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DNA-binding protein (DBP) is a protein with a special DNA binding domain that is
associated with many important molecular biological mechanisms. Rapid development
of computational methods has made it possible to predict DBP on a large scale; however,
existing methods do not fully integrate DBP-related features, resulting in rough prediction
results. In this article, we develop a DNA-binding protein identification method called KK-
DBP. To improve prediction accuracy, we propose a feature extraction method that fuses
multiple PSSM features. The experimental results show a prediction accuracy on the
independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.
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INTRODUCTION

Proteins are spatially structured substances formed by the complex folding of amino acids into
polypeptide chains through dehydration and condensation. Proteins are the material basis of life
and they are required for every vital activity. Given the vast number of proteins and their roles,
protein classification has always been central to the study of proteomics. DNA-binding proteins
(DBP) are a very specific class of proteins whose specific binding to DNA guarantees the
accuracy of biological processes and whose nonspecific binding to DNA guarantees the high
efficiency of biological processes (Gao et al., 2008). DNA-protein interactions, such as gene
expression and transcriptional regulation, occur ubiquitously throughout the biological
activities of living bodies (Liu et al., 2019; Shen and Zou, 2020; Xu et al., 2021a). All of
these interactions are tightly linked to DBP, where the fraction of DNA-binding proteins in
eukaryotic genes is approximately 6–7%.

The role of DBP in biological activities has gained a lot of attention in recent years, as various large
genome projects and research on DBP identification have rapidly progressed. However, identifying
DBP using traditional biochemical analyses is inefficient and expensive (Li and Li, 2012; Xu et al.,
2021b). In recent years, machine learning methods have been widely used in the field of
bioinformatics (Jiang et al., 2013; Geete and Pandey, 2020; Tao et al., 2020; Wang et al., 2021a;
Long et al., 2021). Using machine learning methods for DNA-binding protein identification can
enable rapid and accurate prediction of DBP from a large number of proteins, while drastically
reducing prediction costs (Fu et al., 2018). Because the number of proteins is large and promiscuous,
overcoming every classification prediction problem with one method is difficult, if not impossible
(Wang et al., 2021b). Therefore, wemust continue to propose effective methods for high-quality DBP
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prediction and identification in order to understand the
significance of more vital activities and to promote further
progress within the bioinformatics field.

Feature extraction methods can be broadly classified into two
categories: those based on structural information and those based on
sequence information (Kim et al., 2004;Meng and Kurgan, 2016; Qu
et al., 2019; Ao et al., 2021a; Lv et al., 2021a; Liu et al., 2021; Tang
et al., 2021; Wu and Yu, 2021); (Stawiski et al., 2003) proposed a
model based on protein structure that utilises a neural network
approach incorporating information like residue and hydrogen bond
potential. Liu et al. (Liu et al., 2014) developed amodel called IDNA-
prot|dis, based on the pseudo amino acid composition (PseAAC) of
protein sequence information. iDNAPro-PseAAC (Liu et al., 2015),
which uses a similar feature extraction method, adopts a prediction
model based on a support vector machine to predict DBP. IDNA-
prot (Lin et al., 2011) was constructed based on physicochemical
properties and random forest (RF) classification. In addition, a
support vector machine model based on k-mer and
autocovariance transformation was proposed by Dong et al. (Liu
et al., 2016). Local-DPP (Wei et al., 2017a) used random forests
based on PSE-PSSM features to predict DBP.MK-FSVM-SVDD is a
multiple kernel SVM prediction tool based on the heuristic kernel
alignment developed byDing et al. (Zou et al., 2021) to identify DBP.
In addition, two models for predicting DBP were developed: DNA-
prot (Kumar et al., 2009) and DNAbinder (Kumar et al., 2007). Lu
et al. (Lu et al., 2020) developed a predictionmodel forDBP based on
support vector machines using Chou’s five-step rule.

Currently, a number of DNA-binding protein prediction
methods based on different strategies exist. Unfortunately, most
of these DBP prediction methods fail to extract features based on
evolutionary information, so their robustness and prediction
accuracy have much room for improvement. To address these
issues, more research is needed with regard to feature extraction
and the selection of classifiers (Zuo et al., 2017; Zheng et al., 2019).

In this paper, we propose a new DNA-binding protein
prediction method called KK-DBP. We first obtained the
position specificity score matrix (PSSM) of the protein
sequence for each sample used to train the model. PSSM
information was then used to extract three features of each
sample: PSSM-COMPOSITION (Zou et al., 2013), RPSSM
(Ding et al., 2014) and AADP-PSSM (Liu et al., 2010), which
were combined to form the initial feature set of each sample. The
final initial feature set of each sample reached 930 dimensions. To

avoid feature redundancy and improve prediction accuracy, KK-
DBP used the max relevance max distance (MRMD) (Zou et al.,
2016) feature ordering method to establish the optimal feature
subset for model training. Finally, a new DBP prediction model
was constructed using the random forest learning method. The
complete method framework is shown in Figure 1:

MATERIALS AND METHODS

Dataset
The dataset is one of the key factors determining the quality of the
predictive model and is the cornerstone of machine learning
algorithm learning, which directly affects the final effect of the
model, so dataset construction is meticulous and complex (Liang
et al., 2017; Su et al., 2021). Other researchers have proposed
many prediction models for DNA-binding proteins that have
been pertinent to objectively comparing existing data. In the
present study, we have used protein sequences from the PDB
database as our training dataset and test dataset. Table 1 shows
the contents of the dataset:

The training set PDB1075 contained 525 DNA-binding
proteins and 550 non-DNA-binding proteins, and the test set
PDB186 contained 93 DNA-binding proteins and 93 non-DNA-
binding proteins. The dataset construction rules are as follows:

S � S+ ∪ S− (1)

where S+ is the positive subset containing only DNA-binding
proteins, and S− is the negative subset containing only non-DNA-
binding proteins.

Feature Extraction
Feature extraction is very important to modeling sequence
classifications, which directly affect the accuracy of predictive
models (Zhang et al., 2020a; Lv et al., 2021b). Evolutionary

FIGURE 1 | Framework of KK-DBP. Step A: Construction of Position Specificity Score Matrices for protein sequences. Step B: Extraction of three features: AADP-
PSSM, PSSM-COMPOSITION, and RPSSM as the initial feature set for a single sample. Step C: Feature ranking and selection using the MRMD algorithm. Step D:
Identification of DBP using random forests.

TABLE 1 | benchmark datasets used in this paper.

Data set PDB1075 PDB186

Positive 525 93
Negative 550 93
Total 1075 186
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information is among the most important information we
have regarding protein function and genetics (Zuo et al.,
2014). Position specificity score matrices (PSSM) can
intuitively display protein evolutionary information. Thus,
the feature extraction method based on PSSM is widely used
in protein classification.

Position specificity Score Matrices
In 1997, Altschul et al. (Altschul et al., 1990) proposed the
BLAST algorithm. When given a protein sequence, BLAST can
represent the evolutionary information of a protein by aligning
it with data in a specific database and extracting a position
specific score matrix (PSSM). To improve the prediction
accuracy of proteins, our method predominantly utilises
protein evolution information to extract features. For the
training and test sets used in our method, the PSSM matrices
for each sequence were generated by three PSI-BLAST iterations
with an E-value of 0.001. The PSSM is a matrix of size L × 20,
where L is the length of the protein sequence and 20 is the
number of amino acids. Coordinates (i, j) in the position
specificity score matrix. (PSSM) represent the log score for
the amino acid at position i being replaced by the log score
of the amino acid at position j. When the coordinate value is
greater than 0, it indicates that during the alignment, there is as
large probability that the amino acid at the corresponding
position in the sequence is mutated to 20 native amino acids.
The higher the value is when the number is a negative integer,
the less prone it is to alteration. This numerical pattern indicates
the probability of the mutation of a residue in a given protein
sequences. Its matrix form behaves as follows:

PSSML×20 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ p1,1 p1,2 / p1,20

p2,1 p2,2 / p2,20

« « / «
pL,1 pL,2 / pL,20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Reduced Position Specificity Score Matrices and
Position Specificity Score Matrices-Composition
PSSM-COMPOSITION is generated by adding the same amino
acid rows in the original PSSM matrix, dividing by the sequence
length and scaling to [-1,1]. For each protein sequence PSSM
matrix, a 400-dimensional vector feature{d1, d2, d3, ..., d400} is
generated.

Li et al. (Li et al., 2003) first proposed that 10 might be the
minimum number of residue types (letters) needed to construct a
reasonably folded model. Reduced PSSM (RPSSM) borrowed this
idea and simplified the original PSSM matrix with form L × 20 to
one with form L × 10.

a1a2 . . . aL is a protein in the dataset, ai is assumed to be
mutated to s, and pi,s represents the pseudo composition
component of amino acid ai. The pseudo composition of all
amino acids in protein a1a2 . . . aL is defined as:

Ds � 1
L
∑L
i�1

⎛⎝pi,s − 1
L
∑L
i�1
pi,s

⎞⎠2

s � 1, 2, ...10; i � 1, 2, ..., L

(3)

The dipeptide composition was later incorporated into
the RPSSM method in order to overcome its inability to
extract full sequence information. Assuming that ai+1 is
replaced by ‘t’, the dipeptide pseudocomposition of aiai+1
is defined as:

xi,i+1 �
(pi,s + pi+1,t)2

2
s, t � 1, 2, . . . 10; i � 1, 2, . . . , L − 1 (4)

where xi,i+1 represents the difference of pi,s and pi+1,t from their
mean values. Finally, because each protein sequence in the dataset
will consist of the pseudo composition of all of its dipeptides, we
can generate a 110-dimensional vector feature of RPSSM, defined
as follows:

Ds,t � 1
L − 1

∑L−1
i�1

xi,i+1 � 1
L − 1

∑L−1
i�1

(pi,s + pi+1,t)2
2

s, t

� 1, 2, . . . 10 (5)

AADP-Position Specificity Score Matrices
A protein’s structure is closely related to its amino acid
composition. For every amino acid sequence in the dataset,
AADP-PSSM produces a vector with dimensions 20 + 400 �
420. AADP-PSSM is divided into two parts. The amino acid
composition is first extracted from its PSSM matrix: the average
value of the PSSM matrix column of length 20 is called AAC-
PSSM, where xi is the type of amino acid in the PSSMmatrix and
represents the average fraction of amino acid mutations during
evolution. It is defined as follows:

xj � 1
L
∑L
i�1

pi,j (j � 1, 2, . . . , 20) (6)

The traditional dipeptide composition was later extended to
PSSM and represented with DPC-PSSM to avoid the loss of
information due to an X in the protein, which was defined as a
vector of 400 dimensions:

yi,j � 1
L − 1

∑L−1
K�1

Pk,i × Pk+1,j (1≤ i, j≤ 20) (7)

Feature Selection
Feature redundancy or dimensionality disasters often occur
during feature extraction. Feature selection not only reduces
the risk of overfitting but also improves the model’s
generalization ability and computational efficiency (Guo et al.,
2020; Yang et al., 2021a; Ao et al., 2021b; Zhao et al., 2021). In the
present paper, we use the max relevance max distance (MRMD)
feature selection method to reduce the dimensions of the initial
feature set (He et al., 2020).

In MRMD, feature selection is based primarily on the
correlation between the subset and the target vector and the
redundancy of the subset. When measuring correlations,
MRMD used the Pearson correlation coefficient, which is
defined as:
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PCC( �X, �Y)
�

1
N−1∑N

k�1(xk − 1
N∑N

k�1 xk)(yk − 1
N∑N

k�1 yk)���������������������
1

N−1∑N
k�1 (xk − 1

N∑N
k�1 xk)2√ ���������������������

1
N−1∑N

k�1 (yk − 1
N∑N

k�1 yk)2√ (8)

where �X and �Y are two vectors, xk and yk are the kth elements in
�X and �Y, and N is the total sample number. The initial feature set
constructed using this method is F � {f1, f2, f3, . . . , f930}. The
maximum correlation value maxMRi between feature fi and
target class vector C is defined as:

maxMRi �
∣∣∣∣∣∣∣PCC(fi

→
, Ci

→)∣∣∣∣∣∣∣(1≤ i≤M) (9)

where M is the initial feature set dimension, fi
→

is the vector
composed of the ith feature of each instance, and Ci

→
is the vector

composed of the target category of each instance.
When evaluating the similarity between two vectors,

MRMD uses the distance functions Euclidean distance
(ED), cosine similarity (COS) and Tanimoto coefficient
(TC) to measure:

ED( �X, �Y) �

�����������∑N
k�1

(xk − yk)2√√
(10)

COS( �X, �Y) � ∑N
k�1 xkyk������∑N

k�1 x
2
k

√
·

������∑N
k�1 y

2
k

√ (11)

TC( �X, �Y) � ∑N
k�1 xkyk∑N

k�1 x
2
k +∑N

k�1 y
2
k −∑N

k�1 xkyk

(12)

We use the mean of the three above as the maximum distance
maxMDi for feature i:

EDi � 1
M − 1

∑ED(fi

→
, fk

�→)(1≤ k≤M,k ≠ i) (13)

COSi � 1
M − 1

∑COS(fi

→
, fk

�→)(1≤ k≤M,k ≠ i) (14)

TCi � 1
M − 1

∑TC(fi

→
, fk

�→) (1≤ k≤M, k ≠ i) (15)

maxMDi � 1
3
(EDi + COSi + TCi) (1≤ i≤M) (16)

The MRMD values of all the features are calculated with the
above two constraints. The PageRank algorithm is used to sort the
initial feature set from high importance. One feature is added to
the feature subset at a time and is used to train the model to
determine which subset is the best.

Classification Algorithm
Protein prediction is usually described as a binary classification
problem (Zhai et al., 2020; Zhang et al., 2021; Zulfiqar et al.,
2021). We selected the random forest learning method for
prediction modelling in the present study. Because the random
forest method randomly extracts features and samples during
construction of a decision tree set, it is more suitable to addressing
the problem of high feature dimensions. By using
RandomizedSearchCV and GridSearchCV for parameter

selection, the random forest model constructed finally includes
800 subtrees, in which each tree has no limit, and a single decision
tree is allowed to use all features. The maximum depth of each
decision tree is 50.

RESULTS

Measurements
We selected four different performance measures, accuracy
(ACC), specificity (SP), sensitivity (SN) and Matthew’s
correlation coefficient (MCC), to evaluate the methodology
used by this study to demonstrate the predictive ability of the
model used (Wei et al., 2014; Wei et al., 2017b; Manavalan et al.,
2019a; Manavalan et al., 2019b; Jin et al., 2019; Su et al., 2019; Li
et al., 2020a; Liu et al., 2020a; Ao et al., 2020; Li et al., 2020b;
Zhang et al., 2020b; Yu et al., 2020; Zhao et al., 2020; Wang et al.,
2021c; Zhu et al., 2021). The equations for determining these four
parameters are shown below:

ACC � TN + TP

TN + FP + FN + FP
× 100% (17)

MCC � TP × TN − FP × FN�������������������������������������������(TP + FN) × (TN + FN) × (TP + FP) × (TN + FP)√
(18)

SN � TP

TP + FN
× 100% (19)

SP � TN

TN + FP
× 100% (20)

Where TP represents positive samples predicted to be positive by
the model, FP represents negative samples predicted to be
positive by the model, and TN represents negative samples
predicted to be negative by the model. FN represents positive
samples predicted to be negative by the model. Removing the
above four performance measures, the ROC curve will also be
used to assess the effect of our predictions.

Experimental Results and Analysis
Performance of Different Features on Training Set
PDB1075
A large amount of information on homologous proteins is
contained in evolutionarily informative features based on the
PSSM matrix. In our method, we selected the evolutionary
information-based features PSSM-COMPOSITION, RPSSM,
and AADP-PSSM for experimentation. To better show the
efficiency of prediction models under different combinations
of features, the receiver operating characteristic (ROC) curve
was used for analysis. The closer the curve is to the y-axis, the
better the classification results will be. The area under the
curve (AUC) is defined as the area under the ROC curve
enclosed by the coordinate axis. The closer the area is to 1, the
better the prediction model will be Random forests can
achieve better prediction performance when dealing with
high-dimensional features. In this section, we use random
forests with default hyperparameters on the training set
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pdb1075 for 10-fold cross validation of different feature
fusion schemes and find out the feature fusion method that
can maximize the area of AUC. As shown in Figure 2, the
prediction performance of RF was the best after fusing the
three features, and its AUC area reached 0.963. In addition, we
also tested the predictive performance of SVM and KNN
under different feature fusion schemes, and their optimal
feature fusion schemes had AUC areas of 0.828 and 0.790,
respectively. The ROC curve details of SVM and KNN are
given in Figure 1 and Figure 2 of supplementary material
respectively.

Performance After Feature Selection
For the 930-dimensional features of the initial vector set, we
ranked all features from high to low based on MRMD scores.
After obtaining the final feature ranking results, we took the first
feature as the feature subset and utilised random forest to check
the performance of the selected feature subset in 10-fold cross
validation on PDB1075. Subsequently, we added one feature in
the feature subset, one at a time, according to the feature sorting
order. Then we repeated the above process until all the features in
the initial feature set were included in the feature subset. Finally,
we determined the best predictive accuracy and the optimal
feature subset. The results are shown in Figure 3. The feature
subset achieves the best accuracy when it contains 267-
dimensional features, so the optimal feature subset we used for
training models is 267-dimension. The optimal feature subset
contains 98-dimensional AADP-PSSM features, 142-dimensional
PSSM-COMPOSITION features, and 27-dimensional RPSSM
features. The details of the optimal feature subset are given in
the supplementary materials. From the distribution of the
optimal feature subset, it can be found that the distribution
difference of amino acid pairs is the key to identify DBP from
massive proteins.

Performance of Different Classification Algorithms
To determine the prediction model with the best performance, we
put the best feature subset into four powerful classification
algorithms with default hyperparameters, KNN, SVM, RF and
naïve Bayes, and we used 10-fold cross validation to compare
performance. Experimental results show that the random forest
method demonstrates the best classification performance
(Figure 4).

We use ACC, Sn, SP, MCC and AUC to evaluate the
performance. As shown in Figure 4, the five indicators of
KNN are 78.6, 76.8, 80.1%, 0.571 and 0.785, respectively. The
ACC, Sn, SP, MCC and AUC of SVM were 81.6, 88.2, 75.4%,
0.641 and 0.812, respectively. The ACC, Sn, SP, MCC and AUC of

FIGURE 2 | ROC curves with different combinations of features on
PDB1075.

FIGURE 3 | Prediction accuracy curve of feature subset.
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Naïve Bayes were 73.3, 71.8, 74.7%, 0.465 and 0.789, respectively.
Finally, the performance of RF in the above evaluation indexes are
86.9, 89.6, 84.5%, 0.741 and 0.941, respectively. The experimental
results show that RF can yield better prediction results, which
proves that RF is the best classification algorithm for Establishing
DNA-binding protein prediction model.

Performance of DifferentMethods on Test Set PDB186
To evaluate the generalization ability of the prediction model
proposed in this paper, we tested the model independently using
dataset PDB186. Table 2 compares the performance of this study
to other prediction methods on the dataset PDB186.

From Table 2, we can see that on the independent test set
PDB186, the ACC, SN, SP of KK-DBP reach 81.2, 97.8 and 64.5%,
respectively. In terms of prediction accuracy, KK-DBP is higher
than other existing methods. Compared with the current method
with the highest accuracy Local-DPP, KK-DBP was improved by
2.2 and 5.3% on the ACC and SN, respectively. SP is slightly lower

than Local-DPP and IDNA-Prot. The results of independent
verification experiments confirm that KK-DBP has reliable
predictive performance and can recognize DBP from a large
number of unknown proteins more accurately than existing DBP
recognition methods.

DISCUSSION AND CONCLUSION

A large number of studies have shown that the classification of
DNA-binding proteins has important theoretical and practical
significance for future genomics and proteomics research. This
paper proposes a DNA-binding protein predictionmethod, called
KK-DBP, that is based on multi-feature fusion and improves the
feature extraction method in DNA-binding protein prediction.
This method uses PSSM features that contain dipeptide
composition information for multi-feature fusion to construct
the initial feature set, and it obtains the optimal feature subset for
modeling by the maximum correlation maximum distance
method. Finally, PDB186 was used as an independent test to
further evaluate the effectiveness of our method. On the
independent test set, the prediction accuracy, sensitivity and
specificity of the model reached 81.2, 97.8 and 64.5%,
respectively. KK-DBP surpasses existing methods in prediction
accuracy, confirming that our method can identify DBP more
accurately than existing methods.

Although our method improves the prediction accuracy of
DNA-binding proteins, we still do not know how to construct a
better feature extraction algorithm based on sequence and
structure information. Therefore, our future research direction
will be towards finding more distinguishable feature extraction
algorithms (Ding et al., 2016; Zeng et al., 2020a; Yang et al., 2021b;

FIGURE 4 | Performance of training set PDB1075 on different classifiers.

TABLE 2 | Performance of this method and other existing methods on PDB186.

Methods ACC (%) MCC SN (%) SP (%)

IDNA-Prot|dis 72.0 0.445 79.5 64.5
DBPPred 76.9 0.538 79.6 74.2
IDNA-Prot 67.2 0.344 67.7 66.7
DNA-Prot 61.8 0.240 69.9 53.8
DNAbinder 60.8 0.216 57.0 64.5
iDNAPro-PseAAC 71.5 0.442 82.8 60.2
Kmer1+ACC 71.0 0.431 82.8 59.1
Local-DPP 79.0 0.625 92.5 65.6
SVM-based method 75.3 0.560 96.8 53.8
KK-DBP 81.2 0.661 97.8 64.5
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Wang et al., 2021d; Jin et al., 2021) and more suitable classifiers
(Ding et al., 2019; Ding et al., 2020a; Ding et al., 2020b; Yang et al.,
2021c; Guo et al., 2021) and prediction models (Liu et al., 2020b;
Zeng et al., 2020b; Chen et al., 2021; Xu et al., 2021c; Song et al., 2021;
Xiong et al., 2021) to better recognise DNA-binding proteins.
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