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Studies on endemism are always of high interest in biogeography and contribute to
better understanding of the evolution of species and making conservation plans. The
present study aimed to investigate the endemism patterns of planthoppers in China by
delimiting centers of endemism and areas of endemism. We collected 6,907 spatial
distribution records for 860 endemic planthopper species from various resources.
Centers of endemism were identified using weighted endemism values at 1◦ grid
size. Parsimony analysis of endemicity and endemicity analysis were employed to
detect areas of endemism at 1◦, 1.5◦, and 2◦ grid sizes. Six centers of endemism
located in mountainous areas were identified: Taiwan Island, Hainan Island, eastern
Yungui Plateau, Wuyi Mountains, western Qinling Mountains, and western Yunnan. We
also delimited six areas of endemism, which were generally consistent with centers
of endemism. Our findings demonstrated that mountainous areas have an essential
role in facilitating the high level of endemism and formation of areas of endemism in
planthoppers through the combined effects of complex topography, a long-term stable
environment, and geological events. Dispersal ability and distribution of host plants also
have important effects on the patterns of planthoppers’ endemism.

Keywords: areas of endemism, biogeography, centers of endemism, mountainous areas, planthoppers

INTRODUCTION

The geographical distribution of endemic species (i.e., restriction of a species to a particular
area) represents the highest degree of historical and ecological imprint of all biological entities
(Casazza et al., 2008). Moreover, endemic areas have been generally recognized as priority areas for
biodiversity conservation plans (Myers et al., 2000; Lamoreux et al., 2006; Huang et al., 2010, 2016;
Gomes-da-Silva et al., 2017; Zhao et al., 2020a). Therefore, studies related to patterns of endemism
have always been a central topic of biogeography and biodiversity conservation (Laffan and Crisp,
2003; Orme et al., 2005; Posadas et al., 2006; Sandel et al., 2011; Huang et al., 2012; Feng et al., 2016;
Li et al., 2017).

Studies on the spatial patterns of endemics often delimit the main distribution areas, and
these areas are frequently described as centers of endemism (CoEs) and areas of endemism
(AoEs). Although the drivers causing formation of CoEs and AoEs may show similar ecological or
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historical legacies (Hurdu et al., 2016), they differ because the
two concepts are based on different identification methods and
assumptions (Linder, 2001a). CoEs are areas including higher
endemic richness or endemism than its surroundings (Crisp
et al., 2001; Linder, 2001b). AoEs represent areas delimited by
the congruent distribution of at least two endemic taxa (spatial
homology) (Platnick, 1991; Morrone, 1994; Szumik et al., 2002).
AoEs are extremely important because they can be used to
design biogeographic regionalization schemes (Morrone, 2014a),
to investigate organism-climate dynamics (Gámez et al., 2017),
and as a priority target for conservation plans (Huang et al.,
2010; Noroozi et al., 2018). Numerous biogeographers and
evolutionary biologists have shown interest in evaluating the
causes for the presence of CoEs and AoEs (Nelson and Platnick,
1981; Anderson, 1994; López-Pujol et al., 2011; Yuan et al., 2014;
Noroozi et al., 2018).

Mountainous areas host a remarkable proportion of Earth’s
biodiversity, with several species completely restricted to these
areas, although these areas only account for 16.5–27% of the
land area (Fjeldså et al., 2012). Half of the high biodiversity
areas identified so far are mountainous areas (Kohler and Maselli,
2009). The large biodiversity in mountainous areas is associated
with their dual role as “species museums” (places of especially
long-term persistence) and “species cradles” (places of especially
rapid speciation). Therefore, high biodiversity in mountainous
areas reflects two mechanisms: enhanced speciation rates and
lineage persistence (Rahbek et al., 2019). Mountain biodiversity
is characterized by deep-time evolution and ecological processes,
which reflect a history worth protecting (Rahbek et al., 2019).

The planthoppers, members of superfamily Fulgoroidea
(Insecta: Hemiptera), are a dominant group of herbivorous
insects, consisting of 13,844 species in 33 families worldwide
(Bourgoin, 2021). Planthoppers are obligatory phytophagous and
mainly feed on the phloem tissue of woody or herbaceous plants
(Wilson, 2005). Thus, host plants might have highly impacted
their distribution. The majority of species in planthoppers lack
the ability to disperse over long distances, resulting in a small
distribution range. This property makes it a unique and excellent
model for studying biogeography (Liang, 1998). China is one
of the countries that is the richest in planthoppers, with over
1,300 described species. Unfortunately, although previous studies
have investigated species richness patterns in planthoppers (Zhao
et al., 2020b), the understanding of patterns of endemism
in China remains in its infancy. Thus, to fully understand
endemism patterns of Chinese planthoppers, there is a need
to compile distributional data for all endemic planthoppers
species. Research on spatial patterns of endemism not only
contributes to understanding the evolution of planthoppers
but also for identification of priority areas of planthopper
biodiversity conservation.

The aim of the present study was to propose biogeographical
patterns of planthopper endemism in China using the spatial
distribution data for endemic species. We focused on the
following research areas: (1) identifying the CoEs and delimiting
AoEs; and (2) whether or not the CoEs and AoEs in this study are
located in mountainous areas, as found in previous studies (e.g.,
Wang et al., 2017; Noroozi et al., 2018, 2019).

MATERIALS AND METHODS

Species Distribution Data
The 6,907 spatial distribution records for 860 endemic
planthoppers species (only recorded in China) were collected
from the literature, books, MD/Ph.D. theses, zoological records,
China Knowledge Resource Integrated Database, and museum
specimens (Zoological Museum, Institute of Zoology, Chinese
Academy of Sciences; Institute of Entomology, Guizhou
University; the insect collection of China Agricultural University,
Hebei University, Nankai University and Dali University;
Entomological Museum, Northwestern A & F University;
Shanghai Institute of Entomology, Chinese Academy of Sciences;
Tianjin Museum of Natural History; Taiwan Agricultural
Research Institute). Distribution sites at the city, county,
or township levels were obtained from the original source.
The distribution sites containing the latitude and longitude
information were used directly, and distribution sites without the
latitude and longitude information were expressed by the latitude
and longitude of the corresponding administrative center.

Assessing Sampling Bias and Mapping
Endemism Patterns
The inventory completeness for the study region was accessed
using the species accumulation curve from the incidence-based
bootstrap estimators (Zhao et al., 2020b). The presence (1) or
absence (0) matrix for each endemic species in each 1◦ grid
(∼100 × 100 km) was constructed and was analyzed using
EstimateS 9.1 with 100 randomizations (Colwell, 2013). To assess
the completeness of the richness of each 1◦ grid, we fitted a linear
regression using the square-root transformed number of records
and number of richness per grid. Spatial autocorrelation may
inflate the rate of type I error (Diniz-Filho et al., 2003), so the
P-value for linear regression was reported using geographically
effective degrees of freedom (Dutilleul et al., 1993), evaluated
using Spatial Analysis in Macroecology 4.0 (Rangel et al., 2010).
The patterns of endemism were visualized by calculating the
weighted endemism values of each 1◦ grid. This process was
conducted using Biodiverse 2.1 (Laffan et al., 2010). We defined
the center of endemism, based on the criterion proposed by Crisp
et al. (2001) and Linder (2001b).

Identifying Areas of Endemism
Parsimony analysis of endemicity (PAE) and endemicity analysis
(EA) were used to identify AoEs. The performance of the two
approaches was compared using the two criteria proposed by
Escalante et al. (2009), namely the number of AoEs they delimit
and the number of endemic species supporting them. Three grid
sizes were used in two approaches: 1◦ × 1◦, 1.5◦ × 1.5◦, and
2◦ × 2◦.

To perform PAE, we constructed presence (1) or absence (0)
matrix based on the presence of each endemic species in each
grid. A hypothetical outgroup “Root” with all zeros was added to
the matrix to root the resulting tree (Morrone, 1994, 2014b). All
matrices were performed in TNT v1.1 (Goloboff et al., 2008). New
Technology algorithms were based on maximum trees with 1,000
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and used sectorial search and tree fusing, with 10 initial addseqs.
We obtained a strict consensus tree for each analysis. The relative
support for each branch was estimated using bootstrap analysis
with 1,000 replicates (Felsenstein, 1985). Branches with bootstrap
values≥ 50% were selected as candidates for AoEs. Finally, AoEs
(clades of grids), containing at least two species restricted by these
areas, were delimited and mapped.

EA was conducted using NDM/VNDM v 3.1 (Goloboff, 2016)
under three grid sizes. This method is used to identify AoEs using
an optimality criterion, which explicitly considers the spatial
location of the species in a given area (Szumik et al., 2002). The
parameters used here were performed by saving temporary sets
within 0.99 of the current score; sets containing at least two
endemic species and scores above 3.0 were saved. The search was
repeated 10 times, keeping overlapping subsets when 60% of their
defining species were unique. From the sets obtained, we chose
species with a minimum score of 0.5. The strict rule was used
to calculate the consensus areas at a cut-off of 40% similarity
in species. To obtain the final AoEs, the consensus areas among
the different grid sizes were overlapped (do Prado et al., 2015;
Gao et al., 2018; Du et al., 2020).

RESULTS

The species accumulation curve using bootstrap estimators
obtained the “true” species number, namely 1,006 (Figure 1), and
the data completeness degree is 85.4%. Furthermore, the ratio of
observed species richness to those predicted by linear regression
models for each grid cell was >78.8% (Figure 2). These results
show that planthoppers were adequately sampled.

Six CoEs were identified (Figure 3), located in Taiwan
Island, Hainan Island, eastern Yungui Plateau, Wuyi Mountains,
western Qinling Mountains, and western Yunnan. A total of
three AoEs were identified using three grid sizes through
PAE analysis (Figure 4). These areas are supported by single
or multiple grid sizes. Taiwan Island and Hainan Island was

FIGURE 1 | Species accumulation curves for planthoppers in China.

FIGURE 2 | Linear regression (y = 0.905x + 0.173) for number of records and
endemic richness in 1◦ grid. The observed richness in the grids below the
regression line is >78.8% of the predicted richness.

detected under all three grid sizes. Western Qinling Mountain
was detected to be AoEs only at 2◦grid size. The AoEs under
each grid size and the species supporting them were identified
(Supplementary Table 1).

The consensus areas and supported endemic species obtained
by EA in each grid size are summarized in Supplementary
Material. Analysis using 1◦, 1.5◦, and 2◦ grid sizes yielded 4,
10, and 9 consensus areas, respectively. Through an overlapping
pattern of the consensus areas in different grid sizes, five AoEs
were identified (Figure 5).

Taiwan Island was delimited under all three grid sizes,
containing the consensus areas 2, 3, 4, 11, 14, 18, and 23
(Supplementary Figures 1–3). Consensus areas 2, 3, and 4 in the
1◦ grid size, with the corresponding 35, 12, and 6 species, were
found. Consensus areas 11 and 14 were detected in the 1.5◦ grid
size and contained 36 and 9 species, respectively. Consensus areas
18 and 23 were singled out in the 2◦ grid size and included 38
and 9 species. Two species, Kuvera taiwana and Cixius hopponis,
support consensus areas 2, 3, 11, 14, 18, and 23 (Supplementary
Table 2). Cixius wui supports consensus areas 2, 3, 14, 18, and
23. Four consensus areas with the greatest endemicity values
appeared in this area, including consensus areas 2, 3, 11, and 18,
with scores of 24.08333, 8.65, 26.4, and 26.3, respectively. Hainan
Island was detected to be an AoE in 1◦ and 1.5◦ grid sizes and has
the highest value (score = 8.4), except Taiwan Island. Consensus
area 1 was present in 1◦ grid size and contained 11 species.
Consensus area 9 was detected in 1.5◦ grid size and was supported
by 10 species. These two consensus areas were simultaneously
supported by Deferunda trimaculata, Deferunda acuminate,
Deferunda striat, Epora biprolata, Gnezdilovius pseudotesselatus,
Gnezdilovius multipunctatus, Neogergithoides tubercularis, and
Sarimodes clavatus (Supplementary Table 2).
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FIGURE 3 | Weighted endemism richness patterns of planthoppers in 1◦ grid in China.

Western Yunnan, covered by the Ailao, Wuliang, and
southern Hengduan Mountains, included consensus areas 6, 7,
10, and 13 in 1.5◦ grid size and consensus area 15, 19, 21, and
22 in 2◦ grid size (Supplementary Figures 2, 3). Mongoliana
sinuate, Paracatonidia webbeda, Thabena lanpingensis, and
Vekunta triprotrusa provide support of consensus area 15, 21,
and 22. Eastern Yungui Plateau (roughly contains the Dalou,
Wuling, and Miaoling) was detected in 1.5◦ and 2◦ grid sizes
(Supplementary Figures 2, 3), containing consensus areas 5
and 8 in 1.5◦ grid size, consensus areas 16 and 17 in 2◦
grid size. Three species, Fusiissus frontomaculatus, Gergithoides
caudospinosus, and Usana fissure, define consensus areas 5, 8,
and 17. Wuyi Mountains comprised consensus area 12 in 1.5◦
grid size and consensus area 20 in 2◦ grid size. Errada dimidiate,
Fortunia belostoma, Neoalcathous wuyishanana, and Ricanula
fujianensi support these two consensus areas. Geisha bifurcata
and Neokodaiana minensis also support consensus area 20.

DISCUSSION

Causes of High Endemism and AoEs
In this study, we found that all CoEs and AoEs were located
in mountainous areas, consistent with the findings in previous
studies for insects, such as leafhoppers, scale insects, and aphids
(Yuan et al., 2014; Wang et al., 2017; Gao et al., 2018), birds
(Lei et al., 2003; Huang et al., 2010), mammals (Tang et al.,
2006), and plants (Huang et al., 2012; Noroozi et al., 2019).
The topographic complexity, long-term stable environment, and

geological events experienced in mountainous areas are generally
considered to be the main driving forces for the high level of
endemism and formation of AoEs in these areas (Tribsch, 2004;
López-Pujol et al., 2011; Wang et al., 2017; Gao et al., 2018;
Noroozi et al., 2018, 2019).

With increasing topographic complexity, the amount of
habitat diversity is expected to increase, promoting available
niche space, and thereby increasing ecological speciation via
adaptation to different niches (Rundle and Nosil, 2005; Hendry
et al., 2007) and the coexistence of species (Tews et al., 2004;
Hortal et al., 2009). Furthermore, topographical complexity
can act as a barrier to gene-flow among diverging populations,
resulting in supporting reproductive isolation, increasing
differentiation, and speciation (Gillespie and Roderick, 2014),
and ultimately high endemism. Mountainous areas have long-
term climate stability, which is conducive to the persistence of
relict lineages, specialization, speciation of small-ranged species,
and reduction of extinction probability (Fjeldså and Lovett, 1997;
Dynesius and Jansson, 2000; Jansson, 2003; López-Pujol et al.,
2011), thus further increasing diversification.

High level of endemism in mountainous areas is also
significantly related to the geological events they have
experienced. Orogenic processes promote the emergence of
new lineages and radiation of species due to the repeated
formation, connectivity, and disappearance of habitats within
mountain ranges (Rahbek et al., 2019). We found that Taiwan
Island and Hainan Island had the first and second highest
weighted endemism values and endemicity scores, respectively.
Taiwan Island and Hainan Island are China’s largest and second
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FIGURE 4 | Areas of endemism (AoEs) obtained from planthoppers by parsimony analysis of endemicity (PAE) using three grids in China. (A) 1◦ grid, (B) 1.5◦ grid,
and (C) 2◦ grid.

largest islands, respectively, with typical mountain habitats
affected by tropical/subtropical climates. The highest mountain
in Taiwan is Mt. Yunshan (3,997 m), which is also the highest
mountain in southeastern China. The highest mountain of
Hainan Island is Mt. Wuzhishan. Taiwan Island and Hainan
Island are isolated from the mainland, generating limited
interchange between the islands and the mainland (Yuan et al.,
2014). Furthermore, volcanoes often erupted on Hainan Island
during the Pleistocene (Wang, 1985), causing populations to
be isolated on the local and over decadal timescales, thereby

increasing the development of different gene pools and
the appearance of new genetic combinations (Gillespie and
Roderick, 2014). These events were beneficial for promoting
the emergence of novel lineages and a high degree of endemism
in the two islands. The levels of endemicity in Taiwan Island
are significantly higher than Hainan Island, probably because
it is farther away from the mainland and had formed and
separated earlier.

Planthoppers are very weak flyers and move by short-
distance jumping (Liang, 1998). Therefore, planthoppers
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FIGURE 5 | Overlap of the consensus areas of endemism (AoEs) delimited for planthoppers by endemicity analysis (EA) employing 1◦ (red), 1.5◦ (green), and 2◦

(blue) grids in China.

lack a strong ability to disperse. This characteristic may
allow them to remain in places of speciation and glacial
refuges, particularly when these places have high altitudes
and complex terrain, and thus build high endemic species
numbers and AoEs over time. The vast majority of various
planthoppers feed on woody or herbaceous plants (Wilson,
2005), such as Poaceae, Cyperaceae, Rosaceae, Oleaceae, and
Polygonaceae (Ding, 2006; Chen et al., 2014). Host plants,
apart from being a food source, are also used by some
planthoppers for mating, oviposition, protection in winter,
and avoiding their natural enemies (Wilson et al., 1994).
Many planthoppers have high degrees of specialization with
respect to host plants (Wilson et al., 1994; Liang, 1998). The
family Delphacidae, which has the largest number of species
among planthoppers, mainly feeds on a small number of host
plants species (concentrated to Poaceae and Cyperaceae), and
some even feed only on a single host plant species (Wilson
et al., 1994; Ding, 2006). Most of the species in the family
Caliscelidae feed on bamboo and a few on other plants (Chen
et al., 2014). In China, we found that the diversity centers
of many host plants are consistent with the CoEs/AoEs
identified in the present study. For example, high bamboo
diversity is mainly concentrated in southern Yunnan and Wuyi
Mountains (Xu et al., 2019). There is high species richness
of Rosaceae in northern Yunnan and the Qinling Mountains
(Zou et al., 2019). This consistency shows that the distribution
pattern of planthoppers is highly associated with the diversity
patterns of host plants.

The Effects of Grid Size and Approach on
Results
PAE and EA use grids as basic operating units in delimiting
AoEs; therefore, the grid size affects the results in a deterministic
manner. Grid size can affect the number, dispersion, and range
of the localities. Smaller grid sizes will produce narrower AoEs,

allowing a small number of endemic species to be included,
whereas larger grid sizes identify wider AoEs and accommodate
more endemic species (Casagranda et al., 2009; do Prado et al.,
2015; DaSilva et al., 2015).

We found the greater number of AoEs and supported endemic
species were identified by EA at larger grid cell (1.5◦ and 2◦),
as was PAE (2◦). EA produced five and four AoEs in 1.5◦ and
2◦ grids and PAE delimited three AoEs in 2◦ grids. Combining
different grid sizes is necessary to define the AoEs. Using several
grid sizes facilitates the discovery of different AoEs in regions
with topographical complexity (Elías and Aagesen, 2016), such as
western Yunnan, and eastern Yungui Plateau is only delimited
by at 1.5◦ and 2◦ grids. AoEs that recovered under different
grid sizes were more robustly and clearly supported by data
(Aagesen et al., 2009, 2012; Szumik et al., 2012). Additionally,
the use of several grids sizes was slightly different in location,
area, and boundary of the resulting AoEs, and minimized the
effects of sampling biases (DaSilva et al., 2015). The use of grids
brings has some drawbacks, such as the inability to identify AoEs
smaller than grid sizes and difficulty in representing the fuzzy
edges of the AoEs. Geographical Interpolation of Endemism
(GIE) (Oliveira et al., 2015), an approach independent of grids,
can be valuably used in future work to obtain more detailed
information about the AoEs of planthoppers. The performance of
PAE and EA has been widely discussed using real or hypothetical
distributions (e.g., Moline and Linder, 2006; Carine et al., 2009;
Casagranda et al., 2012; Escalante, 2015). However, there is
no consensus on which approach is most suitable and their
exploration should be continued (Escalante, 2015). Using a total
of three grids, we found that EA identified more AoEs than
PAE. The observed difference is because species that support the
AoEs in PAE require higher and stricter sympatry, resulting in a
small number of AoEs. Furthermore, western Qinling Mountains
delimited by the PAE are not identified in the EA. In this way,
combining the two methods may provide a more comprehensive
knowledge of AoEs.
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CONCLUSION

The spatial structure of planthoppers’ endemism in China was
analyzed by identifying CoEs and AoEs. We found that the CoEs
and AoEs identified fell in the mountainous areas, mainly due
to their complex topography, stable eco-climatic conditions, and
related geological events that promote long-term persistence,
speciation, and species accumulation. Furthermore, we found
that the dispersal ability of planthoppers and diversity pattern of
host plants also are responsible for high planthoppers endemism
in the mountainous areas. Future studies can add temporal
information based on phylogenetic information from endemic
species to better interpret AoEs.
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