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Abstract

In this paper, we show a best approximation for the k-digamma functions.
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1 Introduction

The Euler gamma function is defined all positive real numbers x by

Γ(x) =

∫ ∞

0

tx−1e−tdt.

It is common knowledge that the logarithmic derivative of Γ(x) is called the psi or digamma
function, and ψ(m)(x) for m ∈ N are known as the polygamma functions. The gamma, digamma
and polygamma functions play an important role in the theory of special functions, and have
many applications in other many branches, such as statistics, fractional differential equations,
mathematical physics and theory of infinite series. some of the work about the complete monotonicity,
convexity and concavity, and inequalities of these special functions may refer to [1, 2, 3, 4, 6, 7, 8,
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9, 10, 11, 12, 13].

In 2007, Diaz and Pariguan [5] defined the k−analogue of the gamma function for k > 0 and x > 0
as

Γk(x) =

∫ ∞

0

tx−1e−
tk

k dt = lim
n→∞

n!kn(nk)
x
k
−1

x(x+ k) · · · (x+ (n− 1)k)
,

where limk→1 Γk(x) = Γ(x). Similarly, we may define the k−analogue of the digamma and
polygamma functions as

ψk(x) =
d

dx
ln Γk(x) and ψ

(m)
k (x) =

dm

dxm
ψk(x).

It is well known that the k-analogues of the polygamma functions satisfy the following integral and
series identities (see [14])

ψ
(m)
k (x) = (−1)m+1m!

∑∞
n=0

1
(nk+x)m+1

= (−1)m+1
∫∞
0

1
1−e−kt t

me−xtdt.
(1.1)

For more properties of these functions, the reader may see the references [15, 14, 16].

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders
on I and satisfies (−1)nfn(x) ≥ 0 for x ∈ I and n ≥ 0. A characterization of completely monotonic
functions is given by the Bernstein-Widder theorem which reads that a function f(x) on x ∈ [0;∞)
is completely monotonic if and only if there exists a bounded and non-decreasing function g(t) such
that the integral

f(x) =

∫ ∞

0

e−xtdg(t)

converges for x ∈ [0;∞). That is, a function f(x) is completely monotonic on x ∈ [0;∞) if and only
if it is a Laplace transform of a bounded and non-decreasing measure g(t). From above theorem
it follows that completely monotonic functions on [0;∞) are always strictly completely monotonic
unless they are constant (see [17]).

In [18], Mortici gave better approximation of the form

ψ (x) ∼ ln (x+ a)− 1

bx
.

Motivated by this work, we natural study best approximation of the k-digamma. The objective of
this note is to find the appropriate constant a and b, and such that the approximation formula

ψk (x) ∼
1

k
ln

(x
k
+ a

)
− 1

bx
+

ln k

k

is best.

2 Main Results

Lemma 2.1. ([19, formula (12)]) Let r > 0. Then

1

xr
=

1

Γ(r)

∫ ∞

0

tr−1e−xtdt. (2.1)

Theorem 2.1. (1) Let Bk (x) = ψk (x)− 1
k
ln

(
x
k
+ 1√

6

)
+ 1

(6−2
√

6)x
− ln k

k
. If 0 < k ≤ 1, then the

function −Bk(x) is completely monotonic on (0,∞).
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(2) If Ck (x) = ψk (x) − 1
k
ln

(
x
k
− 1√

6

)
+ 1

(6+2
√

6)x
− ln k

k
, then the function Ck(x) is completely

monotonic on
(

k√
6
,∞

)
and k ∈ (0, 1].

Proof. Define

Fa,b,k = ψk (x)−
1

k
ln

(x
k
+ a

)
+

1

bx
− ln k

k
.

Using (1.1) and Lemma 2.1, we get

ψ′
k (x) =

∫ ∞

0

te−xt

1− e−kt
dt,

and
1

x
=

∫ ∞

0

e−xtdt.

Furthermore, we easily obtain

F ′
a,b,k (x) =

∫∞
0

te−xt

1−e−kt dt−
∫∞
0
ke−(x+ka)tdt− 1

b

∫∞
0
te−xtdt

=
∫∞
0

e−(x+ka)t

ekt−1
ϕa,b,k (t)dt

where

ϕa,b,k (t) = tek(a+1)t − kekt + k −
t
(
ek(a+1)t − ekat

)
b

.

By developing in power series, we have

ϕa,b,k (t) =
(
1− k2

)
t+ k

(
a+ 1− 1

b
− k2

2

)
t2

+k2
(

(a+1)2

2
− k2

6
− 2a+1

2b

)
t3

+kn−1
∞∑

n=4

(b−1)n(a+1)n−1+nan−1−bk2

b·n!
tn.

Since k ∈ (0, 1], we get

ϕa,b,k (t) ≥
(
1− k2

)
t+ k

(
a+ 1

2
− 1

b

)
t2 + k2

(
(a+1)2

2
− 1

6
− 2a+1

2b

)
t3

+ · · ·+ kn−1
∞∑

n=4

(b−1)n(a+1)n−1+nan−1−b
b·n!

tn.

We put {
a+ 1

2
− 1

b
= 0,

(a+1)2

2
− 1

6
− 2a+1

2b
= 0,

with the solution a = ± 1√
6
, b = 6∓ 2

√
6. For a = 1√

6
, b = 6− 2

√
6, we have

ϕa,b,k (t) ≥
(
1− k2

)
t+ kn−1

∞∑
n=4

(b− 1)n(a+ 1)n−1 + nan−1 − b

b · n! tn.

Since
(
5− 2

√
6
)
n
(
1 + 1√

6

)n−1

+ n
(

1√
6

)n−1

−
(
6− 2

√
6
)
> 0 for n ≥ 4 and 1 − k2 > 0, we get

ϕa,b,k (t) > 0. This implies that the function ϕ′
a,b,k (t) is completely monotonic on (0,∞).
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Considering to
1

k
lnx− 1

x
< ψk (x) <

1

k
lnx

and lim
x→∞

Bk (x) = 0, we get

Bk (x) < Bk (∞) = 0.

So, the proof of part (1) is complete. Completely similar, we also prove the part (2).

In the end, we calculate the values of Bk(x) and Ck(x) on the k = 1
2
, 1
3
and x = 10, 20, 30, 40 based

on Maple software.

Table 1: The data (1)
Bk(x) x = 10 x = 20 x = 30 x = 40

k = 1/2 −5.481 ∗ 10−6 −6.9746 ∗ 10−7 −2.0895 ∗ 10−7 −8.875 ∗ 10−8

k = 1/3 −2.461 ∗ 10−6 −3.1546 ∗ 10−7 −3.275 ∗ 10−8 −2.418 ∗ 10−8

Table 2: The data (2)
Ck(x) x = 10 x = 20 x = 30 x = 40

k = 1/2 5.86095 ∗ 10−6 7.21477 ∗ 10−7 2.12318 ∗ 10−7 8.8739 ∗ 10−8

k = 1/3 2.58095 ∗ 10−6 3.15477 ∗ 10−7 9.0318 ∗ 10−8 4.2739 ∗ 10−8
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