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control strategies, such as PID and linear controllers, often struggle with the nonlinearities and parameter
uncertainties inherent in EHSS, leading to poor tracking performance and instability. To overcome these
limitations, we employ the Artificial Bee Colony (ABC) algorithm to optimize the controller parameters,
minimizing both the tracking error and control signal. The proposed controller ensures uniform ultimate
boundedness of the error and control signal by utilizing a Lyapunov-based stability criterion, which guarantees
that errors do not exceed a predefined bound despite uncertainties and disturbances. Simulation results
validate the robustness and effectiveness of the control scheme, even in the presence of parameter variations.
Additionally, a comparative analysis with sliding mode control highlights the superior performance of the
proposed method, particularly in providing smoother control signals and reducing chattering while ensuring
stability.

Keywords: Electro-hydraulic systems; backstepping control; nonlinear systems; adaptive control; artificial bee
colony.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction
The demand for fast, precise, and powerful control systems in industrial applications has made Electro-Hydraulic
Servo Systems (EHSS) increasingly popular. EHSS are widely used in diverse industries, ranging from aerospace
flight control to manufacturing, and play a crucial role in seismic applications as one of the major components
in Vibroseis [1]. However, these applications require high-precision control, which poses significant challenges
due to the inherent nonlinearities of the system.

Several factors contribute to the nonlinear behavior of EHSS, such as fluid inflow-outflow in the servo valve,
friction in actuator and valve moving parts, and air entrapment within the hydraulic system. Additionally, the
system’s parameters can vary due to temperature changes, and unknown model errors or perturbations further
complicate the controller design process. Numerous methods have been proposed to address these challenges.
While linear control theories have been widely used for controller development, these approaches are limited in
their ability to handle changing operating conditions and uncertainties, particularly in highly nonlinear systems.

For example, the performance of a linear controller was enhanced using a feedback-feedforward iterative learning
controller [2] and adaptive schemes have been employed to manage parameter variations [3, 4]. However,
traditional adaptive approaches face significant limitations when the system to be controlled is not linear in
parameters or includes uncertain or unmodeled dynamics. This is particularly problematic for EHSS, where
critical parameters such as supply pressure and load mass vary with environmental conditions.

Various nonlinear control strategies have been explored to improve the robustness of EHSS controllers. A
Lyapunov-based approach was used to develop a feedback linearization controller capable of handling supply
pressure uncertainties in EHSS [1], although it did not consider the effects of unknown disturbances at the
velocity level. Backstepping, a progressive control design strategy, has emerged as a powerful method for
nonlinear systems, offering stabilization and tracking through the introduction of stabilizing functions that
counteract nonlinearities [5]. Unlike feedback linearization, backstepping avoids the complete cancellation of
useful nonlinearities and can force nonlinear systems to behave like linear systems when transformed into new
coordinates.

Sliding Mode Control (SMC) is a well-established robust control strategy that has been widely applied to systems
with parameter uncertainties and external disturbances, including Electro-Hydraulic Servo Systems (EHSS).
SMC operates by driving the system’s states onto a predefined sliding surface, ensuring that the system remains
on this surface and converges to the desired trajectory despite the presence of uncertainties. Its major advantage
lies in its robustness to disturbances and ability to handle nonlinearities, making it a suitable candidate for EHSS
[6, 7, 8]. However, SMC suffers from a significant drawback known as chattering, which results from the high-
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frequency switching nature of the control law. Chattering not only degrades the system’s performance but can
also cause wear in mechanical systems such as EHSS. Additionally, while SMC offers fast convergence, it can be
sensitive to measurement noise and may require high gains, leading to large control efforts. These limitations
motivate the exploration of alternative methods, such as adaptive backstepping combined with optimization
techniques like the Artificial Bee Colony (ABC) algorithm, to achieve smoother control signals and reduce
transient oscillations while maintaining robustness and accuracy.

The backstepping technique has demonstrated particular advantages in avoiding nonlinear cancellation and
addressing external perturbations [9, 10]. For instance, backstepping-based neural adaptive techniques have
been used for velocity control in EHSS, addressing internal friction and flow nonlinearity, though external
disturbances were not considered [11]. Furthermore, EHSS are sensitive to parameter variations caused by
temperature fluctuations, such as changes in bulk modulus and viscous friction coefficients, underscoring the
need for adaptive controllers that can accommodate such variations [12].

Friction is another critical consideration in EHSS design. A LuGre model-based adaptive control scheme was
proposed to model and estimate frictional effects, offering robustness against uncertainties and disturbance
rejection [2]. Additionally, variable structure controllers have been utilized to model friction and load as external
disturbances [13], and auto-disturbance rejection controllers have been shown to manage both internal and
external disturbances [14]. System identification techniques have also been employed to model EHSS, leading
to the development of adaptive Fuzzy PID controllers for position control [15, 16]. Recent advancements have
also leveraged evolutionary algorithms to optimize control performance. Dynamic particle swarm optimization
has been applied to enhance closed-loop system tracking performance by optimizing control parameters [17].

Evolutionary techniques like Artificial Bee Colony (ABC) optimization [18, 19] have gained prominence due
to their ability to efficiently search for global optima [20, 21]. In this work, we propose the use of ABC to
tune controller parameters for optimal performance, particularly in minimizing tracking error and control signal.
Significance of ABC have been shown in path planning of multi robot and other control applications [22].

This paper introduces a backstepping-based approach to design a robust adaptive controller for a highly nonlinear
EHSS, modeled as a single input single output (SISO) system. The system consists of a four-way spool valve
supplying a double-effect linear cylinder with a double-rodded piston, which drives a load modeled by mass,
spring, and viscous friction. The proposed adaptive controller ensures practical stability of the closed-loop
system and guarantees the uniform ultimate boundedness of the error. ABC is employed to optimize the
controller parameters, thereby enhancing the accuracy and control efficiency. The rest of this paper is organized
as follows: Section 2 presents the problem formulation, Section 3 discusses the adaptive controller design, Section
4 focuses on the ABC optimization and its implementation, Section 5 presents the simulation results, and Section
6 concludes the paper.

2 System Model and Problem Formulation
The dynamics of the EHSS are highly nonlinear, influenced by factors such as actuator friction and fluid inflow-
outflow within the valve. Additionally, complexities like air entrapment, parameter variations, and unknown
model errors further complicate the control design process. The EHSS model in Fig. 1. with dynamics given
below in 2.1 is considered.

ẋ1 = 4B
Vt

(ku
√
Pd − sign(u)x1 − αx1

1+γ|u| − Sx2),

ẋ2 = 1
mt

(Sx1 − bx2 − βx3),

ẋ3 = x2 + d(t).

(2.1)

where β = (kl + ∆ kl) . x1 is the differential pressure between the two chambers, x2 and x3 are the velocity
and position of the rod respectively. kl + ∆ kl denotes the uncertain spring stiffness and b is the viscous
damping coefficient, Vt is the total volume of the forward and return chambers, Pd is the supply and return
pressure difference while mt is the total mass of the load and piston. B and S are the bulk modulus and net
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cross-sectional area of one side of the piston respectively. k , γ , α are intrinsic constants of the servo valve; γ
and α are used to model the leakage in the servo valve.

m

kl

b

m0

x2 , x3

S

P1 , V1 P2 , V2

u

Pr Ps

Fig. 1. Electro-hydraulic System

In the sequel, we consider the following assumptions hold:

1. d(t) is an unknown but bounded disturbance with |d(t)| < dmax .

2. ∆kl is unknown and bounded with |∆kl| < ∆kmaxl .

3. The spool-valve dynamics are assumed to be sufficiently fast and are thus neglected in the dynamic model.

4. All system states are assumed to be available for controller design.

5. Reference input r(t) is a known, continuously differentiable, and bounded trajectory.

The nonlinearities in the system dynamics, particularly with respect to the input u , pose significant challenges
in controlling the system’s output. To address this, we design a backstepping-based controller that drives the
position of the rod to a desired reference trajectory r(t) . Utilizing the backstepping approach requires re-
indexing the system’s state variables to transform the system into its standard strict feedback form, enabling
effective controller design. Let

ξ1 = x3, ξ2 = x2, ξ3 = x1. (2.2)

The dynamics of the transformed system is then given in Eq. (2.3)

ξ̇1 = ξ2 + d(t),

ξ̇2 = 1
mt

(Sξ3 − bξ2 − βξ1),

ξ̇3 = 4B
Vt

(ku
√
Pd − sign(u)ξ3 − αξ3

1+γ|u| − Sξ2).

(2.3)

Let

e1 = ξ1 − r,
e2 = ξ2 − ṙ,
e3 = f(ξ)− r̈,

(2.4)
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where f(ξ) = ξ̇2 , the error dynamics satisfy

ė1 = e2 + d,

ė2 = e3,

ė3 = ( ∂f(ξ)
∂ξ

)ξ̇ − ...
r .

(2.5)

3 Adaptive Control Law Design

In many cases, EHSS parameters are prone to variations due to temperature fluctuations. Since the design of
the backstepping controller depends on the actual system parameters, it becomes crucial to develop a controller
that adapts to these changes. To address the issue of parameter variation, adaptive control schemes are
typically employed. In this section, we propose a backstepping-based adaptive technique that is robust against
uncertainties in system parameters and external disturbances. Specifically, we assume that the load parameters,
such as β and b , are unknown nonlinear functions. These parameters will be estimated through the adaptive
scheme. The schematic diagram of the proposed backstepping-based adaptive strategy is illustrated in Fig. 2
below. We also considered a scenario in which a more complex vibrator-ground model arises due to non-ideal

+
-
r(t)

ξ̇(t) = Aξ(t) + Bf(ξ, u, t) + g(y, u)

y = Cξ(t)

e1 e2

y(t)

ξ

θ̂, θ̂d

v

1
s

e3

u
Adaptive Feedback Adaptation Laws

ξ
Error

Transformed Dynamics

˙̂
θ , ˙̂θd

Fig. 2. Adaptive Control Scheme

contact stiffness at the boundary interaction between the vibrator’s baseplate and the ground, as depicted in
Fig. 3. To account for this, we replaced the parameters β and b as defined in (3.1). This modification allows
for a more accurate representation of the system dynamics under such conditions.

β = γ3ξ
2
1 + γ4ξ

2
2 + γ5ξ

2
3 = θTφ(ξ)

b = b0 + ∆f(ξ, b0)
(3.1)

where ∆f(ξ, b0) is unknown but bounded nonlinear function that satisfies (3.2)

sup
t≥0
|∆f(ξ, b0)| ≤ Fmax (3.2)
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Fig. 3. A more detailed vibrator-ground model prototype [23]

Now, the error dynamics are given as:

ė1 = e2 + d,

ė2 = e3,

ė3 = b0
m2

t
θTφ(ξ)ξ1 + (− 1

mt
θTφ(ξ) +

b20
m2

t
− 4BS2

mtVt
)ξ2

+ (− b0S
m2

t
− 4BSα

mtVt(1+γ|u|) )ξ3 + ∆F1θ
Tφ(ξ)ξ1

+ ∆F2ξ2 −∆F3ξ3 − θTd φ(ξ)d(t)− ...
r +Am(t)u.

(3.3)

where, θTd φ(ξ) = β
mt

and ξ is a state vector comprising of ξ1 , ξ2 and ξ3 . Now, the goal is to design an
adaptive feedback such that:

lim
t→∞

|ξ1 − r(t)| ≤ δ (3.4)
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where, δ is a sufficiently small positive number. The design objective is to minimize δ while simultaneously
ensuring a smooth control law. The following section outlines the control design schemes used to achieve this
balance.

∆F1 = ∆f(ξ,b0)

m2
t
≤ Fmax

∆F2 = 1
m2

t
(2b0∆f(ξ, b0) + ∆f2(ξ, b0)) ≤ F 3

max

∆F3 = S
m2

t
∆f(ξ, b0) ≤ Fmax

(3.5)

Given that

α4 = 3
2

+ λ,

α5 = 1 + 1
λ3 + 1

2λ
, (3.6)

α6 = 1
λ4 .

and

h(e) = α4e1 + α5e2 + α6e3

g(e, ξ) = e2 + λe1 + α4e2 + α5e3

+ α6(
b20
m2

t
− 4BS2

mtVt
)ξ2 − b0S

m2
t
ξ3

A1 = α6b0
m2

t
, A2 = α6

mt
A3 = 4BSαα6

mtVt

θ̃ = θ − θ̂

(3.7)

and let the adaptation law be given as

˙̂
θ = γ6(A1h(e)φ(ξ)ξ1 −A2h(e)φ(ξ)ξ2

+ α6Fmax|ξ1|φ(ξ))

˙̂
θd = −γ7α6φ(ξ)dmax

(3.8)

and let the adaptive feedback be given as

u =

(
mtVt

4α3SBkmin(
√
Pd−ξ3,

√
Pd+ξ3

)
v (3.9)

where,

v =− (|g(e, ξ)|+ |α4 − α6θ̂
T
d φ(ξ)|dmax + Φ(ξ, θ̂)

+ α6|ξ3|Fmax + α6|ξ2|F 3
max)− koh(e)

(3.10)

Then, system (2.3) under the adaptive feedback control law given in (3.9) is practically stable and the solution
of the error dynamic (3.3) is globally uniformly ultimately bounded with ultimate bound satisfying the following
condition

||e||2 ≤ d2
max

λσmin(φφT )
≤ d2

max

2 (λ+ λ5) σmin(φφT )
(3.11)

with

φ =

 1 λ α1
λ2

0 1 α2
λ2

0 0 α3
λ2

 (3.12)

107



Akinrinde et al.; Asian Res. J. Math., vol. 20, no. 10, pp. 101-117, 2024; Article no.ARJOM.124529

Proof. To demonstrate the boundedness of the error dynamics, we will again select the Lyapunov functions as
follows:

V1 = 1
2
e2

1, V2 = 1
2λ4 (e2 + λe1)2

V3 = 1
2
(α4e1 + α5e2 + α6e3)2

V4 = 1
2γ6

θ̃T θ̃T + 1
2γ7

θ̃d
2
,

(3.13)

and again using the Young’s inequality with λ > 0 then,

V̇ = V̇1 + V̇2 + V̇3 + V̇4 (3.14)

Therefore, the derivative of the Lyapunov function is thus given:

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5 )d2 − (e2 + λe1)2

+ h(e)[g(e, ξ) +A1θ̃
Tφ(ξ)ξ1 +A1θ̂

Tφ(ξ)ξ1

−A2θ̃
Tφ(ξ)ξ2 −A2θ̂

Tφ(ξ)ξ2 − A3
1+γ|u| )ξ3

+ α4d+ α6∆F1θ̃
Tφ(ξ)ξ1 + α6∆F1θ̂

Tφ(ξ)ξ1

+ α6∆F2ξ2 − α6∆F3ξ3 − α6θ̃
T
d φ(ξ)d(t)

− α6θ̂
T
d φ(ξ)d(t)− α6

...
r + α6Am(t)u]

− 1
γ6
θ̃T

˙̂
θ − 1

γ7
θ̃d

˙̂
θd

(3.15)

To eliminate the parametric error, the update laws are selected as shown in (3.8). Given that Fmax =
supt≥0 |∆F1| and dmax = supt≥0 |d(t)| , and to ensure a uniformly ultimately bounded error, adaptive feedback
“u” is chosen as given in (3.9) and v is given as follows:

v = −(|g(e, ξ)|+ |α4 − α6θ̂
T
d φ(ξ)|dmax + Φ(ξ, θ̂)

+ α6|ξ3|Fmax + α6|ξ2|F 3
max)− koh(e)

(3.16)

Ultimately,

V̇ ≤ −λ
2
e2

1 + ( 1
2λ

+ 1
2λ5 )d2 − (e2 + λe1)2

− (α1e1 + α2e2 + α3e3)2
(3.17)

Therefore,for V̇ ≤ 0 , it is sufficient to verify that −V + 1
λ
d2
max ≤ 0 . Which means that V̇ ≥ 0 if e is such

that V ≤ 1
λ
d2
max . This will lead to increasing e until V ≥ 1

λ
d2
max .

Let z = φT e , with

φ =

 1√
2

λ α1

0 1 α2

0 0 α3

 (3.18)

Using (3.18), V can be rewritten as V = zT z = ||z||2 . On the other hand,

σmin(φφT )||e||2 ≤ V = ||z||2 ≤ σmax(φφT )||e||2 (3.19)

where σmin(φφT ) and σmax(φφT ) represent the max and min singular values of φφT respectively. Since the
Lyapunov function satisfies (3.17) for all t ∈ <≥0 , this implies that the whole time during which the adaptation
take place is finite. During the finite time, the variables θ̂ and θ̂d cannot escape to infinity since the adaptation
laws in (3.8) are well defined. For any bounded conditions e(0) , θ̂(0) and θ̂d(0) and by making use of (3.17),
we infer that e , θ̂ and θ̂d are bounded for all t ∈ <≥0 . The proof ends here.
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The parameter λ is a design parameter introduced in Young’s inequality. It should be selected as large as possible
to reduce the ultimate bound in the error dynamics. However, a trade-off must be considered: increasing λ
results in a more oscillatory transient response and a higher control input. Additionally, ε must be chosen to be
sufficiently small, and its selection is independent of the system’s parameters and the disturbance bounds. The
proposed controller has parameters that must be carefully selected for optimal closed-loop system performance.
In this work, the ABC technique is employed to optimally set the controller parameters λ and γ1 based on
the minimization of a preassigned objective function. The proper selection of these parameters will effectively
minimize the objective function, which is defined in terms of the error and control signal.

Obj =

tsim∑
t=0

(
Γ1e

2
1(t) + Γ2u

2(t)
)

(3.20)

where the error e1(t) = ξ1 − r(t) and u(t) is the control signal, Γ1 and Γ2 are weighting parameters. The
controller’s parameters are selected within the bounds:

λmin ≤λ ≤ λmax

γmin1 ≤γ1 ≤ γmax1

4 ABC Algorithm
The Artificial Bees Colony (ABC) is a meta-heuristic approach inspired by the work of [18]. This algorithm
mimics the structured behavior of natural bee colonies, which are typically divided into three groups: employed,
onlooker, and scout bees. Employed bees are primarily responsible for searching for food, identifying the best
food sources as optimal solutions. They communicate information about these sources and their nectar quantity
to other bees through systematic dances. Onlooker bees evaluate food sources based on the characteristics of
these dances, such as length, type, and the speed of the employed bees’ movements, using this information to
assess food quality. Scout bees are selected from the onlooker group to initiate new food searches. Depending
on the quality of the food sources, onlooker and scout bees may switch roles with the employed bees [19].

As detailed in [19], the employed and onlooker bees are tasked with exploring the solution space to identify
optimal parameters, while the scout bees oversee the overall search process. A summary of the ABC algorithm
is presented in the flowchart in Fig. 4. In this context, the solution to the optimization problem corresponds
to the position of the food source, and the amount of nectar relative to quality is referred to as the objective
function of the optimization procedure. The position of the food source within the search space can be described
as follows:

xnewij = xoldij + u(xoldij − xkj) (4.1)

The probability of onlooker bees for choosing a food source:

Pi = fitness1∑Eb
i=1 fitnessi

(4.2)

where, x is a candidate solution, Pi is the probability of onlooker solution, i = 1, 2, · · · , Eb is the half of the
colony size, j = 1, 2, · · · , D and and j is the number of positions with D dimension where D refers to number
of parameters to be optimized, fitnessi is the fitness function, k is a random number where k ∈ (1, 2, · · · , Eb) ,
u is random number between 0 and 1.

5 Results and Discussions
The problem is divided into two stages. In the first stage, the proposed backstepping controller (BSC) is
implemented without the ABC algorithm. In the second stage, the ABC algorithm is integrated with the
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Fig. 4. Artificial Bee Colony Algorithm

proposed controller for optimal parameter tuning. The tracking capability of both stages is evaluated using
constant, sinusoidal, and the sum of sinusoidal reference inputs. The objective function for the optimization
procedure is formulated as follows:

Obj =

20∑
t=0.01

Γ1e
2
1(t) + Γ2u

2(t) (5.1)

9 ≤λ ≤ 16

10−7 ≤γ1 ≤ 10−10

In the optimization algorithm, the parameters to be optimized are λ and γ1 . The population size is set to
50, and the number of generations is set to 100, with the search space constrained as specified in (5.1). The
weighted values for Γ1 and Γ1 are both chosen to be 1. For experimental purposes, Fmax is selected to be 10.
The adaptive backstepping controller with the ABC-based optimizer is applied to the system model in (2.3). It
is important to note that this is a minimization task. The parameters of the system model are provided in Table
1.
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Table 1. Numerical values for simulations

Parameters Value Units

B 2.2e9 Pa

Pr 1e5 Pa

Vt 1e−3 m3

S 1.5e−3 m2

γ 8571 s−1

b 590 kg s−1

∆kl 2500 Nm−1

kl 12500 Nm−1

Ps 300e5 Pa

mt 70 kg

k 5.12e−5 m3s−1A−1Pa1/2

α 4.1816e− 12 m3s−1Pa−1

Table 2. Minimum objective function with optimal parameters

Experiment No 1 2 3 4 5 6 7 8
Objective 2.1368 2.1368 2.1368 2.1368 2.1369 2.1368 2.1368 2.1369

γ1 10−10 10−10 10−10 10−10 10−10 10−10 10−10 10−10

λ 13.5585 13.5580 13.5583 13.5585 13.5580 13.5585 13.5581 13.5589

The simulation was conducted for 20 seconds, with error and control signal values captured every 0.01 seconds.
In the first set of experiments, the reference input was a step function defined as r(t) = 0.2 . The simulation
was repeated eight times with different initial populations to ensure the robustness of the proposed solution. As
indicated in Table 2, the objective functions were consistently close across all experiments. Fig. 5. illustrates the
output performance of the proposed backstepping controller (BSC) with optimized parameters γ1 ≤ 10−10 and
λ ≤ 13.5585 . Although the steady-state error is not zero due to the disturbance ( d(t) = 0.1 ), both the error
and control signal remain bounded, and the output performance closely tracks the reference. The performance
of the proposed controller was compared with that of a sliding mode controller (SMC). While the SMC achieved
a smaller error, it exhibited output chattering even in steady state. In contrast, the proposed controller, tuned
with the ABC algorithm, produced a smooth control signal and eliminated transient oscillations. The ABC
algorithm effectively found the best compromise solution by minimizing both error and output oscillations in
transient and steady states. Furthermore, as shown in Fig. 6, the control signal for the ABC-based BSC is
minimized and smooth compared to both the SMC and the BSC without ABC tuning.

It is important to note that the proposed adaptive design does not require differentiating m(t) , which allows the
scheme to effectively handle various types of slowly time-varying m(t) and d(t) . The issue at hand is a robust
adaptive control problem for Electric-Hydraulic Servo Systems (EHSS). As shown in Fig. 5, the adaptive
backstepping controller (BSC) achieves bounded error tracking even in the presence of input nonlinearity,
parameter uncertainties, and unknown but bounded disturbances. Fig. 7. illustrates the output performance
when the reference input is changed to r(t) = 0.3 . The results indicate that the BSC tuned with the ABC
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Fig. 5. Output performance of adaptive backstepping after ABC optimization with r = 0.2m
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Fig. 6. Control input of adaptive backstepping after ABC optimization with r = 0.2m
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Fig. 7. Output performance of adaptive backstepping after ABC optimization with r = 0.3m
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Fig. 8. Control input of adaptive backstepping after ABC optimization with r = 0.3m

113



Akinrinde et al.; Asian Res. J. Math., vol. 20, no. 10, pp. 101-117, 2024; Article no.ARJOM.124529

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

time (s)

O
ut

pu
t (

ξ 1)

 

 
BSC with ABC

ξ
1ref

BSC

Fig. 9. Output performance of adaptive backstepping after ABC optimization with
r = 0.05(sin(t) + sin(2t) + sin(3t))m
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Fig. 10. Output performance of adaptive backstepping after ABC optimization with
r = 0.05sin(t)m

algorithm provides better tracking accuracy, a smoother response, and fewer transient oscillations compared to
both the SMC and the BSC without tuning. Moreover, Fig. 8. further supports this finding, revealing that
the SMC control signal is non-smooth, while the control signals from the BSC are smooth, underscoring the
advantages of the proposed approach.

Fig. 9. illustrates the excellent performance of the proposed ABC-based backstepping controller (BSC) for a
sum of sinusoidal reference inputs, particularly in comparison to the BSC without ABC. Notably, the sliding
mode controller (SMC) experienced instability with sinusoidal references, preventing a direct comparison with
the BSC in these experiments. Additionally, Fig. 10. highlights the superior accuracy of the ABC-based BSC
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when the reference input was switched to a sinusoidal signal. In summary, the proposed solution demonstrates
robustness against parameter uncertainties and disturbances, provided the ultimate bound satisfies the condition
||e||2 ≤ d2max

2(λ+λ5)σmin(φφT )
. It is important to note that the results presented in this paper pertain to scenarios

involving non-ideal contact stiffness at the boundary interaction between the vibrator’s baseplate and the ground.
The parameters β and b , which correspond to load and frictional characteristics, have been modeled as nonlinear
functions to create a more realistic vibrator-ground interaction model. As demonstrated, the error converges
to a neighborhood of the origin in steady states, further underscoring the robustness of the backstepping-based
adaptive controller.

One notable shortcoming of BSC compared to SMC is its slower convergence to the steady state. While BSC
offers smooth control signals and reduced transient oscillations, it tends to have a more gradual response
when approaching steady-state performance. This slower convergence is due to the recursive nature of the
backstepping design, which prioritizes stability and smoothness over rapid response. In contrast, the SMC
achieves faster convergence by employing a high-gain discontinuous control law, which forces the system to
reach the desired state more quickly. However, this comes at the cost of inducing chattering and increased
sensitivity to measurement noise, especially near the steady state. Although BSC avoids these drawbacks and
is more robust to parametric uncertainties and disturbances, its slower convergence may be a limitation in
applications where rapid settling time is critical.

6 Conclusion
In this work, we have presented a robust backstepping-based adaptive controller for Electric-Hydraulic Servo
Systems (EHSS) with uncertain and partially known parameters. The Artificial Bees Colony (ABC) algorithm
is integrated into the closed-loop system to optimize the controller’s parameters and adaptation gain while
minimizing error, control signal, and ensuring smoothness. Various experiments were conducted to validate
the tracking capabilities and robustness of the proposed controller. The results demonstrate that the proposed
control approach guarantees uniform ultimate boundedness of both the error and the control signal.
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