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1 Introduction

The concept of a set was rather elementary one that had been used implicitly since the beginning
of mathematics, dating back to the ideas of Aristotle. No one had realized that set theory had
nontrivial content. Before Cantor, there were only finite sets (which are easy to understand)
and “the infinite ” (which was considered a topic for philosophical, rather than mathematical
discussion). By Proving that there are (infinitely) many possible sizes for infinite sets, Cantor
established that set theory was not trivial and it needed to be studied. Set theory has come to play
the role of a foundational theory in modern mathematics, in the sense that it interprets propositions
about mathematical objects for example, numbers and functions. From all the traditional areas of
mathematics such as algebra, analysis and topology in a single theory and provides a standard set
of axioms to prove or disprove them. The basic concepts of set theory are now used throughout
mathematics.

In one of his earliest papers, proved that the set of real numbers is “more numerous” than the set of
natural numbers; this showed, for the first time, that there exist infinite sets of different sizes [1]. He
was also the first to appreciate the importance of one to one correspondences in set theory. He used
this concepts to define finite and infinite sets, subdividing the latter into denumerable (or countably
infinite) sets and uncountable sets (nondenumerable infinite sets). This notion of denumerable and
nondenumerable sets led to the concept of countable and uncountable sets, a concept which is of
interest to us in this paper.

The development of countability of sets was built upon the established concept of set theory. Set
theory had its beginning in the 19th century transformation of mathematics, a transformation
beginning in analysis. Since the creation of calculus by Newton and Leibniz, the function concept
had been steadily extended from analytic expressions towards arbitrary correspondences [2]. The
first major expansion had been inspired by the explorations of Euler in the 18th century and featured
the infusion of infinite series methods and the analysis of physical phenomena, like the vibrating
strings.

In the 19th century the stress brought on by the unbridled use of series of functions led first cauchy
and then weierstress to articulate convergence and continuity.

Working out of this tradition, Georg Cantor in 1870 established a basic uniqueness theorem for
trigonometric series. If such a series converges to zero everywhere, then all of its coefficients are
zero [3]. To generalize, Cantor started to allow points at which convergence fails, getting to the
following formulations : for a collection p of real numbers, let p′ be the collection of limit points
of p, and p(n) the result of n iteration of this operation. If a trigonometric series converges to zero
everywhere except on p, where p(n) is empty for some n, then all of its coefficient are zero [4].
It was in 1872 that Cantor provided his formulation of the real numbers in terms of fundamental
sequences of rational numbers and significantly, this was for the specific purpose of articulating his
proof. With the new results of analysis to be secured by proof and proof in turn to be based on prior
principles; the regress led in early 1870’s to the appearance of several independent formulations of
the real numbers in terms of the rational numbers. It is at first quite striking that the real numbers
came to be developed so late, but this can be viewed as part of the expansion of the function concept
which shifted the emphasis from the continuum taken as a whole to its extensional construal as
a collection of objects [1]. In mathematics, objects have been traditionally introduced only with
reluctance, but a more arithmetical rather than geometrical approach to the continuum became
necessary for the articulation of proofs.

The other well–known formulation of real numbers is due to Richard Dedekind, through his cuts.
Cantor and Dedekind, maintained a fruitful correspondence, especially during the 1870’s in which
Cantor aired many of his results and speculations [5]. The formulations of the real numbers
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advanced three important predispositions for set theory. The consideration of infinite collections,
their construal as unitatry objects, and the encompasing of arbitrary such possibilities. Dedekind
had infact made these moves in his creation of ideals, infinite collections of algebraic numbers, and
there is an evident similarity between ideals and cuts in the creation of new numbers out of the
old [6]. The algebraic numbers would soon be the focus of a major breakthrough by Cantor [7].
Although both cantor and Dedekind carried out an arithmetical reduction of the continuum, they
each accommodated its antecedent geometric sense by asserting that each of their real numbers
actually corresponds to a point on the line. Neither theft nor honest toil suffice; Cantor and
Dedekind recognized the need for an axiom to this effect, a sort of church’s thesis of adequacy for
the new construal of the continuum as a collection of objects. Cantor recalled that around this time
he was already considering infinite iterations of his p′ operation using “symbol of infinity” [8].

P (∞) =

∞∩
n

p(n), p(∞+1) = p(∞)′ , p(∞+2), . . . p(∞·2), . . . p(∞
2), . . . p(∞

∞), . . . p(∞
∞∞

)

In a crucial conceptual move, he began to investigate infinite collections of real numbers and
infinitary enumerations for their own sake, and this led first to a basic articulation of size for
the continuum and then to a new, encompassing theory of counting. Set theory was born on that
December 1873 day when Cantor established that the real numbers are uncountable [9]. In the next
decades the subject was to blossom through the prodigious progress made by him in the theory of
transfinite and cardinal numbers.

The uncountability of the reals was established of course, via reductio ad absurdum as with the
irrationality of

√
2. Both impossibility results epitomize how a reductio can compel a larger

mathematical context allowing for the deniability of hitherto implicit properties. Be that as it
may, Cantor the mathematician addressed a specific problem, embedded in the mathematics of
time, in his seminar entitled “on a property of totality of all real algebraic numbers”. After first
establishing this property, the countability of the algebraic numbers, Cantor then established :
for any (countable) sequence of reals, every interval contains a real not in the sequence. Cantor
appealed to the order completeness of the reals: suppose that s is a sequence of reals and I an
interval. Let a < b be the first two reals of s, if any, in I. Then let a′ < b′ be the first two reals of
s, if any, in the open interval (a, b); a′′ < b′′ the first two reals of s, if any, in (a′, b′); and so forth.
Then however long this process continues, the (non-empty) intersection of these nested intervals
cannot contain any member of s.

By these means, Cantor provided a new proof of Joseph Liouville’s result that there are transcendental
numbers (real non-algebraic numbers) and only afterward did Cantor point out the uncountability
of the reals altogether.

This presentation is suggestive of Cantor’s natural caution in overstepping mathematical sense at
the time [10].

Accounts of Cantor’s work have mostly reversed the order for deducing the existence of transcendental
numbers [11]. In textbooks the inversion may be inevitable but this has promoted the misconception
that Cantor’s argument are non constructive. It depends how one takes a proof, and Cantor’s
arguments have been implemented as algorithms to generate the successive digits of new reals [12].
Motivated by the above literature, we seek in this work to understand what countable sets are by
studying the major theorems concerning countable sets.

The aim of this work is to show the applications of one of the most crucial concepts in mathematics,
“countability of sets”; in order to achieve this, we studied the major theorems concerning countable
sets and some applications of the theorems on sets were shown. To study this concept we shall first
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define some terms related to the notion.

1.1 Definition of terms

Definition 1.1. A set is a collection of well define objects, called the elements or members of the
set.

For the purpose of this work; these objects are mathematical objects such as numbers or sets of
numbers.

Thus, sets A,B are equal, written as A = B if, a ∈ A if and only if a ∈ B. It is convenient to
define the empty set, denoted by ∅, as the set with no elements, where the set of natural numbers
denoted as N, the set of integers denoted as Z, the set of rational numbers denoted as Q, e.t.c are
all examples of sets.

Definition 1.2. The union of sets A and B, is the set which consists of elements that are either
in A or B or both. The set notation for the operation of union is ∪. Thus A union B is written as
A ∪B. In set theoretical notation, A ∪B = {x : x ∈ A or x ∈ B or x ∈ both A and B}

Definition 1.3. The intersection of two sets A and B; is the set which consists of elements that
are in A as well as in B. The set notation for the operation of intersection is ∩. A ∩ B means; A
intersection B. In set theoretical notation, the set A ∩B = {x : x ∈ A and x ∈ B }

Definition 1.4. A set A is a subset of a set B, written as A ⊂ B or B ⊃ A, if every element of A
belongs to B.

Definition 1.5. Two sets A and B are said to be equal, if A is a subset of B and B is a subset of
A. Thus the elements of set A are the same as the elements of set B, if the sets A and B are equal.

Definition 1.6. The Cartesian products of n sets X1×X2×· · ·×Xn is the set of ordered n-tuples,
X1 ×X2 × · · · ×Xn = { (x1, x2, . . . , xn) : xi ∈ Xi }, where (x1, x2, . . . , xn) = (y1, y2, . . . , yn) ⇐⇒
xi = yi ∀ i = 1, 2, · · ·n

Definition 1.7. The power set P(X) of a set X is the set of all subsets of X.

For example, if A = { 1, 2 } then P(A) = { θ, { 1 }, { 2 }, { 1, 2 } }. The power set of a finite set with
x elements has 2x elements. Also the power set of an infinite set, such as N, consists of all finite
and infinite subsets and it is infinite.

Definition 1.8. A set X is said to be finite, if X is empty ( i.e X = ∅) or there is a bijection
f : X 7→ { 1, 2, . . . n }; for some n ∈ N. Otherwise it is called infinite.

Definition 1.9. A function f : X 7→ Y between sets X,Y assigns to each x ∈ X a unique element
f(x) ∈ Y.

A function can also be called maps, mapping or transformations. The set X on which f is defined
is called the domain of f and the set Y in which it takes its values is called the codomain. Also the
range of f denoted as ranf is the set of all possible values of f(x) as x runs through the domain X
of f ; and it is generally a subset of the codomain Y .

We write f : x 7→ f(x) to indicate that f is the function that maps x to f(x). For example, the
identity function idx : X 7→ X on a set X is the function idx : x 7→ x that maps every element to
itself.

Functions are classified in numerous ways, however we shall concentrate on some classifications
which are important for the purpose of our work.
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Definition 1.10. A function f : X 7→ Y is injective (or one to one) if f(x1) = f(x2) =⇒ x1 = x2

We call an injective function an injection. For example, the functions f, g, h : R 7→ R given by
f(x) = x, g(x) = x3 and h(x) = ex are all injective.

Proof:
We show that the functions defined above are all injectives.

First, we show that f(x) = x, x ∈ R is injective. Let f(x1) = f(x2) ∀ x ∈ R, since f(x) = x we
have that x1 = x2. Therefore f(x1) = f(x2) =⇒ x1 = x2. Hence f is injective. Second, we show
that g(x1) = g(x2) is injective. Let g(x1) = g(x2) ∀ x ∈ R, since g(x) = x3 we have that x3

1 = x3
2

=⇒ x1 = x2 . Therefore g(x1) = g(x2) =⇒ x1 = x2, hence g is injective.

Finally, let h(x1) = h(x2) ∀ x ∈ R, since h(x) = ex we have that ex1 = ex2 =⇒ x1 = x2 .
Therefore h(x1) = h(x2) =⇒ x1 = x2, hence h is injective.

While the functions p, q, r : R 7→ R given by p(x) = 1, q(x) = x2, and r(x) = sinx are not injective
since p(0) = p(1) but 0 ̸= 1, q(−1) = q(1) but −1 ̸= 1, and r(0) = r(π) but 0 ̸= π.

Definition 1.11. A function f : X 7→ Y is surjective (or onto) if for each y ∈ Y we can find
x ∈ X : f(x) = y.

A surjective function is called a surjetion. For example, the functions f, g, h : R 7→ R given by

f(x) = x, g(x) = x3, h(x) = ex
2

sin(x) are all surjective.
Proof:
We show that the functions defined above are all surjectives.
First, we show that f(x) = x, x ∈ R is surjective. It is clear that ∀ x ∈ R ∃ x ∈ R : f(x) = x.
Second, we show that g(x) = x3, x ∈ R is surjective. It is also clear that ∀ x3 ∈ R ∃ x ∈ R :
g(x) = x3.

Finally, we show that h(x) = ex
2

sinx, x ∈ R is surjective. It is easy to see that ∀ ex
2

sinx ∈ R ∃ x

∈ R : h(x) = ex
2

sinx
While the functions p, q, r : R 7→ R given by p(x) = 1, q(x) = ex and r(x) = arctan(x) are not
surjective.
Proof:
We prove that the above functions are not surjectives. Let p(x) = 1, x ∈ R. Observe that @ x ∈ R
: p(x) = 2 but 2 ∈ R.
Second, let q(x) = ex, x ∈ R. Observe that @ x ∈ R : q(x) = 0 but 0 ∈ R.
Finally, let r(x) = arctan(x), x ∈ R. Observe that @ x ∈ R : r(x) = 90 but 90 ∈ R.

Definition 1.12. A function f : X 7→ Y is bijective (or a one to one correspondence) if it is both
injective and surjective.

A bijective function is called a bijection. For example, the identity function idx : X 7→ X defined
as idx(x) = x, the function f : R 7→ R defined as g(x) = x3 are all bijective.
Proof:
We prove that the above functions are bijectives. In the above examples we have shown that
idx(x) = x and g(x) = x3 are both injective and surjective, therefore the functions are bijectives.

Definition 1.13. let f : X 7→ Y be a bijection. we define f−1 : Y 7→ X by the rule f−1(y) =
x ⇐⇒ f(x) = y; we call this the inverse function of f .

Definition 1.14. The composition of function f : X 7→ Y and g : Y 7→ Z is the function
g ◦ f : X 7→ Z define by (g ◦ f)(x) = g(f(x)).
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The order of application of the function in a composition is crucial and is read from right to left.

Remark 1.1. f−1 ◦ f = idx and f ◦ f−1 = idy

Compostions: The composition of bijection is a bijection.

Injection: the restriction of an injection to a subset of its domain is still an injection

Inverse functions: The inverse function of a bijection is a bijection.

Definition 1.15. A set X is said to be indexed by a set I or equivalently, X is an indexed set if
there is an onto function f : I 7→ X. We then write X = {xi : i ∈ I }, where xi = f(i).

For example, { 1, 4, 9, 16, . . . } = {n2 : n ∈ N }. The set X itself is the range of the indexing function
f .

Definition 1.16. let C = {Xi : i ∈ I } be an indexed collection of sets Xi; then we denote the
union and intersection of sets in C by∪

i∈I

Xi = {x : x ∈ Xi for some i ∈ I },
∩
i∈I

Xi = {x : x ∈ Xi ∀ i ∈ I }

For example, let An = [ 1
n
, 1 − 1

n
] for some n ∈ { 3, 4, 5, . . . } then

∪
n∈N An =

∪∞
n=3 An = (0, 1).

Also let Bn = (− 1
n
, 1
n
) for n ∈ { 1, 2, 3, . . . } then

∩
n∈N Bn =

∩∞
n=1 Bn = { 0 }.

Definition 1.17. A set X is said to have a cardinality or size n, if there is a bijection f : X 7→
{ 1, 2, 3, . . . , n }.

Two sets A and B are said to have the same cardinality (or equivalent) written as |A| = |B| or
A ∼ B; if ∃ a bijection from A to B.

Proposition 1.1. Two sets having the same cardinality defines an equivalence relation between
sets.

Proof:

|A| = |A| (Reflexivity)

The identity map f(a) = a; ∀ a ∈ A is a bijection from A to itself.

If |A| = |B|, then |B| = |A| (Symmetry)

Since |A| = |B| then ∃ a bijection f : A 7→ B, but the inverse function f−1 : B 7→ A is also a
bijection (since the inverse function of a bijection is a bijection). Implying that |B| = |A|.
Finally,

If |A| = |B| and |B| = |C| then |A| = |C| (Transitivity)

If |A| = |B| then ∃ a bijection f : A 7→ B, also if |B| = |A| then ∃ a bijection g : B 7→ C. But
the composition of a bijection is again a bijection, it therefore follows that g ◦ f : A 7→ C is again a
bijection. Implying that |A| = |C|

Definition 1.18. A set X is said to be countable if :

• X is finite
or

• there exists a bijection between X and the set of natural numbers N.
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2 Countability of Sets

In this section, we only focus on the study of the major theorems in respect to countability of sets.
The following are some of the theorems:

2.1 Theorems

Theorem 2.1. Any subset of N is countable

Proof:

Without loss of generality, assume that A is an infinite subset of N. Define a function f : N 7→ A
as follows let f(1) be the smallest element of A (in the usual ordering of N). This exists by well-
ordering principle, since A ̸= ∅. Then let f(2) be the smallest element in A\{ f(1) }. Note that
this set is also non-empty (since A, being infinite, cannot be equal to { f(1) }), so the well ordering
principle applies again. In general, given { f(1), f(2), . . . , f(n) }, we let f(n + 1) be the smallest
element in A\{ f(1), f(2), . . . , f(n) } (which is a non-empty subset of N). This defines the function
f inductively; f is injective, since from the construction we have : f(1) < f(2) < f(3) < · · · <
f(n) < f(n+ 1) < · · ·
Next, we show that f is surjective, suppose for contradiction that f is not onto, assume that
A\f(N) ̸= ∅ and let a be the smallest element in this set. Thus a − 1 = f(N) for some N ∈ N.
Then f(N + 1) is the smallest element in A\{ f(1), f(2), . . . , f(n) }, so f(N + 1) > a − 1 (since
a − 1 = f(N) in this set). Thus f(N + 1) > a, but since a ∈ A\{ f(1), f(2), . . . , f(n) } we can’t
have f(N + 1) > a thus f(N + 1) = a, contradicting a /∈ f(N).

Corollary 2.1. If B is countable and A ⊂ B, (A ̸= ∅), then A is countable

Proof:

If B is finite, A is clearly finite. If B is countably infinite, there is a bijection f : B 7→ N. Then
f(A) ⊂ N, so by theorem 2.1; f(A) is either finite or countably infinite. Since A ∼ f(A) (given that
f is injective), it follows that A is countable.

Corollary 2.2. If A is uncountable and A ⊂ B, then B is uncountable.

Proof:

Suppose for contradiction that B is countable,
Case 1: If B is finite, then A ⊂ B is a contradiction (since A is uncountable).
Case 2: If B is infinitely countable, then ∃ a bijection f : B 7→ N, it follows that f : A 7→ f(A) is
also a bijection. But f(A) ⊂ f(B) = N =⇒ f(A) ⊂ N, therefore f(A) is countable. Since there
is a bijection from A to f(A) it holds that |A| = |f(A)|, which is also a contradiction. (since an
uncountable set can never be equivalent with countable set).

Corollary 2.3. The intersection of finitely many countable sets is countable

Proof:

Let Ai, i = 1, 2, . . . , n be countable sets for each i; then∩n
i=1 Ai ⊂ Ai for each i = 1, 2, . . . , n. but, Ai, i = 1, 2, . . . , n. is countable for each i.

Hence, by theorem 2.1;
∩n

i=1 Ai, i = 1, 2, . . . , n. is countable.

Theorem 2.2. If f : X 7→ Y is injective and Y is countable; then X is countable
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Proof:

If X is finite, then we have nothing to prove. So let X be infinite, now X is equivalent to f(X)
(since f is injective), where f(X) is the range of f . So f(X) is infinite. Also f(X) ⊆ Y , therefore
Y is infinite. By hypothesis Y is countable so Y is countably infinite. By corollary 2.1 f(X) is
countable. Since X ∼ f(X). Hence X is countable.
See also [14]

Proposition 2.1. Let X be a non-empty set. Then the following are equivalent

1. X is countable

2. There exists a surjective function f : N 7→ X

3. There exists an injective function g : X 7→ N

Proof:

(1) =⇒ (2). If X is countably infinite, then ∃ a bijection f : N 7→ X; then (2) follows. If X is
finite; then there is a bijection h : { 1, . . . , n } 7→ X for some n ∈ N. Then the function f : N 7→ X
defined by

f(i) =

{
h(i); if 1 ≤ i ≤ n

h(n); if i > n

is a surjection.
we show that the above function is surjective. Let i ∈ { 1, 2, 3, . . . , n }, then f(i) = h(i), but by
hypothesis h : { 1, . . . , n } 7→ X is a bijection. It therefore follows that h(i) is a surjection and so is
f(i); since f(i) = h(i).
Next, let i ∈ {n+ 1, n+ 2, n+ 3, . . . , n+ j, . . . }, j ∈ N then f(i) = h(n).
Without loss of generality, h : { 1, . . . , n } 7→ X is bijective =⇒ h(1) = k1, h(2) = k2, h(3) = k3, . . . ,
h(n−1) = kn−1, h(n) = kn. Where { k1, k2, k3, . . . , kn } ∈ X , ki ∈ R for each i ∈ { 1, 2, 3, . . . , n }.
So that |X| = n.
From definition of f , f(i) = kn for each i > n =⇒ f(n+1) = kn, f(n+2) = kn, . . . , f(n+j) = kn,
. . .
This implies that the function f has the same codomain as h , which is X. but X = ranh = ranf
=⇒ the ranf is the same as the coodomain. Hence f is a surjection.
(2) =⇒ (3). let f : N 7→ X be surjective. We claim that there is an injection g : X 7→ N.
Given x ∈ X, the preimage f−1({x }) ̸= ∅ (since f is surjective). By well-ordering principle, this
set has a smallest element, we let g(x) be this smallest element (i.e g(x) = minf−1({x }) ). g is
injective since for two elements x ̸= x′ ∈ X the preimages f−1({x }) and f−1({x′ }) are disjoint
( i.e f−1({x }) ∩ f−1({x′ }) = ∅ ) =⇒ g(x) = minf−1({x }) ̸= minf−1({x′ }) = g(x′) and hence
their smallest elements are distinct.
(3) =⇒ (1). Let g : X 7→ N be an injective, we show that X is countable.
Since g : X 7→ g(X) is a bijection and g(X) ⊂ N, hence X is countable.

Corollary 2.4. If the function f : X 7→ Y is surjective and X is countable then Y is countable

Proof:

By hypothesis, f is surjective. Therefore f has right-inverse g : Y 7→ X, that is f ◦ g(y) = y ∀
y ∈ Y . The function g is injective since it has a left - inverse f , so by theorem 2.2 and from our
hypothesis that X is countable we conclude that Y is countable.

Theorem 2.3. A countable union of countable sets is countable
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Proof:

Consider sets Ai = { a1i, a2i, a3i, . . . , }, i = 1, 2, 3, . . . where each Ai for i = 1, 2, 3, . . . is countable.
The kth element of Ai is aki.
Now; it follows that

∞∪
i=1

Ai = { a11, a12, a21, a13, a22, a31, a14, a23, . . . , anm, . . . }

Note that the order has been taken according to the sum m + n = l where l = 2, 3, . . . , n,m being
the suffices of the element anm ∈ Ai

See also [14]

let
∞∪
i=1

Ai = {x1, x2, x3, x4, x5, . . . , xn, . . . }

where
∞∪
i=1

Ai = { a11︸︷︷︸
x1

, a12︸︷︷︸
x2

, a21︸︷︷︸
x3

, a13︸︷︷︸
x4

, a22︸︷︷︸
x5

, a31︸︷︷︸
x6

, a14︸︷︷︸
x7

, a23︸︷︷︸
x8

, . . . , anm︸︷︷︸
xn

, . . . }

then, the function f :
∪∞

i=1 Ai 7→ N defined as f(xi) = i; i ∈ { 1, 2, 3, . . . } is a bijection between
the elements of

∪∞
i=1 Ai and N, the set of natural numbers. Now, we show that the function

defined above is injective. Suppose for contradiction that f(xi) = i; i = 1, 2, 3, . . . is not injective;
then f(xj) = f(xi) =⇒ xi ̸= xj for some i, j ∈ N. But f(xi) = i and f(xj) = j. Also,
f(xj) = f(xi) =⇒ i = j. Let i = j := j∗, then xj = xj∗ ; xi = xj∗ . From our assumption we
have that xj ̸= xi = xj∗ = xj =⇒ xj ̸= xj which is a contradiction, hence f is injective.
Next, the function f is surjective since the codomain of f is equal to its range. Hence, the function
f :

∪∞
i=1 Ai 7→ N define as f(xi) = i; i ∈ { 1, 2, 3, . . . } is a bijection. Therefore, the set

∪∞
i=1 Ai is

countable.

Theorem 2.4. The Cartesian product of finitely many countable sets is countable.

Proof:

We prove this theorem by induction. Let p(n) be a statement that depends on our theorem (i.e if
Ai is a countable set for each i ∈ { 1, 2, . . . n } then, A1 × A2 × · · · × An is countable), let n = 2,
then we show that A1 ×A2 is countable: if any of the two sets is empty then A1 ×A2 = ∅ and we
have nothing to prove. If one of the sets is finite, say A is finite with k elements, then the product
of A1 = { a1, a2, . . . , ak } and A2 = { b1, b2, . . . , bn, . . . } is

A1 ×A2 = { (a1, b1), (a1, b2), . . . , (a1, bn), . . .
(a2, b1), (a2, b2), . . . , (a2, bn), . . .

...
...

...
...

(ak, b1), (ak, b2), . . . , (ak, bn), . . . }

can be seen to be equivalent to N by listing the elements as
{ (a1, b1), (a2, b1), . . . , (ak, b1); (a1, b2), (a2, b2), . . . , (ak, b2); . . . ; (a1, bn), (a2, bn),
. . . , (ak, bn); . . . }
Next, let A and B be both countably infinite: A = { a1, a, . . .}, B = { b1, b2, . . .}. Then A× B is
equivalent to N can be exhibited as

9
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A1 ×A2 = { (a1, b1), (a1, b2), . . . , (a1, bn), . . .
(a2, b1), (a2, b2), . . . , (a2, bn), . . .

...
...

...
...

(ak, b1), (ak, b2), . . . , (ak, bn), . . .
...

...
...

... . . . }
putting or arranging in order, we have:
A1 ×A2 = { (a1, b1); (a2, b1), (a1, b2); (a3, b1), (a2, b2), (a1, b3); (a4, b1), (a3, b2),
(a2, b3), (a1, b4); . . . }
The function f : A1×A2 7→ N define as f(a1, b1) = 1, f(a2, b1) = 2, f(a1, b2) = 3, f(a3, b1) = 4,. . . is
a bijection; hence A1 ×A2 is countably infinite. Therefore p(2) is true.
See also [14]
Assume that the statement is true for p(n− 1), that is A1 ×A2 × · · · ×An−1 is countable.
We now move further to prove that p(n) is true ∀ n ∈ N. That is we show that A1 ×A2 × · · · ×An

is countable.
let A1 ×A2 × · · ·×An−1 = K, we now show that A1 ×A2 × · · · ×An−1︸ ︷︷ ︸

K

×An is countable. But this

reduces to only showing that K × An is countable. K is countable by induction assumption and
An is also countable by hypothesis. Hence K×An is countable, which has already been established
in the first step of our proof (that is p(2) is true). Implying that p(n) is true if p(n − 1) is true ∀
i ∈ { 1, 2, . . . n }. Therefore the above theorem is true.

Theorem 2.5. There is no surjection from a set A to P(A).

Proof:

Consider any function f : A 7→ P(A) and let B = { a ∈ A | a /∈ f(a) }. We claim that there is no
b ∈ A : f(b) = B. Indeed, assume f(b) = B for some b ∈ A, then either b ∈ B hence b /∈ f(b) which
is a contradiction or b /∈ B = f(b) implying that b ∈ B which is again a contradiction. Hence the
map f is not surjective as claimed.

3 Applications of Theorems on Sets

In these section, we will show the applications of the theorems studied in the previous section.

3.1 Examples

Example 3.1. Every finite set is countable

Proof:

This follows from the definition of countable sets

Example 3.2. The set of all integers Z is countable

Proof:

Let f : N 7→ Z be define as:

f(n) =

{
n
2
; if n is even

1−n
2

; if n is odd

See also [13]
It suffice to show that f(n) define above is a bijection. We progress as follows: Observe that

10
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f(n1) = f(n2) =⇒ n1
2

= n2
2

∀ n1, n2 even. So n1 = n2. Hence f(n1) = f(n2) =⇒ n1 = n2 ∀ n
even. Also let f(n1) = f(n2) =⇒ 1−n1

2
= 1−n2

2
; ∀ n1, n2 odd =⇒ 1− n1 = 1− n2 =⇒ n1 = n2.

Hence f(n1) = f(n2) =⇒ n1 = n2 ∀ n odd. Therefore, f is injective. Next, ∀ n
2
, 1−n

2
∈ Z, ∃ n

∈ N : f(n) = n
2
and f(n) = 1−n

2
. Hence f is surjective. In conclusion, f is a bijection, Implying

that Z is countable.

Example 3.3. The set of all rational numbers is countable

Proof:

Let the set of all rational numbers be denoted as
∪∞

i=1 Ai, where Ai is the set of rational numbers
which can be written with denominator i. Let such sets be Ai =

{
0
i
, −1

i
, 1
i
, −2

i
, 2
i
, . . .

}
, i ∈

{ 1, 2, . . . }. But each Ai is equivalent to the set of all positive integers and by theorem 2.3, countable.
See also [14]

Example 3.4. The set R of real numbers is uncountable

Proof:

Suppose for contradiction that the set R is countable. Then R = {x1, x2, x3, x4, . . . }. Enclose each
member xn of R in an open interval In =

(
xn − 1

2n+1 , xn + 1
2n+1

)
of length 1

2n
( i.e L(In) = xn +

1
2n+1 −xn− 1

2n+1 = 1
2n

), n = 1, 2, 3, . . . The sum of the lengths of In’s is
1
2
+ 1

22
+ 1

23
+ · · · =

1
2

1− 1
2

= 1

(that is sum to infinity of a geometric progression). But xn ∈ R and R =
∪∞

n {xn } ⊆
∪∞

n In
implies that the whole real line (whose length is infinite) is contained in the union of intervals whose
lengths add up to 1. Which is a contradiction, hence R is uncountable.
See also [14]

Example 3.5. The set P(N) is uncountable

Proof:

By theorem 2.5 and corollary 2.4 we get that P(N) is uncountable.

Example 3.6. The set N× N is countable

Proof:

By proposition 2.1; it suffices to construct an injective function f : N× N 7→ N. Let f : N× N 7→ N
be define as f(a, b) = 2a3b. Assume that 2a3b = 2x3y . If a < x then 3b = 2x−a3y.The left side
of this equality is an odd number whereas the right side of the equation is an even number, which
implies that x = a and 3b = 3y. Hence b = y, therefore f is injective. Therfore by theorem 2.2,
the set N× N is countable.

Example 3.7. The set of real numbers in [0, 1] is uncountable.

Proof:

Let the set of all real numbers in [0, 1] be countable, that is {x : 0 ≤ x ≤ 1 } = {x1, x2, . . . , xn, . . . }.
Each real numbers in [0, 1] has a decimal expansion 0, a1, a2,. . . ,an,. . . where ai, i ∈ N, are any
of the digits 0, 1, 2, . . . ,9. We assume that the numbers whose decimal expansion terminate such
as 0.0573 are written as 0.0573000 . . . which is the same as 0.0572999 . . ., since all real numbers in
[0, 1] are countable, therefore, we can establish a one to one correspondence of the members of [0, 1]
with the set of positive integers in the following manner:
1 ↔ 0.a11a12a13 . . .
2 ↔ 0.a21a22a23 . . .
3 ↔ 0.a31a32a33 . . .

11
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4 ↔ 0.a41a42a43 . . .
· · · · · · · · · · · · · · · · · ·
We now construct a number 0.b1b2b3 . . ., where

bi =

{
4; if aii = 5;

5; if aii ̸= 5; i = 1, 2, 3, . . .

(any two digits can be used instead of 4 and 5). Then the number 0.b1b2b3 . . ., lies between 0 and 1
and is different from the numbers in the above list and therefore cannot be in the list, contradicting
the assumption that the set of all real numbers in [0, 1] is countable.
See also [14]

Example 3.8. The set of rational numbers in [0, 1] is countable.

Proof:

In order to show that the set of rational numbers in [0, 1] is countable, we must show that there
exists a one to one correspondence between the set of rationals of [0, 1] and the set of natural
numbers N.
Arrange the set of rationals according to increasing denominators as : 0, 1, 1

2
, 1

3
, 2

3
, 1

4
, 3

4
, 1

5
, 2

5
, 3

5
,

4
5
, 1

6
, 5

6
, 1

7
, 2

7
, 3

7
, 4

7
, 5

7
, 6

7
, . . . e.t.c. Then the one to one correspondence can be indicated as:

1 ↔ 0 5 ↔ 2
3

9 ↔ 2
5

2 ↔ 1 6 ↔ 1
4

10 ↔ 3
5

3 ↔ 1
2

7 ↔ 3
4

11 ↔ 4
5

4 ↔ 1
3

8 ↔ 1
5

· · · · · · · · ·
See also [14]

4 Conclusion

The authors studied the major theorems concerning countable sets and showed their applications
on sets.
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