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ABSTRACT 
 
The GFSAD30m cropland extent map has been recently produced at a spatial resolution of 30m as 
a part of NASA MEaSUREs’ Program Global Food Security Data Analysis (GFSAD) project. 
Accuracy assessment of this GFSAD30m cropland extent map was initially performed using an 
assessment strategy involving a simple random sampling (SRS) design and an optimum sample 
size of 250 for each of 72 different regions around the world. However, while statistically valid, this 
sampling design was not effective in regions of low cropland proportion (LCP) of less than 15% 
cropland area proportion (CAP).  
The SRS sampling resulted in an insufficient number of samples for the rare cropland class due to 
low cropland distribution, proportion, and pattern. Therefore, given our objective of effectively 
assessing the cropland extent map in these LCP regions, the use of an alternate sampling design 
was necessary. A stratified random sampling design was applied using a predetermined minimum 
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number of samples followed by a proportional distribution (i.e., SMPS) for different cropland 
proportion regions to achieve sufficient sample size of the rare cropland map class and appropriate 
accuracy measures.  
The SRS and SMPS designs were compared at a common optimum sample size of 250 which was 
determined using a sample simulation analysis in ten different cropland proportion regions. The 
results demonstrate that the two sampling designs performed differently in the various cropland 
proportion regions and therefore, must be selected according to the cropland extent maps to be 
assessed. 
 

 
Keywords: Accuracy assessment; Simple Random Sampling (SRS); Cropland Area Proportion (CAP); 

Low Cropland Proportion (LCP); Stratified Minimum Proportional Sampling (SMPS). 
 
1. INTRODUCTION 
 
The cropland regions of different continents 
distributed around the world exhibit different 
cropland proportions, cropping patterns, spatial 
extents, and heterogeneity due to their climatic, 
topographic, and ecological conditions. The 
cropland maps of various cropland proportion 
regions are important for cropland monitoring 
and modeling, cropland change analysis, 
resolving food security issues, and improving 
crop productivity in different continents [1]. To 
accomplish these objectives, cropland maps of 
various cropland regions have been generated 
continuously and effectively using remote 
sensing data at different spatial resolutions [1-4]. 
The GFSAD30m cropland extent map is one of 
the three GFSAD (Global Food Security Data 
Analysis) cropland extent maps (produced at 30, 
250, and 1000 meter resolutions) which has 
been generated for various cropland proportion 
regions distributed around the world from satellite 
imagery and effective classification algorithms  
[5-18]. 
 

The accuracy assessment of the GFSAD30m 
cropland extent map was initially performed 
using an assessment strategy involving a simple 
random sampling (SRS) design and an optimum 
sample size of 250 for 72 cropland regions 
around the world [19]. The results of this 
accuracy assessment reported accuracy 
measures in the form of error matrices for each 
region (e.g., overall, user’s, and producer’s 
accuracy) [20]. However, while statistically valid, 
this sampling design was ineffective in regions of 
low cropland proportion (LCP) of less than 15% 
cropland area proportion (CAP). The SRS design 
resulted in an insufficient number of samples 
when the cropland class was rare due to low 
cropland distribution, proportion, and pattern [21]. 
As a result, the error matrices generated with 
such an insufficient distribution and allocation of 
samples for the rare cropland map class reported 

accuracy measures in the LCP regions that were 
not useful for our analysis [22-27]. Therefore, 
given our objective of effectively assessing the 
cropland extent maps in these LCP regions, the 
use of an alternate sampling design was 
desirable and necessary.  
 
Many researchers have expressed opinions on 
using different sampling designs (e.g., simple 
random sampling, stratified, and systematic 
unaligned sampling) to be used for assessing 
thematic map accuracy [20-21,28-32]. While 
different sampling approaches have been studied 
for achieving appropriate accuracy results in 
different landscapes, their effective use still 
needs to be established for various cropland 
regions around the world [33]. Determination of 
the cropland area proportion (CAP) of various 
cropland regions aids in defining an effective 
sampling area for applying probability-based 
sampling designs characterized either by simple 
random or stratified protocols for selecting the 
samples [21]. The probability-based simple 
random sampling (SRS) design, while statistically 
valid, results in an insufficient sample size of the 
rare cropland map class because each sample 
area has equal probability of selection and there 
is not enough area covered by cropland in the 
LCP regions. Therefore, an alternate probability-
based sampling design imposed within strata 
defined by the map classes combined with a 
predetermined minimum sample size is one 
method to provide sufficient samples and useful 
accuracy measures of these rare cropland maps 
[21,34].  

 
A minimum of 50 samples for each map category 
has been recommended as sufficient to generate 
statistically valid and meaningful accuracy 
measures [20]. This predetermined minimum 
sample size of 50 can be allocated to each 
stratum or map class with additional samples 
allocated proportionally to the cropland and non-
cropland area depending on the total sample size 



and the cropland regions to be assessed [34]. 
The literature suggested that a larger sample 
size be implemented for assessing cropland 
regions that have between 25-75% cropland and 
that a smaller sample size would be enough to 
efficiently assess the cropland maps in areas 
with very high or very low cropla
[33]. However, in most cropland assessments, 
mostly small samples sizes that are sparsely 
distributed have been used resulting in an 
ineffective assessment of the cropland extent 
maps of various cropland regions [4,35]. A larger 
sample size can achieve more appropriate and 
useful accuracy of the cropland extent maps [36]. 
However, even a larger total sample size can 
result in insufficient samples and ineffective 
accuracies of the rare cropland map class if the 
samples are not distributed effec
than selecting sample size and strategy by the 
map complexity, the cropland distribution and 
proportion of each cropland region must be 
carefully considered to choose an optimum 
sample size to efficiently assess the cropland 
extent maps. Therefore, an optimum sample size 
must be chosen using a sample simulation 
analysis based on a Monte Carlo method for an 
effective and useful assessment of the cropland 
extent maps of various cropland regions 
[19,37,38]. 
 

 
Fig. 1. The location of ten regions selected in the entire world with different crop proportions 

along with the distribution of cropland areas of GFSAD30m 
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and the cropland regions to be assessed [34]. 
literature suggested that a larger sample 

size be implemented for assessing cropland 
75% cropland and 

that a smaller sample size would be enough to 
efficiently assess the cropland maps in areas 
with very high or very low cropland proportion 
[33]. However, in most cropland assessments, 
mostly small samples sizes that are sparsely 
distributed have been used resulting in an 
ineffective assessment of the cropland extent 
maps of various cropland regions [4,35]. A larger 

an achieve more appropriate and 
useful accuracy of the cropland extent maps [36]. 
However, even a larger total sample size can 
result in insufficient samples and ineffective 
accuracies of the rare cropland map class if the 
samples are not distributed effectively. Rather 
than selecting sample size and strategy by the 
map complexity, the cropland distribution and 
proportion of each cropland region must be 
carefully considered to choose an optimum 
sample size to efficiently assess the cropland 

refore, an optimum sample size 
must be chosen using a sample simulation 
analysis based on a Monte Carlo method for an 
effective and useful assessment of the cropland 
extent maps of various cropland regions 

This paper evaluates two sampling des
perform an effective assessment of the 
GFSAD30m cropland extent maps of the various 
cropland proportion regions. The first is the 
simple random sampling (SRS) approach. The 
second is an alternate sampling design which is 
primarily a stratified design using a 
predetermined minimum of 50 samples per strata 
and a proportional allocation of the remaining 
total samples (SMPS). The SRS and SMPS 
designs were evaluated by comparing summary 
plots and detailed error matrices of the sample 
size and accuracy measures of the rare cropland 
map class.  
 

2. STUDY AREA 
 

The study area comprises ten different cropland 
proportion regions selected from the 72 regions 
located around the world in which the 
GFSAD30m cropland extent map was initially 
assessed using the SRS design and an optimum 
sample size of 250 [19,39,40]. Five of these 
study sites were purposely selected from the Low 
Cropland Proportion (LCP) regions and the other 
five were randomly selected from rest of the 72 
regions. The location of the ten selected cr
proportion regions for this study are depicted in 
Fig. 1. 

Fig. 1. The location of ten regions selected in the entire world with different crop proportions 
along with the distribution of cropland areas of GFSAD30m cropland map
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This paper evaluates two sampling designs to 
perform an effective assessment of the 
GFSAD30m cropland extent maps of the various 
cropland proportion regions. The first is the 
simple random sampling (SRS) approach. The 
second is an alternate sampling design which is 

gn using a 
predetermined minimum of 50 samples per strata 
and a proportional allocation of the remaining 
total samples (SMPS). The SRS and SMPS 
designs were evaluated by comparing summary 
plots and detailed error matrices of the sample 

asures of the rare cropland 

The study area comprises ten different cropland 
proportion regions selected from the 72 regions 
located around the world in which the 
GFSAD30m cropland extent map was initially 

design and an optimum 
40]. Five of these 

study sites were purposely selected from the Low 
Cropland Proportion (LCP) regions and the other 
five were randomly selected from rest of the 72 
regions. The location of the ten selected cropland 
proportion regions for this study are depicted in 

 

Fig. 1. The location of ten regions selected in the entire world with different crop proportions 
cropland map 
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3. MATERIALS AND METHODS 
 
This section describes the datasets and methods 
that were used to evaluate two sampling designs 
with respect to the spatial distribution and 
allocation of samples for each map class of the 
cropland map in the ten selected regions. 
 

3.1 Datasets 
 
The ten selected study regions of the 
GFSAD30m cropland extent map which has 
been recently produced as a part of NASA 
MEaSUREs’ (Making Earth System Data 
Records for Use in Research Environments) 
GFSAD project at 30m spatial resolution for the 
entire world were evaluated using two different 
sampling designs. Separate reference datasets 
were necessary and were collected using the two 
different sampling designs from Google Earth 
imagery and existing cropland maps (e.g., 
Cropland Data Layer of the United States) to 
assess the ten regional GFSAD30m cropland 
extent maps. The first reference dataset was 
collected as a part of an initial assessment of the 
GFSAD30m cropland map using the SRS 
sampling design and an optimum sample size of 
250 for the 72 cropland regions around the world 
[19,39]. The second reference dataset was 

collected using an alternate sampling design 
(i.e., SMPS) and simulated sample sizes from 50 
to 300 only for the ten study cropland regions. 
 

3.2 Methods 
 
This section describes the methodology for 
evaluating the initial SRS and the alternate 
SMPS designs for assessing the GFSAD30m 
cropland extent maps in four steps: (1) 
estimating cropland area proportion (CAP), (2) 
applying the sampling designs, (3) choosing an 
optimum sample size for the SMPS approach, 
and (4) generating appropriate accuracy 
measures for the ten study cropland regions   
(Fig. 2). 

 
First, the Cropland Area Proportion (CAP) was 
estimated for each of the ten study regions using 
the GFSAD30m cropland extent map classes. 
The CAP of a region is defined as the percent of 
cropland area as compared to the total area of 
the region. The cropland regions with CAP from 
0.9% (China Zone 3) to 43.2% (South East Asia 
Zone 5) were then grouped into five cropland 
probability classes from Class 1 to Class 5 as: 
(1) very low (0-1%), (2) low (>1-2%), (3) medium 
(>2-6%), (4) high (>6-15%), and (5) very high 
(>15%). 

 

 
 

Fig. 2. The graphical work flow showing the steps involved to perform the assessment of 
cropland maps of different cropland regions 
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Table 1. The calculations of crop and no-crop samples for each sample simulation 
 

Sample size Cropland samples No-cropland samples 
50 25 25 
100 50 50 
150 50+ (CAP % of 50) 50+ (NCAP % of 50) 
200 50+ (CAP % of 100) 50+ (NCAP % of 100) 
250 50+ (CAP % of 150) 50+ (NCAP % of 150) 
300 50+ (CAP % of 200) 50+ (NCAP % of 200) 

CAP: Cropland Area Proportion; NCAP: Non-Cropland Area Proportion 
 

Second, the sampling designs were applied in 
each cropland region based on the following two 
protocols: (1) Simple Random Sampling (SRS) 
and (2) Stratified Minimum Proportional Sampling 
(SMPS) [34,41]. The SRS design was applied 
initially to assess the GFSAD30 cropland extent 
map for all 72 cropland regions around the world 
[39]. This sampling design resulted in a random 
distribution of samples in the cropland and non-
cropland map classes based on the equal 
probability characteristic of random sampling. 
The cropland map class was rare in low cropland 
proportion regions and achieved insufficient 
sample size and ineffective accuracy measures 
(i.e., producer’s and user’s accuracies) with this 
design. Therefore, a second alternative sampling 
design (i.e., SMPS) was applied to ten randomly 
selected cropland regions. The SMPS design 
approach used a predetermined minimum 
sample size of 50 randomly distributed in each 
map class (i.e., strata) followed by a proportional 
distribution of the remaining total samples. This 
approach was adopted to provide sufficient 
samples and useful accuracy measures (i.e., 
user’s and producer’s accuracy) for the rare 
cropland map class in the LCP regions. 
 

Third, a sample simulation analysis based on a 
Monte Carlo method was employed as in Yadav 
and Congalton [39] with sample sizes ranging 
from 50 to 300 to determine the optimum sample 
size. Table 1 shows the allocation of samples 
tested between 50 and 300 in increments of 50. 
Once the predetermined minimum sample size of 
50 was reached (total samples more than 100) 
then the additional samples were allocated to 
each map class proportionally to the cropland 
and non-cropland area (i.e, CAP and NCAP) [34]. 
 

Finally, the accuracy measures of the cropland 
extent map classes were generated in each of 
the ten cropland regions at the determined 
optimum sample size for the two sampling 
designs. The accuracy measures (e.g., overall, 
producer’s, and user’s accuracy) were presented 
in the form of error matrices. The sample size 
and accuracy measures of the rare cropland map 

class achieved with different sampling designs at 
an optimum sample size were compared and 
evaluated for each cropland region (i.e., 
probability class from Class 1 to Class 5). 
 

4. RESULTS  
 

The results of the assessment of the cropland 
maps of different crop proportion regions 
describe the comparison of the two different 
sampling designs with respect to the distribution 
and allocation of reference samples for each 
map class and the accuracy measures in the 
following two sections: 
 

The evaluation of the two sampling designs was 
performed by comparing the distribution and 
allocation of reference samples and accuracy 
measures of the rare cropland map class in each 
of the ten cropland proportion regions. The 
results are divided into (1) the grouping of the ten 
cropland regions into five probability classes, (2) 
the distribution and allocation of the reference 
samples, (3) the determination of optimum 
sample size for the SMPS design, and (4) the 
accuracy measures of the cropland extent map 
classes using SRS and SMPS designs. 
 

4.1 Five Cropland Probability Classes 
 

The grouping of cropland area proportion of the 
ten cropland regions resulted in five cropland 
probability classes in which the two sampling 
designs were applied, evaluated, and compared 
to achieve effective accuracy measures of the 
cropland map class. Table 2 presents the 
assigned cropland probability class of each 
region derived from the cropland and non-
cropland area proportions (i.e., CAP and NCAP). 
 

4.2 Distribution and Allocation of 
Reference Samples Using SRS and 
SMPS Designs 

 

The SRS and SMPS sampling designs resulted 
in different distributions and allocation of 
reference samples of each map class in the ten 
cropland study regions. An example of the 
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distribution of the 250 reference samples 
selected using the SRS and SMPS designs are 
presented for Canada Zone 3 (4.8% CAP) (Fig. 
3). In addition to the distribution, the allocation of 
reference samples in the cropland and non-
cropland map classes using the two different 
sampling designs is also presented for the ten 
cropland regions (Table 3). For example, in 
Table 3, Canada Zone 3 shows an allocation of 
11 and 57 cropland reference samples at a 
sample size of 250 using SRS and SMPS 
designs, respectively. 

4.3 The Optimum Sample Size for the 
SMPS Design 

 

The determination of the optimal sample size for 
the SRS sampling was conducted using a 
sampling simulation analysis [39]. A sample size 
of 250 was selected. The optimal sample size for 
the SMPS design was determined by plotting the 
overall accuracy of the cropland extent maps at 
sample sizes from 50 to 300 for each of the ten 
cropland proportion regions (Fig. 4). The 
graphical representation shows a plateau in the

 

Table 2. Cropland and non-cropland area proportion and probability class of the various 
cropland regions 

 
 Zones CAP% NCAP% Probability class 
1 South America Zone 1 1.85 98.15 Class 2 (1-2%) 
2 Canada Zone 1 0.99 99.01 Class 1 (0-1%) 
3 North America Zone 13 4.19 95.81 Class 3 (2-6%) 
4 Europe Zone 7 1.90 98.10 Class 2 (1-2%) 
5 China Zone 3 0.90 99.10 Class 1 (0-1%) 
6 South East-Asia Zone 5 43.2 56.8 Class 5 (>15%) 
7 Africa Zone 7 5.65 94.35 Class 3 (2-6%) 
8 North America Zone 4 14.85 85.15 Class 4 (6-15%) 
9 Canada Zone 3 4.8 95.2 Class 3 (2-6%) 
10 North America Zone 15 9.88 90.12 Class 4 (6-15%) 

Class 1: Very Low; Class 2: Low; Class 3: Medium; Class 4: High; Class 5: Very High 
 

 
 

Fig. 3. The distribution of 250 reference samples using SRS and SMPS designs in the Canada 
Zone 3 
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Table 3. The allocation of cropland and non-cropland reference samples using SRS and SMPS designs 
 

 Region CAP% SMPS 50 SMPS 100 SMPS 150 SMPS 200 SMPS 250 SMPS 300 SRS 250 
C NC C NC C NC C NC C NC C NC C NC 

SAm Zone 1 1.85 25 25 50 50 51 99 52 148 53 197 54 246 8 242 
Canada Zone 1 0.99 25 25 50 50 50 100 51 149 51 199 52 248 5 245 
NA Zone 13 4.19 25 25 50 50 52 98 54 146 56 194 58 242 11 238 
Europe Zone 7 1.90 25 25 50 50 51 99 52 148 53 197 54 246 8 242 
China Zone 3 0.90 25 25 50 50 50 100 51 149 51 199 52 248 4 345 
SE Asia Zone 5 43.2 25 25 50 50 72 78 93 107 115 135 136 164 116 134 
Africa Zone 7 5.65 25 25 50 50 53 97 56 144 58 192 61 239 17 233 
NA Zone 4 14.85 25 25 50 50 57 93 65 135 72 178 80 220 11 238 
Canada Zone 3 4.8 25 25 50 50 52 98 55 145 57 193 60 240 11 239 
NA Zone 15 9.88 25 25 50 50 55 95 60 140 65 185 70 230 24 223 

SRS: Simple Random Sampling, SMPS: Stratified, Minimum, Proportional Sampling, C: Cropland; NC: No-Cropland; SAm: South America; NA: North America; SE Asia: South 
East Asia 
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Fig. 4. Graphical representation of the overall accuracy achieved with SMPS design using the 

sample sizes from 50 to 300 
 

 
 
Fig. 5. Graphical comparison of the accuracy measures achieved with SRS and SMPS designs 

in very low cropland proportion regions 
 

overall accuracy of eight of the cropland extent 
maps at a sample size of 250 using the SMPS 
design beyond which the accuracy did into 
increase with the addition of more samples. 
While two regions, Canada Zone 1 and Africa 
Zone 7, do not show this plateau a sample size 
of 250 was selected as optimal. 
 

4.4 Accuracy Measures of the Cropland 
Extent Map in the Ten Cropland 
Regions 

 
The SRS and SMPS designs resulted in different 
accuracy measures of the cropland map class of 

the GFSAD30m cropland extent map in the ten 
cropland proportion regions. These accuracies 
determined at a sample size of 250 are 
presented graphically and in error matrix form for 
each of the ten cropland proportion regions by 
five cropland probability classes. 
 

4.4.1 Very low cropland proportion regions of 
less than 1% CAP (Class 1) 

 

Canada Zone 1 and China Zone 3 are grouped 
as very low cropland proportion regions of <1% 
CAP determined from the GFSAD30m cropland 
extent map. The accuracy measures (i.e., user’s 
and producer’s accuracy) of the cropland map
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Table 4. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in the very low cropland proportion regions 
 

SMPS  
  

Canada zone 1 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 6 45 51 11.7% 
No-Crop 0 199 199 100.0% 

Total 6 244 250   
Producer’s Accuracy 100.0% 81.5%   82.0% 

 

SRS  
  

Canada  zone 1 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 1 4 5 20.0% 
No-Crop 0 245 245 100.0% 

Total 1 249 250  
Producer’s Accuracy 100.0% 98.4%  98.4% 

 

 
SMPS  
  

China  zone 3 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 51 0 51 100.0% 
No-Crop 6 193 199 96.9% 

Total 57 193 250   
Producer’s Accuracy 89.5% 100.0%   97.6% 

 

 
 SRS  
  

China  zone 3 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 4 0 4 100.0% 
No-Crop 10 335 345 97.1% 

Total 14 193 349   
Producer’s Accuracy 28.6% 100.0%   97.1% 

 

 
Table 5. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in the low cropland proportion regions 

 
SMPS  
  

South America zone 1 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 44 9 53 83.0% 
No-Crop 12 185 197 93.9% 

Total 56 194 250   
Producer’s Accuracy  78.5% 95.3%   91.6% 

 

SRS 
  

South America zone 1 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 3 5 8 37.5% 
No-Crop 3 239 242 98.8 % 

Total 6 250 250   
Producer’s Accuracy  50.0% 98.0%   96.8% 

 

 
SMPS  
  

Europe zone 7 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 43 10 53 81.1% 
No-Crop 5 192 197 97.5% 

Total 48 202 250   
Producer’s Accuracy 89.5% 95.1%   94.0% 

 

SRS 
  

Europe  zone 7 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 8 0 8 100.0% 
No-Crop 1 241 242 99.6 % 

Total 9 241 250   
Producer’s Accuracy  88.9% 100.0%   99.6% 
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Table 6. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in the medium cropland proportion regions 
 
SMPS  
  

Canada zone 3 reference data 
  Crop No-Crop Total User’s accuracy 

Map Data Crop 43 14 57 75.4% 
No-Crop 0 193 193 100.0% 

Total 43 207 250   
Producer’s Accuracy  100.0% 93.2%   94.4% 

 

SRS 
  

Canada zone 3 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 10 1 11 90.9% 
No-Crop 0 239 239 100.0% 

Total 10 240 250   
Producer’s Accuracy  100.0% 99.7%   99.6% 

 

 
SMPS 
  

Africa zone 7 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 29 29 58 50.0% 
No-Crop 50 142 192 73.9% 

Total 79 171 250   
Producer’s Accuracy 36.7% 83.0%   68.4% 

 

SRS 
  

Africa zone 7 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 3 14 17 17.7% 
No-Crop 5 228 233 97.9% 

Total 8 242 250   
Producer’s Accuracy  37.5% 94.2%   92.4% 

 

 
SMPS  
  

North America zone 13 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 49 7 56 87.5% 
No-Crop 5 189 194 97.4% 

Total 54 196 250   
Producer’s Accuracy  90.7% 96.4%   95.2% 

 

SRS North America zone 13 reference data 
 Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 10 2 12 83.3% 
No-Crop 2 236 238 99.2% 

Total 12 237 250  
Producer’s Accuracy 83.3% 99.6%  98.8% 
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Table 7. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in the high cropland proportion regions 
 
SMPS  
  

North America zone 15 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 54 11 65 83.0% 
No-Crop 7 178 185 96.2% 

Total 61 189 250   
Producer’s Accuracy  88.5% 94.1%   92.8% 

 

SRS  
  

North America zone 15 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 14 10 24 58.3% 
No-Crop 6 217 223 97.3% 

Total 48 227 247   
Producer’s Accuracy 70.0% 95.6%   93.5% 

 

 
SMPS  
  

North America zone 4 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 48 24 72 66.6% 
No-Crop 0 178 178 100.0% 

Total 48 202 250   
Producer’s Accuracy  100.0% 88.1%   90.4% 

 

SRS  
  

North America zone 4 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 25 10 35 71.4% 
No-Crop 2 213 215 99.1% 

Total 27 223 250   
Producer’s Accuracy  92.6% 95.5%   95.2% 

 

 
Table 8. Error matrices showing the accuracy measures achieved with SRS and SMPS designs in the very high cropland proportion regions 

 
 SMPS  
  

South East Asia zone 5 reference data 
  Crop No-Crop Total User’s accuracy 

Map  
Data 

Crop 92 23 115 80.0% 
No-Crop 12 123 135 91.1% 

Total 104 146 250   
Producer’s Accuracy  88.4% 84.2%   86.0% 

 

 SRS  
  

South East Asia zone 5 reference data 
  Crop No-Crop Total User’s accuracy 

Map 
Data 

Crop 89 27 116 76.7% 
No-Crop 13 121 134 90.3% 

Total 102 148 250   
Producer’s Accuracy  87.3% 81.8%   84.0% 
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class of these regions achieved at a sample size 
of 250 using SRS and SMPS designs are 
presented graphically and in error matrix form for 
these regions (Fig. 5 and Table 4). Large 
differences in the producer’s accuracy of the rare 
cropland map class were observed between the 
SRS and the SMPS sampling designs for China 
Zone 3 (Fig. 5). The user’s accuracy of the rare 
cropland map class for the SRS sampling design 
more closely agrees with the SMPS design for 
Canada Zone 1. Insufficient samples in the rare 
cropland map class using the SRS design for 
these two regions results in accuracy measures 
that are not indicative of the actual errors     
(Table 4). 
 
4.4.2 Low cropland proportion regions of >1-

2% CAP (Class 2) 
 
South America Zone 1 and Europe Zone 7 are 
grouped as low cropland proportion regions of 
>1-2% CAP derived from the GFSAD30m 
cropland extent map. The accuracy measures 
(i.e., user’s and producer’s accuracy) of the 
cropland map class of these regions using the 
SRS and SMPS designs are presented 
graphically and in error matrix form for these low 
cropland proportion regions (Fig. 6 and Table 5). 
Large differences in the user’s and producer’s 
accuracy of the rare cropland map class were 
observed between the SRS and the SMPS 
sampling designs for South America Zone 1 (Fig. 
6). The user’s accuracy of the rare cropland map 
class for the SRS sampling design more closely 
agrees with the SMPS design for Europe Zone 7. 
Insufficient samples in the rare cropland map 
class using the SRS design for these two regions 
results in accuracy measures that are not 
indicative of the actual errors (Table 5).  
 

4.4.3 Medium cropland proportion regions of 
>2-6% CAP (Class 3) 

 
Canada Zone 3, Africa Zone 7, and North 
America Zone 13 are grouped as medium 
cropland proportion regions of >2-6% CAP 
determined from the GFSAD30m cropland extent 
map. The accuracy measures (i.e., user’s and 
producer’s accuracy) of the cropland map class 
of these regions using SRS and SMPS designs 
are presented graphically and in error matrix 
form for these medium cropland proportion 
regions (Fig. 7 and Table 6). Large differences in 
the user’s accuracy of the rare cropland map 
class were observed between the SRS and the 
SMPS sampling designs for Canada Zone 3 and 
Africa Zone 7 (Fig. 7). The user’s and producer’s 
accuracy of the rare cropland map class for the 
SRS sampling design more closely agrees with 
the SMPS design for North America Zone 13. 
Insufficient samples in the rare cropland map 
class using the SRS design for these three 
regions results in accuracy measures that are not 
indicative of the actual errors (Table 6). 
 
4.4.4 High cropland proportion regions of >6-

15% CAP (Class 4) 
 
North America Zone 15 and North America Zone 
4 are grouped as high cropland proportion 
regions of >6-15% CAP derived from the 
GFSAD30m cropland extent map. The accuracy 
measures (i.e., user’s and producer’s accuracy) 
of the cropland map class of these regions using 
SRS and SMPS designs are presented 
graphically and in error matrix form for these high 
cropland proportion regions (Fig. 8 and Table 7). 
Large differences in the user’s and producer’s 
accuracy of the rare cropland map class

 
 
Fig. 6. Graphical comparison of user’s and producer’s accuracy achieved with SRS and SMPS 

designs in low cropland proportion regions 
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Fig. 7. Graphical comparison of the accuracy measures achieved with SRS and SMPS designs 

in the medium cropland proportion regions 
 

 
 
Fig. 8. Graphical comparison of the accuracy measures achieved with SRS and SMPS designs 

in the high cropland proportions regions 
 
were observed between the SRS and the SMPS 
sampling designs for North America Zone 15 
(Fig. 8). The user’s and producer’s accuracy of 
the rare cropland map class for the SRS 
sampling design more closely agrees with the 

SMPS design for North America Zone 4. 
Insufficient samples in the rare cropland map 
class using the SRS design for these two regions 
results in accuracy measures that are not 
indicative of the actual errors (Table 7). 
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Fig. 9. The comparison of the accuracy measures achieved with SRS and SMPS designs in the 

very high cropland proportion regions 
 
4.4.5 Very high cropland proportion regions 

of >15% CAP (Class 5) 
 
South East Asia Zone 5 is grouped as very high 
cropland proportion region of >15% CAP derived 
from the GFSAD30m cropland map. The 
accuracy measures (i.e., user’s and producer’s 
accuracy) of the cropland map class of this 
region using SRS and SMPS designs are 
presented graphically and in error matrix form 
(Fig. 9 and Table 8). The user’s and producer’s 
accuracy of the rare cropland map class for the 
SRS sampling design more closely agrees with 
the SMPS design for South East Asia Zone 5 
(Fig. 9). Sufficient samples in the rare cropland 
map class using the SRS design results in 
accuracy measures that are indicative of an 
effective and meaningful assessment of the 
cropland map for this region (Table 8). 
 

5. DISCUSSION 
 
The accuracy assessment of the GFSAD30m 
cropland extent map was initially performed 
using SRS design at a sample size of 250 for 
various cropland regions around the world [19]. 
This sampling design resulted in an insufficient 
sample and ineffective accuracy measures of the 
rare cropland map class in the low cropland 
proportion regions due to the cropland 
proportion, distribution, and pattern of the 
cropland extent map being assessed. Very 
limited research has been done so far to 
evaluate and choose an appropriate sampling 
design to perform an effective accuracy 

assessment of the cropland maps of different 
regions [33]. After thorough research, it was 
found that there are no suggestions available for 
employing appropriate sampling approaches to 
assess the cropland maps of different cropland 
regions in the literature. To achieve sufficient 
samples and effective accuracy measures of the 
rare cropland map class, an alternate SMPS 
design was applied in ten selected cropland 
regions. The comparison of two different 
sampling designs presents novel results by 
providing recommendations on performing an 
appropriate sampling for different cropland 
regions. Therefore, the novel results of 
performing an appropriate sampling in different 
cropland proportion regions are discussed in the 
following sections with respect to number of 
samples and achieved accuracy measures. 
 

5.1 Assigning Cropland Probability 
Classes 

 
The cropland area proportion (CAP) of the ten 
selected regions were estimated using the 
GFSAD30m cropland extent map to provide an 
effective sampling area for applying and 
evaluating the sampling designs. The ten 
cropland regions were grouped into five 
probability classes from very low to very high 
cropland probability based on their estimated 
percent of cropland area proportion from 0.9% to 
43.2% (Table 2). The very high cropland 
probability class was assigned to the regions of 
>15% CAP while four probability classes (e.g., 
very low, low, medium, and high cropland 
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probability) were assigned to the regions of 
<15% CAP. The cropland regions of <15% CAP 
were purposely grouped into four          
probability classes from Class 1 to 4 to evaluate 
the sampling designs in all the possible low 
cropland proportion regions. The grouping of the 
ten cropland regions into five cropland       
probability classes was necessary to      
determine the range of CAP of the low     
cropland proportion regions to be          
effectively assessed using an appropriate 
sampling design. 
 

5.2 Distribution and Allocation of 
Samples with SRS and SMPS Designs 

 
The distribution and allocation of samples of the 
rare cropland map class at a sample size of 250 
using SRS and SMPS designs were compared 
spatially and in tabular form for the ten cropland 
regions. An example comparison of the 
distribution and allocation of samples of the rare 
cropland map class at a sample size of 250 using 
SRS and SMPS designs was presented for 
Canada Zone 3 (Fig. 3 and Table 3). This 
comparison shows an allocation of only 11 
samples in the rare cropland map class using the 
SRS design at a sample size 250 due to the 
equal probability of selecting a sample area in 
the low cropland class. As a result, computation 
of producer’s and user’s accuracy is problematic 
as even a small number of incorrect 
classifications can generate very low accuracies. 
Similar insufficient sample allocations for the rare 
cropland map class were also observed in other 
cropland regions of <15% CAP (Table 8). 
Therefore, an alternate SMPS design was 
developed and achieved appropriate distribution 
and allocation of samples of the rare cropland 
map class in the LCP regions (Table 8) [21]. The 
SMPS design resulted in an appropriate 
distribution and allocation of 57 samples of the 
rare cropland map class at a sample size of 250 
for Canada Zone 3 (Fig. 3). In contrast, the high 
cropland proportion regions of >15% CAP 
achieved appropriate distribution and sufficient 
number of samples at a sample size of 250 both 
with SMPS and SRS designs due to more 
uniform and prevalent cropland distribution in 
these regions. These results demonstrate that 
the sampling designs achieve                    
different distribution and allocation of samples of 
the rare cropland map class in the ten      
cropland regions and therefore, the appropriate 
design must be selected according to the 
proportion of cropland extent in the maps to be 
assessed. 

5.3 The Optimum Number of Samples for 
SRS and SMPS Designs 

 

The sample simulation analysis performed by 
Yadav and Congalton [39] determined an 
optimum sample size of 250 for the SRS design 
in various cropland regions. Similarly, the optimal 
sample size for the SMPS design was also 
determined by plotting the overall accuracy of the 
cropland extent maps at sample sizes from 50 to 
300 for each of the ten cropland proportion 
regions (Fig. 4). The graphical representation 
shows a plateau in the overall accuracy of eight 
of the cropland extent maps at a sample size of 
250 using the SMPS design beyond which the 
accuracy did into increase with the addition of 
more samples. However, the overall accuracy of 
the cropland extent map of Africa Zone 7 
decreased while that of Canada Zone 1 
increased with the addition of more samples 
beyond the sample size of 250. Unlike the other 
low cropland proportion regions, these two 
regions did not reach a plateau in the overall 
accuracy at 250 samples due to errors (i.e., 
omission or commission) in the rare cropland 
map class of the cropland extent map.  
 

The rare cropland map class of the cropland 
extent map of Africa Zone 7 had serious 
omission errors when compared with the Google 
Earth imagery. The methodology used to 
accurately classify the cropland regions of the 
entire African continent do not seem to have 
worked as well to map the very small fields of 
Africa Zone 7 (Madagascar) given their unique 
cropland distribution and pattern. On the other 
hand, the rare cropland map class of the 
cropland extent map of Canada Zone 1 had a 
large number of commission errors. These errors 
are a result of missing cropland patches in the 
AAFC (Agriculture and Agri-Food Canada) 
reference cropland layer that was used for the 
assessment. Comparing this reference data with 
Google Earth imagery showed that for this region 
the reference data missed a large number of 
cropland patches. It is clear that the overall 
accuracy of the cropland extent map of Africa 
Zone 7 and Canada Zone 1 did not reach plateau 
at a sample size of 250 due to omission and 
commission errors of the rare cropland map 
class, respectively. Therefore, a sample size of 
250 was selected as optimal for SMPS design 
based on the simulation analysis of eight of the 
cropland regions excluding Africa Zone 7 and 
Canada Zone 1. Finally, the results demonstrate 
that choosing an alternate design (i.e., 
distribution and allocation of samples) is more 
important than increasing the sample size to 
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achieve sufficient samples and effective 
accuracy of the rare cropland map class in the 
ten cropland regions. 
 

5.4 Accuracy Measures with SRS and 
SMPS Designs 

 

The SRS and SMPS designs resulted in different 
accuracy measures of the cropland map class of 
the GFSAD30m cropland extent map in the ten 
cropland proportion regions. The SRS design 
resulted in insufficient and ineffective accuracy 
measures of the rare cropland map class in the 
Low Cropland Proportion (LCP) regions around 
the world [19]. However, the alternate SMPS 
design achieved effective and useful accuracy 
measures of the rare cropland map class in the 
LCP regions of <15% CAP (e.g., China Zone 3, 
South America Zone 1, Africa Zone 7, and North 
America Zone 15) (Figs. 5, 6, 7, and 8). The 
reasons for achieving different accuracy results 
with the two sampling designs can be explained 
by examining the cropland proportion, 
distribution, and pattern of the cropland extent 
maps of the different cropland regions to be 
assessed. It should be noted that not all the LCP 
regions produced the same result. In a few of the 
LCP regions of <15% CAP, the accuracy 
measures of the rare cropland map class were 
the same for the SRS and SMPS designs due to: 
(1) omission errors in the cropland class of the 
reference cropland extent map (e.g., Canada 
Zone 1) (Fig. 5) and (2) the more evenly 
scattered and uniformly distributed cropland 
pattern (e.g., Europe Zone 7) (Fig. 6).  
 

The evaluation of the SRS and SMPS designs in 
the regions of >15% CAP (e.g., South East Asia 
Zone 6) did not show any change in the accuracy 
measures of the rare cropland map class (Fig. 9). 
The high cropland proportion regions (>15% 
CAP) can be sampled using either of the sample 
designs at a sample size of 250. It is important to 

note that regions of more than 85% cropland 
proportion (i.e., <15% non-cropland area 
proportion (NCAP)) should be considered the 
same as the LCP regions. In this case, non-
cropland becomes the rare map class and the 
sampling issues are the same. Therefore, the 
evaluation of SRS and SMPS designs 
demonstrates that the regions of <15% CAP or 
NCAP need to be assessed using the SMPS 
design while the regions between 15-85% 
cropland proportion can be assessed using either 
of the sampling designs. 
 

6. CONCLUSIONS 
 
In this paper, we have evaluated two sampling 
designs to effectively assess the cropland extent 
maps of the ten selected cropland regions. The 
evaluation of the SRS and SMPS designs with 
respect to the sample allocation and accuracy of 
the rare cropland map class at a sample size of 
250 demonstrates their suitability for 
implementation given different cropland 
probability classes and cropping patterns (Table 
9). 

 
Based on the evaluation and comparison of the 
sampling designs (Table 9), the following 
conclusions can be used to perform an effective 
assessment of the cropland extent maps of 
various cropland regions: 

 
1.  To perform an effective assessment of the 

cropland extent map in various cropland 
regions, the three P’s must be determined 
for each cropland region to be assessed: 
(1) Proportion of cropland, (2) Possibility of 
rare map class, and (3) Predetermined 
minimum sample size of the rare map 
class. 

2.  While choosing a sampling strategy to 
effectively assess the rare cropland map

 

Table 9. The comparison of sampling designs in different cropland probability classes 
 

Class Cropping pattern Sampling Sample size Accuracy 
0-1% No Significant Pattern SMPS Sufficient 90-100% 

SRS Insufficient 20-30% 
1-2% Clustered, confined SMPS Sufficient  80-90% 

SRS Insufficient 40-50% 
Scattered, well-distributed SMPS Sufficient Remain same 

2-6% Confined SMPS Sufficient  70-90% 
SRS Insufficient 80-90% 

Evenly distributed SMPS Sufficient  Remain same 
6-15% No Significant Pattern SMPS Sufficient  85-90% 

SRS Insufficient 70-80% 
>15% No Significant Pattern SRS/SMPS No Difference 70-90% 
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class of various cropland regions, the 
distribution of samples is more important 
than increasing or decreasing the number 
of samples (once a sufficient number of 
samples is determined). 

3.  The distribution of samples combined with 
the predetermined minimum number of 
samples must be chosen appropriately to 
achieve sufficient sampling and effective 
accuracy assessment of the rare cropland 
map class in the low cropland proportion 
(LCP) regions.  

4.  The regions of <15% CAP that have 
clustered and limited to small areas 
cropping pattern can be effectively 
assessed using the SMPS design as 
compared to the scattered and uniform 
cropping pattern. However, the regions of 
>15% CAP (those maps that do not 
contain a rare cropland map class) can be 
effectively assessed using either of the 
sampling designs at a sample size of 250. 
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