance of ourmodel of task
QMspinCASSCF

GO , we split theGO into thefirst GO step (GO1) and all subsequent steps (GO2). This choice has
beenmotivated by our observation thatmost of the variance stemmed from thefirst GO step (requiring to build
thewave-function from scratch), while the subsequent steps for themselves have a substantially smaller variance.
The resulting learning curves are shown in figure 7 and justify this separation in leading to an improvement of
theQMLmodel to reach errors of less than 25%atN=800 (rather thanmore than 40%), as well as further
improved job scheduling optimization (shownbelow infigure 10).

4.2.3. Transition state (TS) wall times
Transition state search timings were slightly easier to learn than geometry optimization timings (see figure 5
(right)). Particularly for the larges training set size ( =N 1000max ) for BoB/FCHLwe obtainedMAEs of 32.9/
27.0% and reduced the off-set by∼10% compared to learning curves for theGOuse case. As already discussed in
the previous section, the run time ofGO andTS timings not only scales with the number of electrons but also
depends on the initial structure. For the transition state search, the scaffold (which is close to a transition state)
was functionalizedwith the different functional groups. Since the initial structures were closer to thefinal TS the
offset of the learning curves is lower than for learning curves of theGOuse case, where the initial geometries
were generatedwith a semi empiricalmethod (PM6) for task QMrxnMP2

GO , carbenes were derived fromQM9
molecules for task QMspinCASSCF

GO , and geometries for task QM9B3LYP
GO were obtainedwith a different basis set.

A summary of the results for all tasks for the largest training set size (Nmax) can be found in table 2.

Figure 7.Learning curves showing normalized test errors (cross validatedMAEdivided bymedian of test set) for thefirst two geometry
optimization steps on task QMspinCASSCF

GO using BoB and FCHL as representations. Themodel was trained onCPU times divided by
the number of electrons.Horizontal lines correspond to the performance estimating all calculations havemean run time (standard
deviation divided by themeanwall time of the data set).

Table 2.QML results (normalized prediction errors) for seven task and both representations (BoB and FCHL) for largest training set
size (Nmax).

Calculation SP GO TS

Label QM9CC DZ
SP
/ QM9CC TZ

SP
/ QMspin MRCI

SP QM9B3LYP
GO QMrxn MP2

GO QMspin CASSCF
GO QMrxn MP2

TS

Nmax 5000 3200 2000 3200 6400 1200 1000

BoB (%) 2.0 3.3 32.7 42.5 40.5 47.8 32.9

FCHL (%) 1.3 1.6 30.9 37.6 38.9 39.8 27.0
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4.2.4. Timings, code, hardware
Regarding hardware dependentmodels, within one data set we only used one electronic structure codewhich is
also consistent with the general handling of the data set generation. The noise that is generated using different
infrastructures affects the learning only in a negligible amount in our case, since the difference in hardware
capabilities isminimal.When looking at the task QMrxnMP2

TS wherewe usedfive different CPU types on two
clusters (table 1 in the SI), we could notfind any evidence that different hardware affects the learning compared
to otherGO tasks that ran on only oneCPU type and cluster. However the hardware for these calculations is still
very similar.When it differs to a greater extant, the noise level will rise. The noise does not only depend on the
cluster itself but also on other calculations running on the cluster which is non-deterministic andwill limit the
transferability of theMLmodels. For this reasonwe removed some of the timingswith large I/O overhead using
figure 3. For the QM9CC

SP tasks, the run time difference using the IntelMKL 2019 library [93] andOpenBlas
0.2.20 [94]were computed for a few cases and are found to be onlywithin a few percents of thewall time.
Furthermore, run times of a native build of theMolpro software package version 2018.3withOpenMPI 3.0.1
[95], GCC7.2.0 [96], andGlobalArrays 5.7 [97, 98] and the shipped executable were compared and yielded run
timeswithin a few percents of difference. The FLOP calculations on the QM9CC

SP data set have been performed on
a computer nodewith 24 processors (Intel(R)Xeon(R)CPUE5-2650 v4@2.20GHz (Broadwell)). The
significant part of the FLOP clock cycles constituted of vectorized double precision FLOP on the full 256 bit
FLOP register, i.e. the essential numerical operations of the quantum chemistry algorithmwere directly
measured.Hence, FLOP count constitutes a valuablemeasure of the computation cost in our case3.We
anticipate thatHardware specificQMLmodels will be used in practice.

4.2.5. Single point (SP) FLOPs
Toprovide unequivocal numerical proof that it is justifiable to learnwall timeswe applied ourmodels to FLOP
counts for the task QM9CC DZ

SP , shown infigure 8. FLOP count as a ‘clean’measurement (almost no noise) for
computational cost was slightly easier to learn thanwall times and the learning curves show similar behavior: the
model trained on the same task QM9CC DZ

SP reaches∼4%MAE alreadywith just 400 training samples, while
∼1000 training samples were required in the case of wall times using BoB. For FCHL, the performance is similar
but the slope is steeper for the FLOPmodel which indicates a faster learning or less noise.

4.3. Application: optimal scheduling
4.3.1. Job array and job steps
For the scheduling optimization for all seven tasks (QM9CC DZ

SP , QM9CC DT
SP , QMspinMRCI

SP , QM9B3LYP
GO ,

QMrxnMP2
GO , QMspinCASSCF

GO , QMrxnMP2
TS ), theQMLmodel with the best representation (lowestMAEwith

maximumnumber of training points)was usedwhich in all cases was FCHL. For the FFD algorithm absolute

Figure 8. Learning curves showing normalized prediction errors (cross validatedMAEdivided bymedian of test set) for FLOP count
andwall times on task QM9CC DZ

SP using BoB and FCHL representations.

3
Due to non-deterministic run time behavior of theCPU, aswell asmeasurement errors of perf, the FLOP count varies within a few tenth of

percent for consecutive runs of the same calculation.
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timing predictions are needed tomake good decisions. The lower panel of figure 9 shows the accuracy of the
QMLpredictions.While the individual predictions (absolute not relative) are inmany cases not perfect and
partially still exhibit a significantMAE (see figure 5), this level of accuracy is already sufficient to reduce the
overhead of the job scheduling. The lower panel offigure 9 shows the accuracy of theQMLpredictions.While
the individual predictions (absolute not relative) are inmany cases not perfect and partially still exhibit a
significantMAE (see figure 5), this level of accuracy is already sufficient to reduce the overhead or thewall time
limits of the job scheduling. In particular, in the limit of a large number of cores working in parallel, our
approach typically halved the computational overhead (data sets with closed shell systems andTS searches)
while also reducing the time to solution by reducing the total wall time. This shows that for the scheduling
efficiency problem, it is not required to obtain perfect estimates for the individual job durations, but rather
reasonably accurate estimates. However, if therewas the need for better accuracy, by virtue of theMLparadigm
(prediction error decay systematically with training set size) this could easily be accomplished by decreasing the
error simply through the addition ofmore training data.

When comparing the differentmethods in the upper panel offigure 9, we see that the job array approach had
no overhead for cases where single-core jobs can be submitted separately.While this is true itmeans that every
job needs towait in the queue again, thus increasing the total time to solution. For large task durations, this effect
is less pronounced but typically the job array approach doubles thewall timewhich renders this approach
unfavorable.

Using job steps alone becomes inefficient if the task durations are long, since the assumption that all tasks are
roughly of identical durationwillmean that interruptions of unfinished calculations occurmore often.Having a
more precise estimate allows formore efficient packing. This becomes important on large computer clusters
where only full nodes can be allocated: in this case, the imbalance of the durations of calculations running in
parallel further increases the overhead. Ourmethod typically gave a parallelization overhead of 10%–15%for a
range of data sets. For example, in the task QMrxnMP2

GO , our approach allowed us to go to two orders of
magnitudemore computer resources and have the same overhead as job step parallelization. This is a strong case
for usingQMLbased timing estimates in a production environment—in particular, since the number of training
data points required is very limited (see figure 5).

4.3.2. Geometry optimization steps
Given that the number of steps of a geometry optimization is difficult to learn (see lower panel offigure 9), the
ability to accurately predict the duration of a single geometry optimization step allows to increase efficiency via
another route.Onhybrid computer clusters, themaximumduration of a single computer job is limited.We
suggest to check during the course of a geometry optimizationwhether the remaining time of the current
computer job is sufficient to complete another step. If not, it ismore efficient to relinquish the computer
resources immediately rather than committing them to the presumably futile undertaking of computing the

Figure 9. Scheduling efficiencies for the seven different tasks (columns) assuming a certain per-jobwall time limit specified in column
title. Infrastructure assumptions correspond to either a large (solid lines, L) computer center or a small (dashed lines, S) university
computer center. Top row reports CPU time overhead reductionwhen using theQMLbased (blue) rather than the conventional
(green, orange) packing. Results are given relative to the total CPU time needed for the calculations of each data set for established
methods (job array and jobs steps, see text) and our suggestedmethod (QML). Bottom row shows actual versus predicted times (using
FCHL as representation) for all calculations in each data set usingmaximum training set size.
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next step.We refer to these strategies as the ‘simple approach’ (take all CPU time you can, give nothing back) and
the ‘QMLapproach’ (give up resources early). Figure 10 shows the advantage of theQML approach: it allows to
go towards shorter computer jobs and reduces theCPU time overhead by up to 90% for small wall time limits
using the job array approach. This ismore efficient for the scheduler and increases the likelihood of the job being
selected by the backfiller, further shortening thewall time. Using theQML approach does not severely affect the
wall time, i.e. the time-to-solution. This is largely independent of the extent of parallelization employed in the
calculation (see right hand side plot infigure 10).We suggest to implement an optional stop criterion in
quantum chemical codes where an external command can prematurely stop the progress of the geometry
optimization to be resumed in the next computer job. This change can drastically improve computational
efficiency on large scale projects. Estimating the current consumption to be on the order of at least 5× 105

petaFLOPS (see discussion above in section 1) for computational chemistry andmaterials science this approach
may lead to potentially large savings in economical cost.

5. Conclusion

Wehave shown that the computational complexity of quantum chemistry calculations can be predicted across
chemical space byQMLmodels. First we looked at a 2Dnonlinear toy system consisting of example functions
which are known to be difficult to optimize. Using these test functions and three optimizers, we build a firstML
model and the learning curves show that it is possible to learn the number of optimization steps using only the
starting position (x y, ). Representations are designed to efficiently cover all relevant dimension in the given
chemical space. Hence, if the computational cost is learnable byQMLmodels, it is a reasonably smooth function
in the variety of chemical spaces thatwe considered. This is a fundamental result.

Our approach succeeds in estimating realistic timings of a broad variety of representative calculations
commonly used in quantum chemistrywork-flows: single-point calculations, geometry optimizations, and
transition state searcheswith very different levels of theory and basis sets. Themachine learning performance
depends on the quantum chemistrymethod and on the type of computational cost that is learned (FLOP,CPU,
wall time).While the accuracy of the prediction is shown to be strongly dependent on the computational
method, we could typically predict the total run timewith an accuracy between 2%and 30%.

ExploitingQMLout-of-sample predictions, we have demonstrably used computer clustersmore efficiently
by reordering jobs rather than blindly assuming all calculations of one kind tofit into the same timewindow.
Without significant changes in the time-to-solution, we reduced theCPU time overhead by 10%–90%
depending on the task.With the scheme presented in this work, computer resource usage can be significantly
optimized for large scale chemical space computer campaigns. To support this case, all relevant code, data, and a
simple-to-use interface ismade available to the community online [99].

We believe that ourfindings are important since it is not obvious that establishedQMLmodels, designed for
estimating physical observables, are also applicable tomore implicit quantities such as computational cost.
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