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Abstract  

A simple collective rotational model has been constructed to investigate the identical 
bands in odd-odd nucleus 194Tl and its neighbor odd-A nuclei 193Tl and 195Tl, to describe the 
∆I = 1 staggering effect in signature partner pairs of odd-A superdeformed bands 193Tl (SD1, 
SD2) and 195Tl (SD1, SD2) and to describe also the ∆I = 2 staggering observed in 194Tl (SD3). 

The model parameters and the bandhead spin ware obtained by adopted best fit method. 
The systematic variation of the kinematic and dynamic moments of inertia are studied as a 
function of the rotational frequency, it is found that the blocking effect of the high-j intruder 
orbital plays an important role. To describe the ∆I = 1 staggering we extracted the differences 
between the average transitions I + 2 → I → I - 2 energies in one band and the transition     I 
+ 1 → I - 1 energies in its signature partner. To describe ∆I = 2 staggering we calculated the 
deviation of transition energies from a smooth reference representing the finite difference 
approximation to the fourth derivative of the transition energies. We noticed transition 
energies in the nucleus 193Tl is identical to their N + 1, N + 2 neighbors. Also the analysis 
done allows us to confirm ∆I = 1 staggering in signature partners of 193Tl, 195Tl and    ∆I = 2 
staggering in SD3 band in 194Tl by performing a staggering parameter analysis. 

Introduction 

 Nuclei are considered to be superdeformed (SD) when the nucleus is  very far 
from spherical shape and acquires an elongated shape that can be represented as an 
approximate ellipsoid with axes in ratio of approximately 2:1:1. Now more than 350 
settled superdeformed rotational bands (SDRB'S) in more then 100 nuclei have been 
well established in several mass regions of nuclear chart [1, 2]. 

 Spin assignment is one of the most difficult and unsolved problems in the study 
of nuclear superdeformation. Several theoretical approaches to predict the spin of 
SDRB'S have been suggested [3-9]. 

 Two of the most interesting phenomena observed in SDRB'S are identical bands 
(IB'S) and staggering effects. The IB phenomenon [10-12] involves SD bands in 
different nuclei whose moment of inertia and sometimes even γ-ray transition 
energies, are nearly identical over a significant fraction of the bands. Some SDRB'S 
show an unexpected anomalous ∆I = 2 staggering effects in the γ-ray energies (a 
zigzag behavior as a function of rotational frequency or spin) [13-16]. Two ∆I = 4 
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rotational sequences are consequently separated into two spin sequences with spin 
values I + 4n and I + 4n + 2 (n = 1, 2, 3 …) respectively. Several theoretical 
attempts have been made to understand the ∆I = 2 staggering in SD nuclei [17-20]. 
There is another kind of staggering in SD odd-A nuclei, the ∆I = 1 staggering in 
signature partner pairs [21-23]. 

 In this paper a three parameter formula for SDRB'S is suggested. The model is 
applied to investigate the IB'S and the staggering effects in Tl nuclei. 

The model 

In our model, the excitation energy E(I) for each state with angular momentum I 
is given by : 

( ) [ 1 ( 1) 1]E I Eo a bI I                (1) 

where Eo is the bandhead energy, a rotational parameter and b characterizes the 
nuclear softness. 

In this expression the rigid rotor limit corresponds to b = 0 and ab keeping finite. 

Taking the bandhead energy Eo as constant we can modify the above energy to 
contain three parameters as the third term describe the effect of anhermenicty:  

( ) [ 1 ( 1) 1] ( 1)E I a bI I cI I               (2) 

which leads to form the transition energy: 

( ) ( ) ( 2)

[ 1 ( 1) 1 ( 2)( 1)] 2 (2 1)

E I E I E I

a bI I b I I c I

   

        
    (3) 

Theoretical Aspects 
Spin assignment is one of the most difficult problems in SD nuclei. This is due to 

the difficulty of establishing the de-excitation of the SD band into known yrast 
states. Several related fitting procedure for assigning spins have been proposed [3-
9]. 

The nuclear rotational frequency is defined as the first derivative of the energy 
E(I) with respect to the angular momentum Î, 

( ) ˆ, ( 1)ˆ
dE I I I I

dI
                          (4) 

The behavior of moment of inertia in SDRB'S is a strong indicator of their 
nuclear structure. Two possible types of nuclear moments of inertia have been 
suggested which reflect two different aspects of nuclear dynamics. 

The kinematic moment of inertia J(1) is defined as the inverse of the slope of the 
curve of energy E(I) versus Î: 
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and the dynamical moment of inertia J(2), which is related to the curvature in the 
curve E(I) versus Î: 
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                           (6) 

J(1), J(2) in the framework of our proposed model can be written in terms of a, b, c in 
the form. 

(1) 1 2 1
2[1 ( 1)] cJ ab bI I                             (7) 

(2) 3 2 1
2[1 ( 1)] cJ ab bI I                             (8) 

The bandhead moments of inertia in terms of a, b, c is given by. 
2

(0)

2
J

ab c





                             (9) 

The experimental quantities of ħω, J(1) and J(2) for SDRB'S are usually extracted 
from the observed transition energies by using the finite difference approximation: 

1
4( ) [ ( 2 ) ( 2)]I E I I E I I                            (10) 

(1) 2 1( )
( 2)

IJ I
E I I




 
                          (11) 

(2) 4( )
( 2 ) ( 2)

J I
E I I E I I 


    

                     (12) 

Therefore, ħω and J(2) does not depend on the knowledge of spin I but depend 
only on the measured transitions energies, while J(1) depend on spin proposition. 
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Staggering in SDRB'S  
 To explore more clearly the ∆I = 1 staggering in signature partner pairs of odd 
SD bands, one must extract the differences between the average transition                   
I + 2 → I → I - 2 energies in one band and the transition I + 1 → I - 1 energy in the 
signature partner: 

(2) 1
4( ) [ ( 2 ) ( 2) 2 ( 1 1)]E I E I I E I I E I I            �     (13) 

Another remark of the present work is the observation of ∆I = 2 staggering effects in 
the transition energies for 194Tl (SD3). A few Theoretical proposal for the possible 
explanation of ∆I = 2 staggering have already been made [19]. The deviation of 
transition energies from a smooth reference (4)

γE (I) was determined by 
calculating the fourth derivative of transition energies at a given spin I resulting to a 
five-point formula: 

(4) 1
16( ) [ ( 4) 4 ( 2) 6 ( ) 4 ( 2) ( 4)]E I E I E I E I E I E I             �   (14) 

Calculated Results and Discussion 
 The odd-odd nucleus 194Tl and its neighbor odd-A signature partner pairs  193Tl 
(SD1, SD2) and 195Tl (SD1, SD2) are considered. For each SDRB, the optimized 
best model parameters a, b, c and the bandhead spin Io were calculated from the 
adopted best fit [BFM] [20] of the calculated and experimental transitions energies, 
the quality of the fit is indicated by the root mean square deviation χ given by: 

exp

exp

( ) ( ) 2 1 / 21
( )

[ ( ) ]
cal

i i

i

E I E I
N E I

i

 


   �

 

where N is the number of the data points entering into the fitting procedure and 
the

γ

exp
iE (I ) is the experimental errors in transition energies. The bandhead spin Io 

is taken as the nearest half integer. Table (1) gives the best model parameters and the 
correct bandhead lowest level spin Io and also the lowest γ-transition energies Eγ (I + 
2 → I) for Tl nuclei. 
 Using the assigned spin, the rotational frequency ħω, the kinematic J(1) and 
dynamical J(2) moments of inertia for the above SDRB'S are also obtained. In Figure 
(1) the calculated J(1) and J(2) are plotted as function of ħω for the four pairs identical 
bands (IB'S) = [193Tl (SD1), 194Tl (SD3)], [193Tl (SD1), 194Tl (SD4)], [193Tl (SD1), 
195Tl (SD1)] and [193Tl (SD2), 195Tl (SD2)]. The kinematic moment of inertia J(1) is 
found to be smaller than that of the dynamical moment of inertia J(2), and J(2) 
increases as ħω increases. It has been suggested that this rise results from the 
alignment of angular momentum of paired particles in high intruder orbitals and 
from the gradual disappearance of pairing correlations with increasing ħω [3]. A 
sharp increase in     J(2) for 195Tl (SD1) occurs at ħω > 0.350 MeV, while it is not 
observed for 193Tl (SD1). For the first three sets of IB'S, the blocked proton orbital is 
5/2 [642], α = -1/2 in frequency range 0.10 0 MeV < ħω < 0.350 MeV. For the last 
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pair, the blocked proton orbital is 5/2 [642], α = +1/2 in frequency range 0.10 0 MeV 
< ħω < 0.400 MeV. There are no blocked neutron orbitals in 193Tl. The J(1) and J(2) 
moments of inertia of our selected SDRB'S can be quantitatively described 
excellently with the proposed three parameters model. The agreement between the 
calculated and the experimental transition energies is excellent and the resulting 
values of spins are very consistent with all spin assignment in other models [1, 2]. 
 To investigate ∆I = 1 staggering in signature partner pairs 193Tl (SD1, SD2) and 
195Tl (SD1, SD2), the difference between the average transition I+2 → I, I → I-2 
energies in one band and the transition I + 1 → I - 1 energies in its signature 
partner 2

γE (I) are determined and its value as a function of spin I for each 
signature partner pairs are plotted in Figure (2). The signature partners show large 
amplitude staggering. 2

γE (I) is small at lower spin, increasing faster and faster as 
the spin I increases. 
 To explore ∆I = 2 staggering in 194Tl (SD3), the proposed five-point formula is 
applied as in Figure (3) it is seen that the calculated transition energies for spins I + 
4n and I + 4n + 2 (n = 0, 1, 2, 3 …) exhibits staggering behavior. That is the 
SDRB'S split into two parts with states separated by ∆I = 4, shifting up in energy 
and the intermediate states shifting down in energy. 
Conclusion 
 The SDRB'S in odd-odd 194Tl nucleus and in signature partners odd-A Tl nuclei 
have been studied in the framework of simple three parameter collective rotational 
model. The spin of the observed levels were extracted by assuming various values to 
the spin of the bandhead at the nearest integer in odd-odd nucleus or half integer in 
odd-A nuclei. The optimized three parameters have been deduced by using a 
computer simulated search program in order to obtain a minimum root mean square 
deviation of the calculated transitions energies from the measured energies. The 
calculated transition energies, level spins, rotational frequencies, kinematic and 
dynamic moments of inertia are examined. Four identical bands are found and the      
∆I = 1 staggering effects for two pairs in odd-A SDRB'S are investigated. Also the      
∆I = 2 staggering in odd-odd 194Tl (SD3) is investigated. 
 
Table (1). The adopted best model parameters a, b, c and the suggested 
bandhead spin Io for the selected SDRB'S in 193, 194, 195Tl. 

SDRB'S a (KeV) b x10-4 c (KeV) Io (ħ) Eγ (KeV) 
193Tl (SD1) 6380.8736 5.3776 3.5196 8.5 206.6 
193Tl (SD2) 13573.6591 3.7666 2.6759 9.5 227.3 
194Tl (SD3) 12119.9405 1.8708 -0.9722 10 240.5 
194Tl (SD4) 22034.6647 2.4110 2.4672 9 220.3 
195Tl (SD1) 6380.8738 5.3775 3.5196 5.5 146.2 
195Tl (SD2) 33124.3911 2.4266 1.2551 6.5 167.5 
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Figure 1. Calculated kinematic J(1) and dynamic J(2) moments of inertia as a function of rotational 

frequency ħω for the set of identical bands in 193, 194, 195Tl nuclei. Open circles for 193Tl and 
closed circles for both 194Tl and195Tl. 
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Figure 2. The calculated ∆I = 1 Staggering parameter ∆2 Eγ(I) extracted from the 

difference between the average transition I + 2 → I → I - 2 energies in one 
band and the transition I + 1 → I - 1 energies in its signature partner plotted 
as a function of spin I for 193Tl (SD1, SD2) and 195Tl (SD1, SD2). 
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Figure 3. Calculated Staggering parameter ∆4 Eγ as a function of rotational frequency 

ħω for 194Tl (SD3).  
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