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Abstract

In this study, we formulate and analyze a mathematical model to describe the possible transmission routes
of Antimicrobial Resistance (A.M.R) in a hospital setting. We have examined the significant means of
transmission of resistance in hospitals and found that the significant means of transmission is the use of
antibiotics and through the contamination by health care workers. It has been shown that the resistance free
equilibrium point is locally asymptotically stable. We have also shown that the model has a unique positive
endemic equilibrium point which is locally asymptotically stable.
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1 Introduction

Antimicrobial resistance(AMR) occurs when disease-causing organisms like bacteria, fungi or parasites change
with time and fail to respond to medicines. This makes it more difficult to treat infections thus increasing the
risk of disease spread, severe illness and even death. The emergence and spread of AMR is a great public health
concern particularly in hospitals and other health care settings [1]. Antibiotics (drugs that inhibits the growth
of or destroys bacteria) have drastically reduced deaths and complications caused by bacterial infections and set
the stage for modern medicine. However, the predominant factor that has led to the antimicrobial resistance is
abuse either by over-using or mis-using of the drugs especially when bought over the counter. Studies show that
treatment indications and antibiotic therapy are not proper in nearly 50% of the cases globally [2].

Genetic changes can influence AMR prevalence. Antimicrobial resistant organisms are prevalent in living things
(people, animals and plants) as well as food, water, soil and air. They can spread from person to person or
between humans and animals,including from food of animal origin. Misuse and overuse of antimicrobials, poor
hygiene conditions, poor prevention techniques againsts infections and disease both in hospitals and farms,
inability to afford quality medicine, vaccines and diagnostics, ignorance and lack of enforcement of legislation
have been observed to be the key forces of antimicrobial resistance. [3]. Resistance is also enhanced by the
irrational use of these drugs as growth supplements in livestock [4]. Moreover, there is an overlap between
animals and humans in the transmission of AMR. This is more pronounced in farming communities and is
proportional to the intensity of contact [5].

AMR potentially can drain economy with increased economic losses due to reduced productivity caused by
sickness of both humans and animals. Therefore, AMR is responsible for high morbidity and mortality rates as
well as increased health care costs. It threatens health security, food security and negatively impacts on trade
and economy of the country [6].

Resistant-infections have their morbidity and mortality rates on the rise in several countries. For instance, in
the United States of America, nearly 3 million people get infected annually with over 35 000 deaths. Similarly,
these infections claim over 30 000 lives yearly in Europe [7].

Though antibiotics have cured many infections, their effectiveness is increasingly coming to question. In some
hospitals, some patients are presenting infections that are becoming increasingly harder to treat, while others no
longer have cure. Studies undertaken in Kenya show that the country is already experiencing increasing levels
of antimicrobial resistance. See [8, 9] for more details.

Mathematical models are increasingly used to help understand and control infectious diseases, particularly
to identify key parameters driving disease spread, asses the effect of potential interventions and forecast the
trajectory of epidemics, thus making mathematical models powerful tools that can guide policies to control
AMR.

Webb et.al. [10] in their study of antibiotic bacterial epidemics in hospitals using a mathematical model,
observed that besides the interaction between the infected and uninfected patients, patient-to-Health Care
Provider (H.C.P) and patient-to-environment contacts were outstanding means of transmission of the resistance.

Cooper et.al. [11] studied transmission dynamics of MRSA both with and without isolation of the colonized
patients. With isolation, they found that Methicillin-Resistant Staphylococcus Aureus (MRSA) - a bacteria
resistant to methicillin (an antibiotic) is always eradicated eventually, although this takes a longer time.
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Lipsitch et. al. [3] modeled the effects of measures to control nosocomial transmission of bacteria. They observed
that any process that cuts down on the rate of between hosts transmission for instance improved hygiene in the
hospital environment would reduce the prevalence of the resistant infection.

In this work, we intend to extend the work of Cooper et. al. [11], by formulating a model for the ways in which
AMR is transmitted in the hospitals. Our model describes transmission dynamics of AMR by incorporating
the hospital hygiene and the role of the H.C.P, isolation of patients and use of 2 species of bacteria sensitive to
either one or the two drugs.

2 Model Formulation

In this section, we present mathematical model formulated to describe the dynamics of AMR transmission. In
this work, we have used an improved SIS compartmental model to incorporate the epidemiological features that
depict the AMR transmission using a system of ordinary differential equations (ODE).
Before giving our mathematical model, we make the following assumptions and descriptions:

2.1 Assumptions of the model

We make various assumptions with this model.

1. That all the patients are admitted into the hospital because they suffer from various primary ailments
like malaria, cancer, tuberculosis, cholera or having suffered from accident among other reasons.

2. It is assumed that the population within the hospital remains constant; the total rate of admission is
equal to the total rate of discharge.

3. Patients can enter the hospital either colonized with bacteria (proportion n) or uncolonised (a proportion
m).

4. Patients stay an average of 1
µ

days in the hospital, where µ is the turnover rate in the hospital. We
assume ti is the per capita treatment rate of drug i, and therefore, the total proportion of the hospital
being treated with antibiotics per day is t1 + t2

5. Furthermore, it is assumed that drugs are prescribed without prior knowledge of the type of bacteria
present at the time of the initial prescription as it is not yet common practice to test for resistant bacteria
upon entering the hospital. Patients are more likely to be tested for resistant bacteria after one or possibly
two drugs have failed to clear the infection. Therefore, it is possible for patients resistant to drug 1, for
instance, to be prescribed drug 1; however, these patients will not be cleared until drug 2 is utilized or
the patient’s immune response causes clearance of the bacteria.

6. It is assumed that without treatment, a patient’s immune response will require 1
κ

days to clear the
bacteria.

7. We further assume that each patient is equally likely to come into contact with a healthcare provider and,
equally likely to become colonized with the resistant strain of bacteria or transmit the bacteria if already
colonized upon contact. Patients make β of these effective contacts per unit time.

8. That bacteria is sensitive to drug 2 and therefore application of the drug clears the infection.

9. That new cases occurred at a rate proportional to the product of the number of colonized and susceptible
patients in the hospital.

10. That the population mixes homogeneously. That is, all susceptible individuals are equally likely to be
infected by infectious individuals in case of contact.

11. That all patients are tested of resistance on admissions and therefore join either with strains of bacteria
that is sensitive to both drugs 1 and 2, or those resistant to drug 1 or those who are uncolonised with
either strain.
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Here we build a model that describes transmission dynamics of AMR by incorporating the hospital hygiene,
isolation of patients and use of 2 species of bacteria sensitive to either one or the two drugs.

2.2 The model description

Fig. 1 is a flow diagram with five compartments. The first compartment (X) describes the susceptible population.
These are patients who do not have the resistant bacteria, but are susceptible to being colonised by either the
the sensitive bacteria or the resistant type. The bacteria is deemed sensitive to the drugs 1 and 2 if the drugs
can clear the bacteria from the patient. However if either of the drugs cannot clear the bacteria, we say it is
resistant.

βXY1 βXY2ϒY1 ϒY2

(t1+t2+κ+ πρ) Z1

(t1+t2+қ)Y1

(t2+κ+ πρ) Z2

(t2+қ)Y2

nλ mλ (1-m-n)λ

μZ1 μY1 μX μY2 μZ2

Z1 Y1 X Y2 Z2

(1-π) ρZ1 (1-π) ρZ2

Fig. 1. Flow diagram showing the dynamics of AMR transmission in a hospital

The second class comprises patients carrying strains of bacteria that are sensitive to both drugs 1 and 2. This
class is represented by Y1. The third compartment comprises patients infected with strains of bacteria that are
only sensitive to drug 2. This class is resistant to drug 1 and is represented by Y2. The fourth class of the model
comprises individuals who have strains of bacteria sensitive to drugs 1 and 2 as is the case of Y1, but this group
is isolated within the hospital facility and are represented by Z1. The fifth class Z2 consists of patients who are
sensitive to drug 2 only; they offer resistance to drug 1.

A description of the variables and parameters used in our model is given in Table 1, where each of the variables
are dimensionless as they are proportions of patients in the hospital.

As stated earlier, we assume that all the patients are admitted into the hospital because they suffer from various
ailments like malaria, cancer, tuberculosis, cholera e.t.c. λ is the rate of admission of patients into the hospital.
A fraction (m) of the admissions are free from the two strains of bacteria. Another fraction (n) are admitted
with the bacteria strains sensitive to both drugs 1 and 2. The rest (1-n-m) are admitted with the strain resistant
to drug 1.

β is the colonization rate of patients in compartment X and incorporates the encounter rate between the non-
colonized X and the already colonized patients (Y1 and Y2) via HCP. Patients who are infected with the strains
of bacteria and are symptomatic are isolated upon testing at a rate γ. Treatment with drug 1, which occurs
at rate t1 per day, clears carriage of either sensitive or resistant bacteria, converting members of the Y1 and Z1

populations into X. Treatment with drug 2, which occurs at rate t2 per day, clears carriage of sensitive bacteria
but has no effect on hosts bearing resistant bacteria.. Spontaneous clearance of sensitive and resistant bacteria
occurs at a rate κ per day. Patients may be discharged from the hospital at a rate µ.
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Table 1. Description of the model variables

Variable Description
X The uncolonised population (Patients free of the bacteria sensitive

or resistant to drug 1 or drug 2)
Y1 Patients who carry strains of bacteria that is sensitive

to both drugs 1 and 2
Y2 Patients who carry strains of bacteria that is sensitive to drug 2 only

(offers resistance to drug 1)
Z1 The patients with strains of bacteria sensitive to drugs 1 and 2

and isolated upon testing
Z2 The patients with strains of bacteria sensitive to drug 2

and isolated upon testing

Parameters Definition

β Is the colonization rate of patients in compartment X and incorporates
the encounter rate between the non-colonized X and the already
colonised patients (Y1 and Y2) via HCP.

λ The rate of admission of patients into the hospital
ρ The rate of discharge from the isolation unit
t1 The rate of clearance of carriage of bacteria through treatment with drug 1
t2 The rate of clearance of carriage of bacteria through treatment with drug 2
κ The spontaneous clearance of bacteria(sensitive either to drug 1 or drug 2

or both) from the patient’s body
γ The rate of isolation of infected patients
µ The rate of discharge of the hospitalised patient population
m The proportion of patients admitted free of resistance to drug 1.
n The proportion of patients admitted with strain of bacteria sensitive

to both drugs 1 and 2.
π The proportion of isolated patients who are completely cleared of resistant

bacteria.

2.3 The model equations

From the flow diagram, the governing equations describing the transmission dynamics are:

dX

dt
= mλ+ a1Y1 + a2Y2 + (a1 + πρ)Z1 + (a2 + πρ)Z2

−βXY1 − βXY2 − µX
dY1

dt
= nλ+ βXY1 + (1− π)ρZ1 − b1Y1

dZ1

dt
= γY1 − b2Z1

dY2

dt
= (1− n−m)λ+ βXY2 + (1− π)ρZ2 − b3Y2

dZ2

dt
= γY2 − b4Z2 (2.1)

Where a1 = t1 + t2 + κ, a2 = t2 + κ, b1 = a1 + γ + µ, b2 = a1 + ρ+ µ, b3 = a2 + γ + µ and b4 = a2 + ρ+ µ
System (2.1) is appended with the initial conditions

X(0) ≥ 0, Y1(0) ≥ 0, Y2(0) ≥ 0, Z1(0) ≥ 0, Z2(0) ≥ 0.

154



Oraro et al.; Asian Res. J. Math., vol. 20, no. 10, pp. 150-165, 2024; Article no.ARJOM.124294

From the model, the total population is given by

N = X + Y1 + Y2 + Z1 + Z2 (2.2)

and adding all the equations in system (2.1) we get

dN

dt
= λ− µN (2.3)

System (2.1) describes our 5-dimensional model with five variables. We shall first check for the positivity and
boundedness of the solutions and since Y1 and Z1 do not depend on Y2 and Z2, we shall systematically reduce
system (2.1) to two simpler sub-models in what follows.

2.4 Positivity and boundedness of solutions

Lemma 2.1. Suppose that the initial conditions; X(0) ≥ 0, Y1(0) ≥ 0, Y2(0) ≥ 0, Z1(0) ≥ 0, Z2(0) ≥ 0 hold,
then the solutions of system (2.1) will remain positive at all times, t≥0.

Proof

From the first equation in the system (2.1), we have by comparison method for ODE’s

dX

dt
≥ mλ− (βY1 + βY2 + µ)X

From which we obtain

X(t)≥ X(0)e−
∫ t
0 (βY1+βY2+µ)ds + e−

∫ t
0 (βY1+βY2+µ)ds

∫ t
0
mλe

∫ u
0 (βY1+βY2+µ)dwdu ≥ 0

Similarly,it can be shown that Y1, Z1 ,Y2 and Z2 are positive. Therefore all solutions of the system of equations
(2.1) are positive for all t ≥ 0.

Lemma 2.2. The system (2.1) has solutions which are bounded in the feasible region

Ψ =
{
X,Y1, Y2, Z1, Z2 ∈ R5 : N(t) ≤ λ

µ

}
Proof. From the equation (2.3), we have dN

dt
+ µN = λ. This gives d

dt
(Neµt) = λeµt. By use of the integrating

factor we have N(t)eµt = N(0) +
∫ t
0
λeµsds. This simplifies to

N(t) = N(0)e−µt + λ
µ

(1− e−µt). Thus N(t) = e−µt[N(0)− λ
µ

] + λ
µ

. Therefore as t →∞, N(t) →λ
µ

. Hence

lim
t→∞

N(t) ≤ λ

µ

This implies that the solutions of the model are bounded for t ≥ 0 and is therefore biologically meaningful.

Thus, from Lemma 2.1 and 2.2 the model is well-poised epidemiologically and mathematically and hence, it is
feasible to study the dynamics of the system (2.1) in Ψ.

2.5 Model analysis

The model in (2.1), consists of two independent sub-models which we will analyze as follows;
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βXY ϒY

𝑡1 + 𝑡2 + 𝜅 + 𝜋𝜌 𝒁𝟏

(1 -π) ρ𝒁𝟏

mλ nλ

μX
μ𝐘𝟏𝑡1 + 𝑡2 + 𝜅 𝐘𝟏

X 𝐘𝟏 𝐙𝟏
μ𝒁𝟏

Diagram 1. Schematic diagram showing resistance to drugs 1 and 2

2.5.1 Sub model 1: Resistance to drugs 1 and 2.

From the schematic diagram, we obtain the governing equations as;

dX

dt
= mλ+ a1Y1 + (a1 + πρ)Z1 − (βY1 + µ)X

dY1

dt
= nλ+ (1− π)ρZ1 + βXY1 − b1Y1

dZ1

dt
= γY1 − b2Z1 (2.4)

Where a1 = t1 + t2 + κ, b1 = a1 + γ + µ, and b2 = a1 + ρ+ µ

2.5.2 Resistance Free Equilibrium Point(RFE), E0

To obtain the equilibrium points of the sub-model (2.4), we equate the right hand side of the sub-model system
to zero. At the Resistance Free Equilibrium point E0, there is no resistance in the population and hence
Y1 = Z1 = 0. Thus the R.F.E point is;

E0 = (X0, Y 0
1 , Z

0
1 ) = (

mλ

µ
, 0, 0)

2.5.3 Basic reproduction number, R12

The basic reproduction number is defined as the expected number of secondary cases, produced, in a completely
susceptible population, by a typical AMR-infected individual during his/her entire period of infectiousness.

The effective reproduction number R12 is defined to be the number of secondary cases caused by a single AMR-
infected patient in the presence of treatment with drug 1 and drug 2.

R12 is computed using the next generation matrix method [12]. Therefore, R12 is given by

R12 =
βX0

b1
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where where X0 = mλ
µ

Similarly the effective reproduction number R2 which is the number of secondary cases caused by a single AMR-
infected patient in the presence of treatment with drug 2 only as is discussed in model 2 is given by

R2 =
βX0

b3

where where X0 = mλ
µ

2.5.4 Existence of positive endemic equilibrium point, E∗

Theorem 2.3. There exists a unique positive endemic equilibrium point, E∗ for the sub model (2.4)

Proof. Let E∗ = (X∗, Y ∗1 , Z
∗
1 ) be the endemic equilibrium point. We can check for the existence of a positive

E∗

From the sub-model (2.4), we have

X∗ =

{
mλ+ a1Y

∗
1 +

(a1 + πρ)γY ∗1
b2

}
1

βY ∗1 + µ
and Z∗1 =

γY ∗1
b2

(2.5)

Substituting equation (2.5) into the right hand side of the second equation of system (2.4) and equating to zero,
we obtain after simplification

w2Y
∗2 + w1Y

∗ + w0 = 0 (2.6)

where

w2 =
−βµ(a1 + ρ+ γ + µ)

b2

w1 = βnλ+ βmλ+
µ {(1− π)ργ − b1b2}

b2
w0 = nλµ

This is a quadratic equation in Y ∗1 , w2 is negative and the constant term w0 is positive since all the parameters
are positive by definition. Therefore by the Descartes’ rule of signs [13], the quadratic equation (2.6) has only
one positive root irrespective of the sign of w1.

2.5.5 Stability analysis of the equilibrium points

In this section, we analyze the stability of the equilibrium points E0 and E∗. For Resistance Free Equilibrium
(R.F.E) point, E0, we have the following;

Theorem 2.4. The Resistance Free Equilibrium (R.F.E) point, E0 of the sub-model (2.4) is locally asymptotically
stable if R12 < 1 and b1b2(1−R12 > (1− π)ργ

Proof
It suffices to show that the Jacobian matrix has all its eigenvalues having negative real parts. The Jacobian of
the sub-model (2.4) at R.F.E is given by

J(E0) =

−µ a1 − βX0 a1 + πρ
0 βX0 − b1 (1− π)ρ
0 γ −b2

 . (2.7)
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The characteristic polynomial in Q (where Q is the spectral parameter) is given by |J(E0) − QI| = 0, which
yields after simplification

(−µ−Q)
[
Q2 + {b2 + b1(1−R12)}Q+ b1b2(1−R12) + πργ − ργ

]
= 0 (2.8)

From (2.8), we have

Q = −µ,Q2 + {b2 + b1(1−R12)}Q+ b1b2(1−R12)− (1− π)ργ = 0 (2.9)

Equation (2.9) above has all its roots having negative real parts provided R12 < 1 and b1b2(1−R12) > (1−π)ργ.
Thus, all the eigenvalues of J(E0) have negative real parts provided R12 < 1 and b1b2(1−R12) > (1− π)ργ.
Next we investigate the stability of the endemic equilibrium point, E∗.

Theorem 2.5. The endemic equilibrium point, E∗ is locally asymptotically stable if b1b2 > b2b5 + γc4 and
b2b5 > a1b2 + γc2

Proof. It suffices to show that the Jacobian matrix has all its eigenvalues having negative real parts. The
Jacobian matrix J(E∗) of sub-model (2.4) at E∗ is given by

J(E∗) =

−c1 a1 − b5 c2
c3 b5 − b1 c4
0 γ −b2

 .
(2.10)

Where c1 = βY ∗1 + µ, c2 = a1 + πρ, c3 = βY ∗1 , c4 = (1− π)ρ, b1 = a1 + µ+ γ, b2 = a1 + µ+ ρ and b5 = βX∗

The characteristic equation in x (where x is the spectral parameter) is obtained using the formula |J(E∗)−xI| = 0
and is given by

x3 + h2x
2 + h1x+ h0 = 0 (2.11)

where

h2 = b1 + b2 + c1 − b5
h1 = b2(b1 − b5 −

γc4
b2

) + (b2 + b1 − b5)c1 + (b5 − a1)c3

h0 = (b1 − b5)b2c1 + (b5 − a1)b2c3 − γc1c4 − γc2c3
= (b1 − b5 −

γc4
b2

)b2c1 + (b5 − a1 −
γc2
b2

)b2c3

The eigenvalues of the matrix J(E∗) are the roots of the characteristic polynomial in equation (2.11). If we can
show that all the roots of the equation (2.11) have negative real parts, then the endemic equilibrium point is
locally asymptotically stable. Equation (2.11) has all its roots having negative real parts if all its coefficients
are positive i.e h0 > 0, h1 > 0 and h2 > 0. If h2 > 0 , then we have b1 > b5 + γc4

b2
and b5 > a1 + γc2

b2
. This

further implies that b1 > b5 and b5 > a1. Consequently h1 > 0 and h0 > 0. Thus if h2 > 0, then equation
(2.11) has all its coefficients positive and hence by the Descartes’s rule of signs [13], equation (2.11) has all its
roots having negative real parts. The Jacobian matrix, J(E) therefore has all its eigenvalues having negative
real parts provided b1 > b5 + γc4

b2
and b5 > a1 + γc2

b2
.

2.6 Sub model 2: Resistance to drug 2 only

In this section we analyze the second sub model when AMR is only sensitive to drug 2. The flow diagram in
this case is given below.
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𝛾Y2

(1-𝜋) 𝜌Z2

1 − 𝑛 −𝑚 λ

μ𝐙𝟐μ𝐗 μ𝐘𝟐

mλ

βXY2

(t2+қ) 𝐘𝟐

Y2X Z2

t2+қ + 𝜋𝜌 Z2

Diagram 2. Schematic diagram showing resistance to drug 2

The equations governing the above sub model are;

dX

dt
= mλ+ a2Y2 + (a2 + πρ)Z2 − (βY2 + µ)X

dY2

dt
= (1− n−m)λ+ (1− π)ρZ2 + βXY2 − b3Y2

dZ2

dt
= γY2 − b4Z2 (2.12)

Where a2 = t2 + κ, b3 = a2 + γ + µ b4 = a2 + ρ+ µ

2.6.1 Resistance Free Equilibrium Point(RFE), E0

At RFE, Y2 = Z2 = 0, and we obtain the same Resistance Free Equilibrium, E0 as in section 2.5.2, i.e

E0 = (X0, Y 0
2 , Z

0
2 ) = (

mλ

µ
, 0, 0)

2.6.2 Existence of positive endemic equilibrium point, Σ∗

To obtain the endemic equilibrium point, we equate the right hand side of system (2.12) to zero with Y2 and Z2

assumed to be non zero.

Theorem 2.6. There exists a unique positive endemic equilibrium point, E∗ for system of equations (2.12).

Proof. Let Σ∗ = (X∗, Y ∗2 , Z
∗
2 ) be the endemic equilibrium point. We can check for the existence of a positive

Σ∗

From the sub-model (2.12), we have

X∗ =

{
mλ+ a2Y

∗
2 +

(a2 + πρ)γY ∗2
b4

}
1

βY ∗2 + µ
and Z∗2 =

γY ∗2
b4

(2.13)

Substituting (2.13) into the right hand side of the second equation of system (2.12) and equating to zero, we
obtain after simplification

−βµ(a2 + ρ+ γ + µ)

b4
Y ∗22 +

(
βKλ+ βmλ+

µ {(1− π)ργ − b3b4}
b4

)
Y ∗2 +Kλµ = 0 (2.14)
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Where K = 1− n−m

This is a quadratic equation in Y ∗2 , the coefficient of Y ∗22 is negative and the constant term is positive since all
the parameters are positive by definition. Therefore by the Descartes’ rule of signs [13], the quadratic equation
(2.14) has only one positive root irrespective of the sign of the coefficient of Y ∗2 .

2.6.3 Basic reproduction number, R2

The effective reproduction number R2 is defined to be the number of secondary cases caused by a single AMR-
infected patient in the presence of treatment with drug 1 and drug 2.

R12 is computed using the next generation matrix method [12]. Therefore, R2 is given by

R2 =
βX0

b3

where where X0 = mλ
µ

2.7 Stability analysis of the equilibrium points

In this section, we analyze the stability of the equilibrium points E0 and Σ∗. For the R.F.E point, E0, we have
the following;

Theorem 2.7. The Resistance Free Equilibrium (R.F.E) point, E0 of sub model 2.12 is locally asymptotically
stable if R2 < 1 and b3b4(1−R2 > (1− π)ργ

Proof. It suffices to show that the Jacobian matrix has all its eigenvalues having negative real parts. The
Jacobian matrix of the sub-model 2 at R.F.E is given by

J(E0) =

−µ a2 − βX0 a2 + πρ
0 βX0 − b3 (1− π)ρ
0 γ −b4

 . (2.15)

The characteristic polynomial in V (where V is the spectral parameter)is given by

|J(E0)− V I| = 0 (2.16)∣∣∣∣∣∣
−µ− V a2 − βX0 a2 + πρ

0 βX0 − b3 − V (1− π)ρ
0 γ −b4 − V

∣∣∣∣∣∣ = 0. (2.17)

from which we obtain after simplification

(−µ− V )
[
V 2 + {b4 + b3(1−R2)}V + b3b4(1−R2) + πργ − ργ

]
= 0 (2.18)

From (2.18), we have

V = −µ (2.19)

or

V 2 + {b4 + b3(1−R2)}V + b3b4(1−R2)− (1− π)ργ = 0 (2.20)

Equation (2.20) above has all its roots having negative real parts provided R2 < 1 and b3b4(1−R2) > (1−π)ργ.
Thus, all the eigenvalues of J(E0) have negative real parts provided R2 < 1 and b3b4(1−R2) > (1− π)ργ
Next we investigate the stability of the endemic equilibrium point, Σ∗.
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Theorem 2.8. The endemic equilibrium point, Σ∗ is locally asymptotically stable if b3b4 > b4d2 + γd5 and
b4d2 > a2b4 + γd3

Proof.

It suffices to show that the Jacobian matrix has all its eigenvalues having negative real parts. The Jacobian
matrix, J(Σ∗) of sub model (2.12) is given by

J(Σ∗) =

−d1 a2 − d2 d3
d4 d2 − b3 d5
0 γ −b4

 .
(2.21)

Where d1 = βY ∗2 + µ, d3 = a2 + πρ, d4 = βY ∗2 , d5 = (1− π)ρ, b3 = a2 + µ+ γ, b4 = a2 + µ+ ρ and d2 = βX∗

The characteristic equation in x (where x is the spectral parameter) is obtained from |J(E∗) − xI| = 0 and is
given by

x3 + p2x
2 + p1x+ p0 = 0 (2.22)

where

p2 = b3 + b4 + d1 − d2
p1 = (b3 − d2)b4 + (b3 + b4 − d2)d1 + (d2 − a2)d4 − γd5
p0 = (b3 − d2)b4d1 + (d2 − a2)b4d4 − γd1d5 − γd3d4

= (b3b4 − b4d2 − γd5)d1 + (b4d2 − a2b4 − γd3)d4

The eigenvalues of (2.21) are the roots of the characteristic equation (2.22). If we can show that all the roots of
the equation (2.22) have negative real parts, then the endemic equilibrium point is locally asymptotically stable.
Equation (2.22) has all its roots having negative real parts if all its coefficients are positive i.e p0 > 0, p1 > 0 and
p2 > 0. p0 > 0, if b3 > d2 + γd5

b4
and d2 > a2 + γd3

b4
. This further implies that b1 > b5 and b5 > a1. Consequently

p1 > 0 and p0 > 0. Thus, if p0 > 0, then equation (2.22) has all its coefficients positive and hence by the
Descartes’s rule of signs [13], equation (2.22) has all its roots having negative real parts. The Jacobian matrix,
J(Σ∗) therefore has all its eigenvalues having negative real parts provided b3 > d2 + γd5

b4
and d2 > a2 + γd3

b4
.

3 Numerical Simulation

We carry out numerical simulations to illustrate the long term dynamics of the systems 2.5.1 and 2.6 using
Python. The parameter value estimation are in the Table 2 and have earlier been defined in the text.

4 Discussion

4.1 Model 1

Effects of force of infection, β on the resistance

Increasing the transmission rate β increases the proportion of patients with bacteria strain sensitive to drugs
1 and 2 up to a certain level and then the sensitivity to drugs 1 and 2 is lost as the number of patients with
strains of bacteria sensitive to drugs 1 and 2 decreases.the loss of sensitivity to treatment by the two drugs 1
and 2 can be attributed to the fact that treatment clears these sensitive bacteria thereby exposing patients to
be colonized by bacteria with the resistant strain.
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Table 2. Parameter Values used in the simulation

Parameters Unit Value (Range) Source

β days−1 1 [14] [15]

γ days−1 0.1 [11]

µ days−1 0.1 [14]

κ days−1 0.03 [14]

λ days−1 0.1 [3]

π - 0.25 [11]

t1 days−1 0.2-0.05 Estimated

t2 days−1 0.1-0.03 Estimated

ρ days−1 0.05 [11]

m - 0.05 [14]

n - 0.7 [15]

Fig. 2. Sensitivity to the force of infection β

Effects of use of drugs, t1 + t2 on the resistance

Treatment of patients with drugs 1 and 2 reduces the duration of clearance of bacteria strains sensitive to drugs
1 and 2. Increasing the rate of treatment with drugs 1 and 2 increases the number of patients with strains
of bacteria sensitive to drugs 1 and 2 up to a certain part and then the number decreases significantly. This
decrease is attributed to the colonization by strains of of the resistant bacteria.

4.2 Model 2

Effects of force of infection, β on the resistance

Increasing the transmission rate beta increases the number of patients colonized with bacteria strain sensitive
to drugs 2 up to a certain level and then the number reduces. Treatment with drug 2 clears strains of sensitive
bacteria making it possible for the patient to be colonized by bacteria resistant to drug 1.
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Fig. 3. Sensitivity to t1 + t2

Fig. 4. Sensitivity to force of infection, β

Effects of use of one drug, t2 on the resistance

Increased treatment with drug 2 increases the number of patients sensitive to it up to a certain level then reduces.
Treatment with drug 2 clears the sensitive bacteria and patients begin to be colonized by the resistant bacteria.
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Fig. 5. Sensitivity to t2

5 Conclusion

When treating patients with a drug that is sensitive to an antibiotic t1 + t2, there is a possibility of the patient
developing resistance. Increase in the treatment rate by multiple drugs results into an increase in the resistance.
Therefore the number of drugs used in treating an infection should be minimized as much as is possible since
this is one of the routes of transmission of resistance. Similarly, when the force of infection β through interaction
with the healthcare providers increases, the resistance also increases. Healthcare provider-to-patient interaction
should therefore be reduced for effective control of resistance in hospitals.
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