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Abstract
This paper presents an innovative fractional order network model aimed at elucidating the transmission
dynamics of Hepatitis B Virus (HBV). Incorporating fractional calculus enables the model to capture the
intricate, memory-dependent mechanisms inherent in HBV spread, thereby overcoming the constraints of con-
ventional integer order models. The primary objective of the study is to develop a more precise depiction of
HBV transmission, encompassing both vertical and horizontal routes in the absence of vaccination strategies.
Furthermore, the paper assesses the existence and uniqueness of solutions utilizing the Banach fixed point
theory with the Picard-Lindelf approach. Numerical simulations conducted across various fractional orders
reveal that as the fractional order decreases from 1, the rate of endemic spread decelerates.

Keywords: SPQWXY HBV-virus model; atangana-baleanue fractional derivative; picard-linderlof approach;
fixed point theory.

1 Introduction
Hepatitis B Virus (HBV) remains a significant global health concern, with approx- imately 257 million people
infected worldwide and over 880,000 deaths annually at- tributed to HBV-related complications [1]. Understanding
the intricate dynamics of HBV transmission is paramount for devising effective prevention and control strategies.
Traditional mathematical models based on integer-order calculus have been instrumental in studying infectious
disease dynamics, including HBV transmission. However, these models often overlook the inherent memory-
dependent and non-local properties characteristic of many biological processes. Consequently, there is a growing
recognition of the limitations of integer order models in capturing the complexity of HBV spread accurately.

To address these limitations, this paper introduces an innovative mathematical frame- work based on fractional
calculus to model HBV transmission dynamics. Fractional calculus offers a powerful mathematical tool for
describing phenomena with memory- dependent and non-local characteristics, making it particularly well-suited
for modeling biological systems [2]. The proposed model, termed the Atangana-Baleanu Fractional- Order
SPQWXY Model, integrates fractional calculus to capture the nuanced dynamics of HBV transmission. The
primary objective of this study is to develop a comprehensive understanding of HBV transmission dynamics
in the absence of therapy using the proposed fractional- order model. Specifically, we aim to investigate the
impact of fractional-order dynamics on the spread of HBV, considering both vertical and horizontal transmission
routes. Furthermore, we examine the existence and uniqueness of solutions for the model using rigorous
mathematical analysis based on the Banach fixed point theory with the Picard- Lindelf approach [3]. The
history of epidemiological mathematical modeling can be traced back to 1766 when Daniel Bernoulli published
his seminal work on the effect of smallpox variolation on life expectancy [4]. This marked the inception of
using mathematical language to understand the transmission dynamics of epidemic diseases. Building upon
Bernoulli’s foundational work, Kermack and McKendrick introduced a series of papers in 1927 that described
disease transmission dynamics through systems of differential equations [5]. Traditionally, epidemiological
mathematical models have relied on integer-order differential equations to characterize disease spread and assess
control strategies [6]. However, recent advancements in mathematical analysis have revealed the potential of
fractional calculus to model complex phenomena, including epidemiological dynamics [7]. Fractional calculus
offers a powerful framework for describing systems with memory- dependent and non-local properties, making it
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particularly well-suited for modeling bi- ological processes such as disease transmission [8]. Unlike integer-
order derivatives, fractional derivatives incorporate past and present information, capturing the hereditary
properties and memory efficacy essential for understanding biological mechanisms [9]. Key figures in the
development of fractional calculus include Caputo, who intro- duced a fractional derivative with non-singular
kernel in 1967 [10], and Atangana and Baleanu, who proposed new fractional derivatives and applied them to
various models, including heat transfer [11]. Baleanu et al. investigated a fractional mathematical model
for tumor-immune surveillance mechanisms and studied the effect of chemotherapy on the model [12]. 2
Recent studies by Kolade and Owolabi focused on the analysis and numerical sim- ulation of a fractional SEIR
(Susceptible-Exposed-Infectious-Recovered) model with time delay, demonstrating the applicability of fractional
calculus in epidemiological modeling [13]. Additionally, researchers have utilized fractional derivatives, such as
the Atangana-Baleanu operator involving the Mittag-Leffler kernel, to analyze SEIRA (Susceptible-Exposed-
Infectious-Recovered-Aware) mathematical models [14]. Fractional calculus, the generalization of traditional
calculus to include non-integer order derivatives and integrals, has gained significant attention in recent years,
particularly in the modeling of biological systems and disease dynamics. Its ability to describe memory effects,
long-range interactions, and anomalous diffusion makes it a powerful tool for capturing the complexity of
biological systems that traditional integer-order models struggle to handle. Here is a comprehensive review
of fractional calculus in biological disease modeling.The origin of fractional calculus can be traced back to the
17th century when mathematicians like Leibniz and Euler discussed the possibility of extending the notion
of derivatives and integrals to non-integer orders. However, its application to real-world problems, especially
in biological sciences, only emerged in the late 20th and early 21st centuries. The motivation for applying
fractional calculus in biological systems arises from the need to model processes that exhibit memory and
hereditary properties—characteristics that are often present in biological systems and disease transmission
dynamics. Fractional derivatives provide a way to incorporate the memory of past states into the current
dynamics, which is crucial for accurately modeling diseases where the history of infection or immunity plays
a significant role (e.g., immune response in viral infections). Biological systems, such as the spread of disease
in heterogeneous populations, often exhibit diffusion that is not well-described by classical models. Fractional
models can capture sub-diffusive or super-diffusive processes, which are common in epidemiology. Fractional
models often fit experimental and epidemiological data better than their integer-order counterparts, particularly
for complex diseases with delayed responses or long incubation periods. In classical epidemiological models such
as SIR (Susceptible-Infectious-Recovered) or SEIR (Susceptible-Exposed-Infectious-Recovered), the dynamics of
disease transmission are usually represented by integer-order differential equations. By extending these models
using fractional derivatives, researchers have been able to:

• diseases with long latency periods or memory effects, where the present state depends on the entire history
of the system (e.g., immune responses that depend on past exposure).

• Better represent diseases that spread in a heterogeneous population, where individuals may have different
susceptibilities, contact rates, or recovery patterns.

• Address non-locality in space, where disease transmission is not limited to nearby individuals but can
occur over long distances (e.g., air travel spreading infectious diseases globally).

Fractional calculus generalizes the concept of derivatives and integrals to non-integer orders, providing powerful
tools to model systems exhibiting memory and hereditary properties. It extends beyond classical calculus to
address complex phenomena found in various scientific and engineering disciplines. The primary fractional
derivatives include:

• Riemann-Liouville Derivative: Defined using an integral representation with a singular kernel, often
leading to singularity issues.

• Caputo Derivative: A modification of the Riemann-Liouville derivative that allows for better initial
condition handling, particularly useful in boundary value problems.

Brauer and Castillo-Chavez’s work on mathematical models in population biology and epidemiology provides
foundational tools for modeling infectious diseases, including compartmental models that have been extended to
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include fractional-order dynamics in recent studies [15]. Hu discusses occult Hepatitis B virus (HBV) infections,
which are significant in understanding the persistence of HBV in patients without detectable serological markers
[28]. Dietz and Heesterbeek revisited Bernoulli’s model, which serves as a historical basis for modern infectious
disease models, including fractional-order models used for HBV [29]. Abdelouahab and Hamri explore the
Grünwald-Letnikov fractional-order derivative, which offers a discrete approximation critical for applying fractional
calculus to epidemiological models [35]. Puri et al. examine how social media contributes to vaccine hesitancy,
a relevant factor in the public’s acceptance of HBV vaccination programs [36]. Wismans et al. provide insights
into the immune response following Hepatitis B vaccination in diabetic patients, emphasizing the vaccine’s
efficacy in populations with compromised immune systems [37]. Roeder et al. discuss strategies for disease
eradication, drawing parallels between rinderpest eradication and ongoing efforts for HBV control through
vaccination [38]. Ayerbe et al. assess the long-term efficacy of Hepatitis B vaccines, essential for understanding
long-term protection against HBV in vaccinated populations [39]. Yu et al. investigate anomalous diffusion
in MRI, introducing mathematical tools that could inform more complex epidemiological models, including
those for HBV transmission [40]. Rida et al. provide an approximate solution to a fractional-order model for
Hepatitis C virus (HCV) infection, analogous to fractional-order models for HBV using similar mathematical
approaches [41]. Otugene et al. analyze the existence and uniqueness of solutions in fractional-order network
models, which supports the use of the Atangana-Baleanu derivative in understanding viral transmission dynamics
[50]. Buckwold et al. investigate HBV genome mutations that impact viral replication and persistence, critical
for understanding different stages of HBV infection [54]. Carman et al. discuss mutations in the HBV virus
that prevent the formation of the e antigen, a marker of viral replication, which impacts infection modeling
[55]. Swaddiwudhipong et al. highlight the importance of public health interventions in controlling infectious
diseases, with parallels to HBV control measures [57]. Kermack and McKendrick’s classic model forms the
basis for modern epidemic models, including those adapted for fractional calculus in HBV studies [58]. Chen
et al. review the application of fractional epidemic models, emphasizing the relevance of fractional calculus
in epidemiological modeling [59]. Mukandavire et al. explore the effects of public health campaigns on HIV
transmission, analogous to similar interventions in HBV control [60]. Wang et al. review disease-behavior
dynamics on complex networks, which is crucial for understanding how individual behaviors, like vaccination,
interact with HBV transmission [61].

The literature reviewed above underscores the broad spectrum of applications for fractional derivatives in
mathematical modeling and the analysis of real-world phenomena. Particularly noteworthy is the recent
emergence of the Atangana-Baleanu (A-B) fractional derivative, which has garnered widespread recognition
and appreciation for its extensive utilization across various disciplines, including biology, physics, medical
engineering, and nonlinear analysis. Motivated by the aforementioned considerations, this paper delves into
the study of the SPQWXY model, which encompasses susceptible-exposed-subclinical infected- acute infected-
chronic and fulminate cases of Hepatitis B Virus (HBV). The authors have structured the remainder of this
paper as follows: In Section 2, we detail the formulation of the HBV virus model with fractional order,
elucidating the mathematical framework underlying our analysis. Section 3 is dedicated to establishing the
existence and uniqueness of solutions, employing the fixed-point theory and the Picard-Lindelf approach to
rigorously validate our model. In Section 4, we demonstrate the positivity and boundedness of solutions in
terms of the Atangana-Baleanu operator, providing further insights into the stability of our model. Finally,
through numerical simulations conducted across various fractional orders, as discussed in Section 5, we reveal a
notable trend: as the fractional order decreases from 1, the spread of the endemic proceeds at a slower pace. This
finding highlights the critical role of fractional calculus in capturing the nuanced dynamics of HBV transmission.

2 Atangana-Baleanu Derivative
The Atangana-Baleanu (AB) derivative, introduced by Atangana and Baleanu in 2015, represents a novel
approach to fractional calculus. It utilizes a non-singular kernel to address some of the limitations associated
with traditional fractional derivatives.
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Definition

The Atangana-Baleanu fractional derivative of order α for a function f(t) is given by:

Dα
ABf(t) =

1

Γ(m− α)

∫ t

a

(t− τ)m−α−1e−β(t−τ)f(τ) dτ,

where:
• α is the order of differentiation.
• m = ⌈α⌉ is the smallest integer greater than or equal to α.
• Γ is the Gamma function, which generalizes the factorial function.
• β is a parameter that modulates the influence of the kernel’s exponential term.
• a is the lower limit of integration, often taken as 0 or the initial condition.

Key Properties

• Non-Singular Kernel: Unlike the Riemann-Liouville derivative, which involves a singular kernel at
t = τ , the AB derivative uses a non-singular kernel (t− τ)m−α−1e−β(t−τ). This approach helps to avoid
singularity issues and improves the stability of the derivative.

• Memory Effects: The AB derivative incorporates memory effects through the e−β(t−τ) term, which
accounts for the influence of past states on the current state. This feature is crucial for modeling processes
with long-term dependencies.

• Adjustable Parameter β: The parameter β controls the impact of the kernel’s exponential term,
allowing for greater flexibility in modeling different types of memory effects and hereditary properties.

• Fractional Differentiation Order: The order of differentiation α can be a non-integer, providing a
broader range of modeling capabilities compared to integer-order derivatives.

Mathematical Properties

• Linearity: The AB derivative is linear, meaning Dα
AB(af(t) + bg(t)) = aDα

ABf(t) + bDα
ABg(t), where a

and b are constants.
• Composition Rule: For two functions f(t) and g(t), the derivative Dα

AB(f · g) can be expressed using
Leibniz’s rule, extending to fractional derivatives.

• Initial Conditions: Initial conditions for AB derivatives are handled differently compared to integer-
order derivatives, often requiring careful formulation to incorporate fractional orders.

Advantages over Other Fractional Derivatives

• Avoidance of Singularities: The non-singular kernel of the AB derivative eliminates the issues associated
with singularities at t = τ , leading to more stable numerical solutions and better representation of real-
world processes.

• Enhanced Flexibility: The parameter β allows for customization of the memory effect, making it
possible to model a wider range of phenomena with varying degrees of past influence.

• Improved Stability: Numerical simulations often show that the AB derivative provides improved
stability and accuracy in solving fractional differential equations compared to traditional derivatives,
especially for complex and nonlinear systems.

Applications

The Atangana-Baleanu derivative has been successfully applied in various fields, including:
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• Biological Systems: Modeling of population dynamics, disease transmission (e.g., Hepatitis B Virus),
and other biological processes where memory effects and long-range interactions are significant.

• Engineering: Control systems, signal processing, and systems with non-local interactions benefit from
the AB derivative’s flexibility in modeling complex dynamics.

• Physics: Used in models involving anomalous diffusion, viscoelastic materials, and other physical
phenomena with memory effects.

The Atangana-Baleanu fractional derivative represents a significant advancement in fractional calculus by
addressing limitations of traditional approaches with its non-singular kernel and adjustable parameters. It
offers enhanced flexibility and stability, making it suitable for modeling complex systems with memory effects.
However, challenges such as computational complexity, parameter sensitivity, and limited standardization need
to be managed through careful application and further research.

3 Model Assumptions
Given a population size N(t), we consider six population compartments corresponding to different stages of
HBV (Hepatitis B Virus) infection:

• Susceptible (S(t)): Individuals at risk of HBV infection.
• Subclinical (P (t)): Infected but not yet infectious.
• Clinical (Q(t)): Infected and infectious.
• Acute (W (t)): Infectious with symptomatic HBV.
• Chronic (Y (t)): Long-term infection lasting months.
• Fulminant (X(t)): Severe, acute infection stage.

When HBV infects a cell and progresses to the acute stage W (t), the viral DNA is converted into a single
covalently closed circular DNA (cccDNA) molecule, followed by the accumulation of additional copies (up to
50) due to synthesis pathways or multiple infectious events. This amplification leads to the development of both
chronic (Y (t)) and fulminant (X(t)) infection stages from the acute stage.

The disease spread occurs in a non-closed environment with emigration and immigration, altering the total
population size. Therefore, the total population at any time is the sum of the subclinical stage of infection and
the rate of new target cell production, which is not constant (i.e., S(t) + P (t) + Q(t) +W (t) + Y (t) +X(t) ̸=
constant).

The rate of susceptible individuals becoming infected (force of infection ζ1) is given by:

ζ1 = Q+W +X + Y

We assume that recovered individuals do not acquire permanent immunity, and demographic factors (age, sex,
social status, race) do not affect the infection risk. The population mixes homogeneously, implying uniform
interaction among individuals.

According to experimental evidence, individuals can transition from the subclinical compartment P (t) to the
susceptible class S(t) naturally, especially with high immunity levels at a given time.

Key parameters influencing the model include:
• λi: Transmission rates to various compartments (λ1 ̸= ... ̸= λ11).
• δi: Disease-induced death rates (δ1 ̸= ... ̸= δ8).
• µ: Natural death rate.
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• β: Rate of production of new target cells.

Individuals exit the infected compartments only through death (due to the disease δi) or natural causes (µ).
The per capita birth and death rates in the absence of disease are βi and µ, respectively, suggesting exponential
population growth in the absence of disease.

S(t) P(t) Q(t) W(t)

Y(t)

X(t)

µS(t)

β

λ1ζS(t)

δ1P (t)

µ1P (t)

λ2P (t)

δ2Q(t)

µ1Q(t)

λ3Q(t)

δ2W (t)

µ2W (t)
λ4W (t)

λ5W (t)

δ4X(t)

µX(t)

δ5Y (t)

µY (t)

Fig. 1. Schematic diagram of HBV in the Absence of Therapy

The mathematical model with integer order used in this study is expressed by the equation:

Dα
t S(t) = β − µS(t)− α1ζS(t)

Dα
t P (t) = α1ζS(t)− (µ+ δ1 + λ2)P (t)

Dα
t Q(t) = λ2P (t)− (µ+ δ2 + λ3)Q(t)

Dα
t W (t) = λ3Q(t)− (µ+ δ3 + λ4 + λ5)W (t)

Dα
t X(t) = λ4W (t)− (µ+ δ4)X(t)

Dα
t Y (t) = λ5W (t)− (µ+ δ5)Y (t)


(3.1)

The natural death rate term is µ. In the absence of disease, the differential equation for the total population is
given by: dN

dt
= β −α3N .The limit of the population size N(t) as t → ∞ is: limt→∞ N(t) = β

µ
which represents

the carrying capacity of the demographic structure under consideration. Therefore, the AB fractional order
mathematical model, considering the assumptions and a saturating contact rate, is described by the following
system of differential equations:

ABC
0 Dα

t S(t) = G1(t, S)

ABC
0 Dα

t E(t) = G2(t, P )

ABC
0 Dα

t I(t) = G3(t, Q)

ABC
0 Dα

t IT (t) = G4(t,W )

ABC
0 Dα

t Q(t) = G5(t,X)

ABC
0 Dα

t R(t) = G6(t, Y )


(3.2)

where the kernels are given by:
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G1(t, S) = β − µS(t)− α1ζS(t)

G2(t, E) = λ2P (t)− (µ+ δ2 + λ3)Q(t)

G3(t, I) = λ2I(t)− (µ+ α3 + λ1)Q(t)

G4(t, IT ) = λ3Q(t)− (µ+ δ3 + λ4 + λ5)W (t)

G5(t, Q) = λ4W (t)− (µ+ δ4)X(t)

G6(t, R) = λ5W (t)− (µ+ δ5)Y (t)


(3.3)

The initial conditions for the compartments are given by: S(0) = S0, P (0) = P0, Q(0) = Q0, W (0) =
W0, X(0) = X0, Y (0) = Y0.In the presence of an endemic, the differential equation for the total population
is: dN

dt
= β − µN − α3. This differential equation indicates that the population size N(t) is not constant over

time.

4 Existence and Uniqueness of Solutions
Let’s explore the presence and singular nature of the solution to the fractional order model (4). To illustrate
this, we utilize the widely acknowledged Banach fixed point theorem. For a comprehensive examination of fixed
points and contractions, we suggest referring to ([3] and its associated literature). Now, to affirm the presence
and exclusivity of the solution, we take the following steps: Employing the AB fractional integral as delineated
in [2] on model (4), we derive:

S(t)− S(0) =
1− α

F (α)
G1(t, S) +

α

F (α)Γ(α)

∫ t

0

G1(k, S)(t− k)α−1dk,

P (t)− P (0) =
1− α

F (α)
G2(t, P ) +

α

F (α)Γ(α)

∫ t

0

G2(k, P )(t− k)α−1dk,

Q(t)−Q(0) =
1− α

F (α)
G3(t, Q) +

α

F (α)Γ(α)

∫ t

0

G3(k,Q)(t− k)α−1dk,

W (t)−W (0) =
1− α

F (α)
G4(t,W ) +

α

F (α)Γ(α)

∫ t

0

G4(k,W )(t− k)α−1dk,

X(t)−X(0) =
1− α

F (α)
G5(t,X) +

α

F (α)Γ(α)

∫ t

0

G5(k,X)(t− k)α−1dk,

Y (t)− Y (0) =
1− α

F (α)
G6(t, Y ) +

α

F (α)Γ(α)

∫ t

0

G6(k, Y )(t− k)α−1dk



(4.1)

where α ∈ (0, 1), F (α) is a function of α, Γ(α) denotes the Gamma function, and Gi(t, ·) are given functions.

The set B = H(J) ×H(J) × · · · is a Banach space defined as the Cartesian product of spaces, where H(J) =
C[0, T ] is the space of continuous real-valued functions defined on the interval J = [0, T ]. The norm ||(·)|| on B
is defined as:

||(S,E, I, IT , Q,R)|| = ||S||+ ||E||+ ||I||+ ||IT ||+ ||Q||+ ||R||

Here, the norms ||S||, ||P ||, ||Q||, ||W ||, ||X||, and ||Y || are defined as:
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||S|| = sup
t∈J

|S(t)|, ||P || = sup
t∈J

|P (t)|, ||Q|| = sup
t∈J

|Q|,

||W || = sup
t∈J

|W (t)|, ||X|| = sup
t∈J

|X(t)|, ||Y || = sup
t∈J

|Y (t)|

These norms measure the maximum absolute values of the respective functions over the interval J = [0, T ].

Theorem 1 (Lipschitz Condition and Contraction)
For each of the kernels, G1(t, S), G2(t, P ), . . . , G6(t, Y ) in (2), there exist constants Li > 0 for i = 1, 2, 3, 4, 5, 6
such that:

∥G1(t, S)−G1(t, S1)∥ ≤ L1∥S(t)− S1(t)∥,
∥G2(t, P )−G2(t, P1)∥ ≤ L2∥P (t)− P1(t)∥,
∥G3(t, Q)−G3(t, Q1)∥ ≤ L3∥Q(t)−Q1(t)∥,
∥G4(t,W )−G4(t,W1)∥ ≤ L4∥W (t)−W1(t)∥,
∥G5(t,X)−G5(t,X1)∥ ≤ L5∥X(t)−X1(t)∥,
∥G6(t, Y )−G6(t, Y1)∥ ≤ L6∥Y (t)− Y1(t)∥

where 0 ≤ Li ≤ 1 for all i = 1, 2, 3, 4, 5, 6.

Proof:
||G1(t, S)−G1(t, S1)|| =||β − µS(t)− α1ζS(t)− (β − µS1(t)− α1ζS1(t))||

≤
(
α1(m2 +m1)

)
||(S1(t) − S(t))||

≤ L1||(S1(t)− S(t))||

Where L1 =
(
α1(m3 + m5)

)
+ µ ||S|| is supt∈J = M1,||P || is supt∈J = M2,||Q|| is supt∈J = M3,||W || is

supt∈J = M4,||X|| is supt∈J = M5,||Y || is supt∈J = M6.

In a similar manner, one can demonstrate the existence of Li = 2, 3, 4, 5, 6 and a contraction principle for
G2(t, P ), G3(t, Q), G4(t,W ), G5(t,X), G6(t, Y ), where 0 ≤ Li < 1. The recursive form of (6) is now defined for
t = tn, where n = 1, 2, 3, . . ..

Sn(t) =
1− α

F (α)
G1(t, Sn−1) +

α

F (α)Γ(α)

∫ t

0

G1(k, Sn−1)(t− k)α−1dk,

Pn(t) =
1− α

F (α)
G2(t, Pn−1) +

α

F (α)Γ(α)

∫ t

0

G2(k, Pn−1)(t− k)α−1dk,

Qn(t) =
1− α

F (α)
G3(t, Qn−1) +

α

F (α)Γ(α)

∫ t

0

G3(k,Qn−1)(t− k)α−1dk,

Wn(t) =
1− α

F (α)
G4(t,Wn−1) +

α

F (α)Γ(α)

∫ t

0

G4(k,Wn−1)(t− k)α−1dk,

Xn(t) =
1− α

F (α)
G5(t,Xn−1) +

α

F (α)Γ(α)

∫ t

0

G5(k,Xn−1)(t− k)α−1dk,

Yn(t) =
1− α

F (α)
G6(t, Yn−1) +

α

F (α)Γ(α)

∫ t

0

G6(k, Yn−1)(t− k)α−1dk,



(4.2)

The difference between successive terms in (7) are expressed as follows:
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A1n(t) = Sn − Sn−1 =
1− α

F (α)
(G1(t, Sn−1)−G1(t, Sn−2))+

α

F (α)Γ(α)

∫ t

0

(G1(t, Sn−1)−G1(t, Sn−1))(t− k)α−1dk,

A2n(t) = Pn − Pn−1 =
1− α

F (α)
(G2(t, En−1)−G2(t, En−2))+

α

F (α)Γ(α)

∫ t

0

(G2(t, Pn−1)−G2(t, Pn−1))(t− k)α−1dk,

A3n(t) = Qn −Qn−1 =
1− α

F (α)
(G3(t, In−1)−G3(t, In−2))+

α

F (α)Γ(α)

∫ t

0

(G3(t, Qn−1)−G3(t, Qn−1))(t− k)α−1dk,

A4n(t) = Wn −Wn−1 =
1− α

F (α)
(G4(t,Wn−1)−G4(t,Wn−2))+

α

F (α)Γ(α)

∫ t

0

(G4(t,Wn−1)−G4(t,Wn−1))(t− k)α−1dk,

A5n(t) = Xn −Xn−1 =
1− α

F (α)
(G5(t,Xn−1)−G5(t,Xn−2))+

α

F (α)Γ(α)

∫ t

0

(G5(t,Xn−1)−G5(t,Xn−1))(t− k)α−1dk,



(4.3)

A6n(t) = Yn − Yn−1 =
1− α

F (α)
(G6(t, Yn−1)−G6(t, Yn−2))+

α

F (α)Γ(α)

∫ t

0

(G6(t, Yn−1)−G6(t, Yn−1))(t− k)α−1dk,


Norm: A norm in mathematics is a function that assigns a positive length or size to each vector in a vector
space. Let V be a vector space over the field of real or complex numbers. A norm on V is a function ∥·∥ : V → R
satisfying the following properties for all vectors u,v in V and scalars α:

1. Non-negativity: ∥u∥ ≥ 0 and ∥u∥ = 0 if and only if u = 0, where 0 denotes the zero vector.

2. Homogeneity: ∥αu∥ = |α|∥u∥ for all scalars α.

3. Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Taking the norm of both sides of (7), we have:
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||A1n(t)|| =||Sn(t)− Sn−1(t)||
1− α

F (α)
||(G1(t, Sn−1)−G1(t, Sn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G1(t, Sn−1) − G1(t, Sn−1))||(t − k)α1dk,

||A2n(t)|| =||Pn − Pn−1||=
1− α

F (α)
||(G2(t, Pn−1)−G2(t, Pn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G2(t, Pn−1) − G2(t, Pn−1))||(t − k)α−1dk,

||A3n(t)|| =||Qn −Qn−1||=
1− α

F (α)
||(G3(t, Qn−1)−G3(t, Qn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G3(t, Qn−1) − G3(t, Qn−1))||(t − k)α−1dk,

||A4n(t)|| =||Wn −Wn−1||=
1− α

F (α)
||(G4(t,Wn−1)−G4(t,Wn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G4(t,Wn−1)−G4(t,Wn−1))||(t− k)α−1dk,

||A5n(t)|| =||Xn −Xn−1||=
1− α

F (α)
||(G5(t,Xn−1)−G5(t,Xn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G5(t,Xn−1) − G5(t,Xn−1))||(t − k)α−1dk,



(4.4)

||A6n(t)|| =||Yn − Yn−1||=
1− α

F (α)
||(G6(t, Yn−1)−G6(t, Yn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G6(t, Yn−1)−G6(t, Yn−1))||(t− k)α−1dk,


The first equation in (9) is reduced to the following expression.

||A1n(t)|| =||Sn(t)− Sn−1(t)||≤
1− α

F (α)
||(G1(t, Sn−1)−G1(t, Sn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G1(t, Sn−1) − G1(t, Sn−1))||(t − k)α−1dk,

||A1n(t)|| ≤
1− α

F (α)
L1||Sn−1(t)− Sn−2(t)||+

α

F (α)Γ(α)
L1

∫ τ

0

||Sn−1(t)− Sn−2(t)||(t− k)α−1dk,

||A1n(t)|| ≤
1− α

F (α)
L1||Sn−1(t)− Sn−2(t)||+

α

F (α)Γ(α)
L1||Sn−1(t)− Sn−2(t)||

∫ t

0
(t− k)α−1dk,

||A1n(t)|| ≤ L1||Sn−1(t)− Sn−2(t)||
∣∣∣∣1− α

F (α)
+

α

F (α)Γ(α)

∫ t

0
(t− k)α−1dk

∣∣∣∣
||A1n(t)|| ≤ L1||A1(n−1)||

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣
Therefore,

||A1n(t)|| ≤ L1

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A1(n−1)|| (4.5)
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Likewise, we streamlined the residual expression of (9) into the following configuration:

||A2n(t)|| ≤ L2

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A2(n−1)(t)||

||A3n(t)|| ≤ L3

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A3(n−1)(t)||

||A4n(t)|| ≤ L4

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A4(n−1)(t)||

||A5n(t)|| ≤ L5

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A5(n−1)(t)||

||A6n(t)|| ≤ L6

∣∣∣∣1− α

F (α)
+

tα

F (α)Γ(α)

∣∣∣∣||A6(n−1)(t)||



(4.6)

Theorem 2: The fractional model given in (4) has a solution if we can find M0 satisfying(
1− α

F (α)
+

tα

F (α)Γ(α)

)
Li ≤ 1i = 1, 2, ..., 6. (4.7)

From (10) and (11) we have:

||A1n(t)|| ≤ ||S(0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L1

∣∣∣∣n ,

||A2n(t)|| ≤ ||P (0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L2

∣∣∣∣n ,

||A3n(t)|| ≤ ||Q(0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L3

∣∣∣∣n ,

||A4n(t)|| ≤ ||W (0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L4

∣∣∣∣n ,

||A5n(t)|| ≤ ||X(0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L5

∣∣∣∣n ,

||A6n(t)|| ≤ ||Y (0)||
∣∣∣∣(1− α

F (α)
+

Mα
0

F (α)Γ(α)

)
L6

∣∣∣∣n

(4.8)

The existence of the solution is confirmed by Theorem 1. Now, we need to demonstrate that the functions S(t),
P (t), Q(t), W (t), X(t), and Y (t) are solutions of the model (4). To establish this, we assume that the following
conditions are satisfied:

S(t)− S(0) = Sn(t)− a1n(t)

P (t)− P (0) = Pn(t)− a2n(t)

Q(t)−Q(0) = Qn(t)− a3n(t)

W (0)−W (0) = Wn(t)− a4n(t)

X(t)−X(0) = Xn(t)− a5n(t)

Y (t)− Y (0) = Yn(t)− a6n(t)


(4.9)

From (13),
||a1n(t)||=

1− α

F (α)
||(G1(t, Sn−1)−G1(t, Sn−2))||+

α

F (α)Γ(α)

∫ t

0

||(G1(k, Sn−1)−G1(k, Sn−1))||(t− k)α−1dk

||a1n(t)||≤
1− α

F (α)
L1||Sn(t)− Sn−1(t)||

tα

F (α)Γ(α)
L1||Sn(t)− Sn−1(t)||.

12
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Continuing with recursive iterations, the connections can be articulated as follows:

||a1n(t)||≤
[
1− α

F (α)
+

tα

F (α)Γ(α)

]n+1

Ln
1 ||Sn(t)− Sn−1(t)||n

Which at t = Mα
0 yields,

||a1n(t)||≤
[
1− α

F (α)
+

Mα
0

F (α)Γ(α)

]n+1

Ln
1 ||Sn(t)− Sn−1(t)||n (4.10)

Applying the limit to both sides of equation (15) as n → ∞, we observe that:
The condition ∥a1n(t)∥ → 0 as n → ∞ for values of t satisfying[

1− α

F (α)
+

tα

F (α)Γ(α)

]
L1 ≤ 1.

In a similar fashion, we demonstrate that

∥a2n(t)∥ → 0, ∥a3n(t)∥ → 0, ∥a4n(t)∥ → 0, ∥a5n(t)∥ → 0, ∥a6n(t)∥ → 0

for values of t satisfying [
1− α

F (α)
+

tα

F (α)Γ(α)

]
Li ≤ 1 for i = 2, 3, 4, 5, 6.

Theorems 1 and 2 provide assurance regarding the presence of a solution to model (3) through the Banach fixed
point theorem. In Theorem 3, we shall substantiate the distinctiveness of this solution.

Theorem 3: Uniqueness of Solution
The fractional model (3) has a unique solution provided that[

1− α

F (α)
+

tα

F (α)Γ(α)

]
Li ≤ 1 for i = 2, 3, 4, 5, 6. (4.11)

Proof:
Assuming that S1(t), P1(t), Q1(t), W1(t), X1(t), and Y1(t) are solutions to model (3), then,

S(t)− S1(t) =
1− α

F (α)
(G1S(t)−G1S1(t))

+
α

F (α)Γ(α)

∫ t

0

(G1S(t)−G1S1(t))(t− k)α−1dk,

Taking the norm of both sides, we have:

||S(t)− S1(t)|| =
1− α

F (α)
||L1|| ||S(t)− S1(t)||

+
tα

F (α)Γ(α)
||L1|| ||S(t)− S1(t)||.

Since (
1− ||L1||

(
1− α

F (α)
+

tα

F (α)Γ(α)

))
> 0,

we obtain ||S(t)− S1(t)|| = 0. Thus, we have S(t) = S1(t).
Similarly, we can show that P (t) = P1(t), Q(t) = Q1(t), W (t) = W1(t), X(t) = X1(t), Y (t) = Y1(t). This
completes the proof of Theorem 3.
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4.1 Positivity and Boundedness
The model (3) will be meaningful epidemiologically , if the solution of system (4) with no negative initial data
will remain non-negative for all time t ≥ 0 [18-26].

Lemma ( 1) . For all time t ≥ 0 and initial data N(0) ≥ 0 , where N(t) = (S(t), E(t), I(t), IT (t), Q(t), R(t)).
The solution of model (4) are non-negative for all t ≥ 0r if there exist , furthermore, lim supN(t) ≤ β

µ
The

epidemiologically feasible region of model (4) is given by:

Ω =: {(S(t) , P(t),Q(t),WT (t), X(t), Y (t)) ∈ R6
+ :

0 ≤ S(t) + P (t) +Q(t) +W (t) +X(t) + Y (t) ≤ N ≤ β

µ
}

Proof :
Applying the AB fractional integral(2) to the first equation of (3) we have:

Iαt D
α
t

(
S(t)e

∫ t

0

(µ+ α1ζ)dS)
= βIαt

(
e

∫ t

0

(µ+ α1ζ)dS)
it is obvious that:

S(t) = βe
−

∫ t

0

(µ+ α1ζ)dS[1− α

F (α)
e

∫ t

0

(µ+ α1ζ)dS
+

α

F (α)Γ(α)
e

∫ t

0

(µ+ α1ζ)dS
(t− w)dw

]
> 0 (4.12)

The same rationale applies to the remaining equations within (3).

P(t) = µ+ α1(t)e
−

∫ t

0
λ2dt

[
1− α

F (α)
e

∫ t

0
λ2dt

+

α

F (α)Γ(α)
e

∫ t

0
λ2dt

(t− w)dw

]
> 0,

Q(t) = λ2E(t)e
−

∫ t

0
(µ+ α3 + λ1)dt

[
1− α

F (α)
e

∫ t

0
(µ+ α3 + λ1)dt

+

α

F (α)Γ(α)
e

∫ t

0
(µ+ α3 + λ1)dt

(t− w)dw

]
> 0,

W(t) = (1− ρ)α3I(t)e
−

∫ t

0
(µ+ λ2)dt

[
1− α

F (α)
e

∫ t

0
(µ+ λ2)dt

+

α

F (α)Γ(α)
e

∫ t

0
(µ+ λ2)dt

(t− w)dw

]
> 0,

X(t) = ρα3I(t)e
−

∫ t

0
Ψdt[1− α

F (α)
e

∫ t

0
Ψdt

+

α

F (α)Γ(α)
e

∫ t

0
Ψdt

(t− w)dw

]
> 0,

Y(t) = α4IT (t)e
−

∫ t

0
(µ+ α5)dt

[
1− α

F (α)
e

∫ t

0
(µ+ α5)dt

+

α

F (α)Γ(α)
e

∫ t

0
(µ+ α5)dt

(t− w)dw

]
> 0,



(4.13)

14



Bamigwojo et al.; J. Adv. Math. Com. Sci., vol. 39, no. 11, pp. 1-28, 2024; Article no.JAMCS.124589

From equations (17) and (18), it follows that each solution of equation (4) is non-negative and remains in R6
+.

Next, we establish the boundedness of the solutions of the fractional model (4), considering that all parameters
in the model, as mentioned earlier, are non-negative. We proceed by summing up all equations of model (4),
yielding:

Dα
t N = β − µN − λ2IT −ΨQ(t)− α5R(t)

Dα
t N(t)− µN(t) ≤ β

(
Dα

t N(t)− µN(t

)
e

∫ t

0

µdt
≤ βe

∫ t

0

µdt

N(t) ≤ β

µ

It is not difficult to observe that N(t) →β

µ
as t → ∞. Hence Ω =: {(S(t) , P(t),Q(t),WT (t), X(t), Y (t)) ∈ R6

+

is the biologically feasible region of (4).

4.2 Existence of Equilibria of the Model
Meaning of Equilibrium: If a point X ′ is an equilibrium, then the constant vector X(t) = X ′ is a solution of
the system of ordinary differential equations (ODEs) because a constant function has zero derivatives ( d

dt
X ′ = 0).

Since F (X ′) = 0 by definition of equilibrium, we have d
dt
X ′ = F (X ′). Conversely, if a constant vector X(t) = X ′

is a solution of d
dt
X ′ = F (X ′), then in other words, an equilibrium is a point where the solution remains constant

forever. The point may be stable or unstable. An equilibrium point is hyperbolic if none of the eigenvalues have
zero real part. If all the eigenvalues have negative real parts, the point is stable. If at least one has a positive
real part, the point is unstable. Any dynamical system may have none, one, or several equilibrium points, each
of which may either be stable or unstable. Understanding these equilibrium points provides important insights
into the system behavior that characterizes the model.

4.3 Disease-Free Equilibrium
The disease-free equilibrium (DFE) of equation (3) is given by:

(S0(t), P0(t), Q0(t),W0(t), X0(t), Y0(t)) =

(
β

µ
, 0, 0, 0, 0, 0

)
The global stability of the disease-free equilibrium point will be shown after defining the basic reproduction
number.

4.4 Basic Reproduction Number R0

The basic reproduction number R0 is defined as the expected number of secondary infections produced when one
infected individual is introduced into a completely susceptible population [33-32]. Computation of R0 typically
involves the product of infection rates and the duration of infection. The basic reproduction number is obtained
using the next-generation matrix and is given by the spectral radius Φ(−FV −1), where:

F =


0

b0a1β

µk(N)

b0a2β

µk(N)

b0a3β

µk(N)

b0a4β

µk(N)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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V −1 =


1

K1
0 0 0 0

λ2
K1K2

1
K2

0 0 0
λ2λ3

K1K2K3

λ3
K2K3

1
K3

0 0
λ2λ3λ4

K1K2K3K4

λ3λ4
K2K3K4

λ4
K3K4

1
K4

0
λ2λ3λ5

K1K2K3K5

λ3λ5
K2K3K5

λ5
K3K5

0 1
K5


R0 = βb0λ2(a2λ3K4K5+a3λ3λ4K5+a4λ3λ5K4+a1K3K4K5)

K1K2K3K4K5µ
.Where,

K1 = µ+ δ1 + λ2,K2 = µ+ δ2 + λ3,K3 = µ+ δ2 + λ4 + λ5,K4 = µ+ δ4,K5 = µ+ δ5

Global Asymptotic Stability (GAS) of HBV in the Absence of Therapy at DFE

Theorem 4.1. The disease-free equilibrium (DFE) state: S(t)0, P (t)0, Q(t)0,W (t)0, X(t)0, Y (t)0 ≡ (β, 0, 0, 0, 0, 0)
is globally asymptotically stable when R0 ≤ −1 [42-49].

Proof. From equation (3), we construct a Lyapunov function of the form:

V (P,Q,W,X, Y ) = A1P +A2Q+A3W +A4X +A5Y

where A1 > 0, A2 > 0, A3 > 0, A4 > 0, A5 > 0 are constants whose values will be determined. Taking the time
derivatives of V , we have:

dV

dt

dP

dt
= A1

dP

dt
+A2

dQ

dt
+A3

dW

dt
+A4

dX

dt
+A5

dY

dt
(4.14)

Substituting dP
dt

, dQ
dt

, dW
dt

, dX
dt

into equation (3), we have:

dV

dt
= A1(α1ζS(t)− (µ+ δ1) + λ2)P (t))

+A2(λ2P (t)− (µ+ δ2 + λ3)Q(t))

+A3(λ3Q(t)− (µ+ δ2 + λ4 + λ5)W (t))

+A4(λ4W (t)− (µ+ δ4)X(t))

+A5(λ5W (t)− (µ+ δ5)Y (t))

(4.15)

Solving for the constants A1, A2, A3, A4, and A5 gives:

A1 = τ1R0

A2 =
K1τ1R0

λ2

A3 =
τ0

K3R0

A4 =
τ0

K4R0

A5 =
τ0

K5R0


(4.16)

Where: τ0 = b0λ2 (a2λ3K4K5 + a3λ3λ4K5 + a4λ3λ5K4 + a1K3K4K5 and τ1 = K1K2K3K4K5µ Substituting
[22] into [21] and simplifying the resultant equation we have:

dV

dt
= α1ζS(t)

τ1R0

α1
−K1

τ1R0

α1
− λ1)P (t))

K1τ1R0

α1λ2
+

τ0
K3R0

λ3 −K1)Q(t)
K1τ1R0

α1λ2
) +

τ0
K4R0

λ4+

(
τ0

K5R0
λ5 −

τ0
R0

)W (t))− τ0
R0

X(t)− τ0
R0

Y (t)

(4.17)
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Since all parameters and variables of model equations (1)-(6) are non-negative, it follows that dV
dt

≤ 0 for R0 ≤ 1
in equation (1.34) with dV

dt
= 0 if and only if S(t) = P (t) = Q(t) = W (t) = X(t) = Y (t) = 0. Hence, V is a

Lyapunov function on D.

Further, the largest compact invariant set in {(S(t), P (t), Q(t),W (t), X(t), Y (t)) ∈ D : V̇ = 0} is the singleton
{ε}. Therefore, it follows from LaSalle’s invariant principle that (P (t), Q(t),W (t), X(t), Y (t)) −→ (0, 0, 0, 0, 0)
as t → ∞. Thus, every solution of the equations of the model (1)-(6) with initial conditions in D approaches
{ε} as t → ∞ (whenever R0 ≤ 1), so that {ε} is globally asymptotically stable (GAS) in D if R0 ≤ 1. The
epidemiological implication of this theorem is that if R0 can be made to a value less than unity, a small influx
of individuals into the community will not generate large outbreaks of the disease, and it will die out in time.

4.5 Endemic Equilibrium State of HBV in the Absence of Therapy
At the endemic equilibrium state, the disease exists, and as such, S(t) ̸= P (t) ̸= Q(t) ̸= W (t) ̸= X(t) ̸= Y (t) ̸= 0,
but D

dt
S(t) = D

dt
P (t) = D

dt
Q(t) = D

dt
W (t) = D

dt
X(t) = D

dt
Y (t) = 0. Our interest here is to determine the

expression of equation (3) such that S(t) = S∗(t), P (t) = P ∗(t), Q(t) = Q∗(t), W (t) = W ∗(t), X(t) = X∗(t),
Y (t) = Y ∗(t) at the endemic equilibrium state. Solving the six equations of equation (3) algebraically in steps
for the state variables gives:

S∗ =
β

µ(1 + α1R0)

P ∗ =
α1βµR0

k1k0

Q∗ =
λ2α1βµR0

k2k1k0

W ∗ =
λ3λ2α1βµR0

k3k2k1k0

X∗ =
λ4λ3λ2α1βµR0

k4k3k2k1k0

Y ∗ =
λ5λ3λ2α1βµR0

k5k3k2k1k0



(4.18)

4.6 Endemic Equilibrium State of HBV in the Absence of Therapy
Theorem 4.2. If R0 > 1, the endemic equilibrium point of model (4) is globally asymptotically stable.

Proof To establish the global stability of the endemic equilibrium J∗, we construct a Lyapunov function of the
form:.

F = S − S̈ − S̈log
S

S̈
+

(
P − P̈ − P̈ log

P

P̈

)
+

(
Q− Q̈− Q̈log

Q

Q̈

)
+(

W − Ẅ − Ẅ log
W

Ẅ

)
+

(
X − Ẍ − Ẍlog

X

Ẍ

)
+(

Y − Ÿ − Ÿ log
Y

Ÿ

) (4.19)

Differentiating F (i.e., equation (24)), we have:

Ḟ = Ṡ − S̈

S
Ṡ +

(
Ṗ − P̈

P
Ṗ

)
+

(
Q̇− Q̈

Q
Q̇

)
+

(
Ẇ − Ẅ

W
Ẇ

)
+(

Ẋ − Ẍ

X
Ẋ

)
+

(
Ẏ − Ÿ

Y
Ẏ

) (4.20)
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Substituting the corresponding right-hand side of equations (4) into (25) and simplifying, we have

Ḟ = β − µS(t)− α1ζS(t)−
S̈

S

(
β − µS(t)− α1ζS(t)

)
+(

α1ζS(t)−K1P (t)− P̈

P
(α1ζS(t)−K1P (t)

)
+(

λ2P (t)− (µ+ δ2 +K2Q(t)− Q̈

Q
(λ2P (t)−K2Q(t))

)
+(

λ3Q(t)−K3W (t)− Ẅ

W
(λ3Q(t)−K3W (t))

)
+(

λ4W (t)−K4X(t)− Ẍ

X
(λ4W (t)−K4X(t))

)
+(

λ5W (t)−K5Y (t)− Ÿ

Y
(λ5W (t)−K5Y (t))

)

(4.21)

At steady state, we observe from model 4 that:

β = α1S̈(Q̈+ Ẅ + Ẍ + Ÿ ) + µS̈ (4.22)

Following a procedure provided in [30-34], Equation (26) simplifies to:

Ḟ = µS̈

(
2− S

S̈
− S̈

S

)
+ α1S̈Q̈

(
3− 1

S
− Q̈P

P̈

)
+

α1S̈Ẅ

(
3− 1

S
− P

P̈
+

Q

Q̈
− ẌQ

Q̈W
− Ÿ Q

Q̈W
− ẄQ

Q̈W

)
+

α1S̈Ẍ

(
4− 1

S
− P

P̈
+

Q

Q̈
− ẄQ

Q̈W
− ẌQ

Q̈X

)
+

α1S̈Ẍ

(
4− 1

S
− P

P̈
+

Q

Q̈
− ẄQ

Q̈W
− Ÿ W

Q̈Y

)
−(

α1P̈

P
+ 2α1S̈

)
(Q+W +X + Y )

(4.23)

Given that the arithmetic mean consistently surpasses the geometric mean, as inferred from (42), we can deduce
the ensuing inequality:

2− S

S̈
− S̈

S
≤ 0

3− 1
S
− Q̈P

P̈
≤ 0, 3− 1

S
− P

P̈
+ Q

Q̈
− ẌQ

Q̈W
− Ÿ Q

Q̈W
− ẄQ

Q̈W
≤ 0

4− 1
S
− P

P̈
+ Q

Q̈
− ẄQ

Q̈W
− ẌQ

Q̈X
≤ 0, 4− 1

S
− P

P̈
+ Q

Q̈
− ẄQ

Q̈W
≤ 0

Further, since all the model parameters are non-negative, it follows that Ḟ < 0 for R0 > 1, and F is a Lyapunov
function on D. The biological implication of this theorem is that when R0 is greater than unity, a small influx
of infected individuals into a community will generate large outbreaks of the disease, allowing it to invade the
population.

5 Numerical Simulation (Absence of Control)
The aim of this section is to simulate and document the influence of various values of the fractional order α
within the model. To achieve this goal, we perform numerous numerical simulations utilizing Python along with
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its libraries(Simpy 4.1.1).The parameters, including their descriptions, values, and sources, are summarized in
Table 1. Following Table 1, the numerical simulations and their corresponding descriptions are presented.

Table 1. Parameters of the Model, their Descriptions,Values and Source

Parameters Description of parameter Values Source
β level of production of new target cells 500 Assumed
µ Natural death rate 0.021 [52]
α1 Transition rate from S to P 0.50 [52]
δ1 Disease induse rate at the subclinical state 0.03 [51]
λ2 Fraction of subclinical persons that were clinical 0.50 [52]
λ3 Fraction of clinical that migrate to acute 0.048 [52]
λ4 Fraction of Acute that developed chronic HBV 0.025 [53]
λ5 Fraction of Acute that developed fulminant HBV 0.08 [53])
δ2 Disease induse rate at the clinical state 0.068 [52]
δ3 Disease induse rate at the acute state 0.0068 [52]
δ4 Disease induse rate due to chronic infection 0.068 [52]
δ5 Disease induse rate due to fulminant infection 0.03 [53]

Fig. 2. Susceptible Population

Observations:
1. Impact of alpha on Susceptible Population:

- As alpha increases from 0.1 to 1, the peak of S(t) shifts to the left, indicating that the maximum number of
susceptible cases is reached more quickly.
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- The height of the peak decreases with increasing alpha, showing that higher values of alpha lead to a lower
number of susceptible individuals at the peak.

2. Behavior Over Time:
- For alpha = 0.1, the curve peaks later and higher, meaning that the disease spreads more slowly, and a larger
number of individuals remain susceptible for a longer period.
- As alpha increases, the curve not only peaks earlier but also returns to the baseline level more quickly, suggesting
that the disease spreads faster and the susceptible population decreases more rapidly.

Fig. 3. Exposed Humans Population

Observations:
1. Effect of alpha on the Rate of Increase:
- As alpha increases from 0.1 to 1, the curve becomes steeper, indicating a faster increase in the number of
sub-clinical cases P(t) over time.
- For alpha = 1 , which corresponds to the classical first-order derivative, the number of cases rapidly increases
and quickly approaches its peak value
- As alpha decreases, the growth of P(t) becomes slower, indicating that the system’s response to the infection
is more gradual.

2. Long-Term Behavior:

- Regardless of the value of alpha , all curves appear to approach the same asymptotic value, suggesting that the
total number of sub-clinical cases stabilizes at a similar final value. This reflects the system reaching a steady
state where the number of new cases levels off.
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Fig. 4. Acute Infected Humans Population

Observations:
The graph illustrates the impact of varying the fractional order α in modeling the acute human population W (t)
during Hepatitis B virus (HBV) transmission. Lower α values introduce a memory effect, leading to delayed
and oscillatory dynamics, which biologically may represent the influence of past infections and interventions on
current disease spread. This suggests that the population takes longer to stabilize, reflecting the complexities
of immune responses and chronic carrier states in HBV. In contrast, higher α values result in a more rapid
and smooth rise in acute cases, indicating a quicker stabilization, possibly corresponding to populations with
less complex immune histories or more uniform responses to the infection. This highlights the fractional-order
model’s ability to capture the nuanced transmission dynamics of HBV, offering insights that can improve public
health strategies.
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Fig. 5. Chronic Humans Population

Observations:
The graph represents the evolution of the chronic human population X(t) in the context of Hepatitis B virus
(HBV) transmission, modeled using a fractional-order differential system with varying values of alpha. The
parameter alpha influences how past states of the system (e.g., prior infections, immune responses) affect the
current rate of chronic case accumulation. Biologically, lower values of alpha (e.g., alpha = 0.1 indicate a stronger
memory effect, which slows the initial increase in chronic cases and introduces a more gradual rise over time.
This suggests that when memory effects are significant, the progression from acute to chronic infection is more
gradual, possibly reflecting the prolonged time it takes for the immune system to react to the infection, or the
delayed effects of interventions like antiviral treatments or vaccinations. As alpha increases, the memory effect
diminishes, and the rise in chronic cases becomes quicker and more immediate. For alpha = 1, the population
rapidly reaches a higher number of chronic cases, reflecting a scenario where the transition from acute to chronic
infection is more direct and less influenced by past infection history. This could represent populations with a
more uniform or immediate immune response to HBV or where the disease progression is faster due to other
factors.
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Fig. 6. Fulminant Humans Population

Observations:
The graph displays the time evolution of the fulminant hepatitis B cases Y(t) under different fractional orders
alpha over a 10-day period. Each curve represents a different value of alpha, from alpha = 0.1 to alpha = 1.
1. Impact of alpha on ( Y(t) :
For alpha = 0.1, the initial decrease in fulminant cases is slower, and the system exhibits notable oscillations
before reaching a steady state. As alpha increases, the initial decrease becomes steeper, and the oscillations
dampen more quickly, leading to a faster stabilization of fulminant cases.
Biological Interpretation:
Lower alpha (e.g., alpha = 0.1) suggests a strong memory effect, meaning the current state of the fulminant cases
is heavily influenced by past states. This can represent the biological scenario where the history of infection,
immune response, and treatment has a prolonged influence on the progression and resolution of fulminant
hepatitis. The oscillatory behavior for lower alpha values indicates a more complex dynamic where patients
might experience fluctuating symptoms or treatment responses before stabilization.
2. Disease Progression and Treatment:
- For higher alpha values, the fulminant cases decline rapidly and stabilize more quickly, implying a more
immediate response to treatment and less influence from past states. This could reflect scenarios where effective
treatment is quickly administered, leading to a rapid decline in severe cases without significant fluctuation. The
different trajectories also suggest that the progression from fulminant to recovery or chronic states can vary
significantly based on the population’s historical exposure and treatment efficacy.
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3. Epidemiological Implications:

The variation in the trajectories of Y(t) with different alpha values highlights the importance of considering
fractional-order models in capturing the nuanced dynamics of fulminant HBV cases.

6 Summary of Findings
HBV remains a significant global health concern, with transmission dynamics influenced by various factors.
Traditional models have limitations in capturing the complexities of HBV transmission dynamics. Hence, the
study utilized a fractional order model to provide a more accurate representation. The study elucidated the
dynamics of HBV transmission using a fractional order model and highlighted the effectiveness of enlightenment
intervention as a control strategy. The findings underscore the importance of considering complex dynamics and
intervention strategies in combating infectious diseases like HBV. Further research is warranted to refine the
model and assess the long-term impact of enlightenment interventions on HBV transmission rates. Fractional
Order Model Formulation: The formulation of a fractional order model of Hepatitis B virus (HBV) transmission
dynamics using the Atangana -Baleanu operator represents a significant contribution to the field of infectious
disease modeling. By leveraging fractional calculus principles, we have developed a model that accounts for
memory effects and long-range dependencies, providing a more accurate representation of HBV transmission
dynamics compared to traditional models. Insights into Complex Dynamics: The fractional order model offers
insights into the complex dynamics of HBV transmission, elucidating the interplay between various factors
such as population demographics, vaccination coverage, and intervention strategies. By capturing the intricate
temporal dependencies inherent in infectious disease dynamics, the model enhances our understanding of HBV
transmission patterns and informs targeted control measures.
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