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Abstract

The present article was aimed at investigating the effects of variable viscosity on natural
convection flow between vertical parallel plates in the presence of heat generation/absorption.
The nonlinear differential equations governing the flow were solved using Homotopy perturbation
method. The impacts of the several governing parameters on the velocity and temperature
profiles are presented graphically and values of skin friction, rate of heat transfer, mass flux and
mean temperature for various values of physical parameters are presented through tables. In
the course of computation, it was revealed that viscosity contributes to decrease velocity and
hence reduced resistance to flow. It was also discovered that as the heat generation increases,
fluid temperature and velocity increase, while it decrease with the increase in heat absorption.
Finally, it was concluded that the skin friction on both plates increase as viscosity increases.
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perturbation.

*Corresponding author E-mail: mktafida.555@gmail.com

http://www.sdiarticle3.com/review-history/46759


Tafida and Ajibade; ARJOM, 14(3):1-15, 2019; Article no.ARJOM.46759

Nomenclatures

g - acceleration due to gravity [ms−2]
h - width of the channel [m]
S - dimensionless heat generation/absorption parameter
Q0 - heat generation/absorption coefficient [kgm−1s−3K−1]
T ∗ - dimensional fluid temperature [K]
T ∗
w - channel wall temperature [K]

T ∗
0 - temperature of the ambience [K]

T - dimensionless fluid temperature
u∗ - dimensional velocity [ms−1]
u - dimensionless velocity
U - dimensional velocity of the moving plate [ms−1]
y∗ - co-ordinate perpendicular to the plate [m]
y - dimensionless co-ordinate perpendicular to the plate
Gr - Grashof number
cp - specific heat at constant pressure [m2s−2K−1]
ρ - density of the fluid [kgm−3]
α - thermal diffusivity [m2s−1]
p - embedding parameter
β - coefficient of thermal expansion [K−1]
µ - coefficient of viscosity
ν - kinematic viscosity [m2s−1]

1 Introduction

The study of natural convection flow in a vertical channel has received a great deal of attention
due to its applications such as, engineering field, geophysics, oceanography and environmental
problems. A detailed review of natural convection flow and heat transfer can be found in the
following Abdou [1] studied the effect of radiation with temperature dependent viscosity and thermal
conductivity on an unsteady stretching sheet through porous media. He concluded that velocity
and temperature across the boundary layer increase with increasing viscosity variation parameter.
Santana and Hazarika [2] examined the effects of variable viscosity and thermal conductivity on
magnetohydrodynamics free convection and mass transfer flow over an inclined vertical surface in
a porous medium with heat generation. They concluded that an increasing values of viscosity
retard the velocity but enhances the temperature. Adel et al. [3] worked on the similarity solution
for steady magnetohydrodynamics Falkner-Skan heat and mass transfer flow over a wedge in
porous media considering thermal-diffusion and diffusion-thermo effects with variable viscosity and
thermal conductivity. They discovered that the velocity of the fluid is found to increase with
increase of the temperature dependent fluid viscosity. Makungu et al. [4] studied the effects of
variable viscosity of nanofluid flow over a permeable wedge embedded in saturated porous medium
with chemical reaction and thermal radiation. Sher et al. [5] studied squeezing nanofluid flow
between two parallel plates under the influence of MHD and thermal radiation. They reported
that temperature and concentration distributions vary inversely with Prandtl number, that is
temperature distribution drop with large number of Prandtl number and rise for lesser values
of Prandtl number. Syed et al. [6] considered a Bioconvection model for squeezing flow between
parallel plates containing Gyrotactic microorganisms with impact of thermal radiation and heat
generation/absorption. They concluded that the convergence of the homotopy method along with
the variation of different physical parameters has been observed numerically. Ajibade and Tafida
[7] studied viscous dissipation effect on steady natural convection Couette flow of heat generating
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fluid in a vertical channel. The outcome of their study showed that fluid temperature and velocity
increase with an increase in heat generation while it decreases with the increase in heat absorption.
Hazarika and Gopal [8] analyzed the effects of variable viscosity and thermal conductivity on
magnetohydrodynamics flow past a vertical plate. They observed that the velocity profile decreases
with the increase of variable viscosity is not so prominent in case of temperature profile. Mohamed
[9] examined dissipation and variable viscosity on steady magnetohydrodynamics free convective
flow over a stretching sheet in presence of thermal radiation and chemical reaction. He discovered
that the velocity decreases with an increase in viscosity parameter. Phukan and Hazarika [10]
studied the effects of variable viscosity and thermal conductivity on magnetohydrodynamics free
convective flow of micropolar fluid past a stretching plate through porous medium with radiation,
heat generation and Joule heating. They reported that velocity decreases with the increase of the
viscosity parameter. In another article, Noghrehabadi et al. [11] examined the effects of variable
viscosity and thermal conductivity on natural convection of nanofluids past a vertical plate in a
porous media. The outcomes showed that an increase of variable viscosity parameter increases
the velocity profiles whereas decreases the concentration profiles. Moreover, variation of viscosity
parameter does not show the significant effect on the temperature profiles. All the above mentioned
studies did not consider the effect of heat generation/absorption.

The study of heat generation/absorption in moving fluids is important in several physical problems
dealing with chemical reactions and those concerned with dissociating fluids. Possible heat generation
effects may alter the temperature distribution and therefore, the particle deposition rate. Sher et
al. [12] studied the rotating flow of MHD carbon nanotubes over a stretching sheet with the impact
of non-linear thermal radiation and heat generation/absorption. They discovered that the rate of
heat is enhanced as the heat generation/absorption value is increased. Consequently, He further
discovered that the thermal thickness of boundary film is a function of heat generation/absorption.
Chamkha and Camille [13] solved hydromagnetic flow with heat and mass transfer over a flat plate
in the presence of heat generation or absorption and thermophoresis. Mohammad et al. [14]
studied entropy generation on nanofluid thin film flow of Eyring-powell fluid with thermal radiation
and MHD effect on an unsteady porous stretching sheet. They outcome of their study showed that
the growing behavior of Prandtl number increases the surface temperature where the opposite effect
is found for an unsteady parameter, that is, the larger values of an unsteadiness reduce the surface
temperature. Natural convection with heat generation along a uniformly heat vertical wavy surface
have been demonstrated by Molla et al. [15]. Veena et al. [16] worked on heat transfer characteristics
in the laminar boundary layer flow of a viscoelastic fluid over a linearly stretching continuous surface
with variable wall temperature subjected to suction or blowing. Jha and Ajibade [17] considered the
case of unsteady free convective Couette flow of heat generating/absorbing fluid. The outcome
of their study showed that the skin friction increased as the external heating/cooling increases,
likewise an increase in heat absorption increases the rate of heat transfer on the moving plate and
decreases the rate of heat transfer on the stationary plate.

The objective of this study is to investigates the effect of variable viscosity on natural convection
flow between vertical parallel plates in the presence of heat generation/absorption. The equations
governing the flow have some non linear terms in them so that obtaining closed form solution
is a daunting task. Such problems can therefore be approached by numerical schemes or some
approximate solution methods. One of the efficient methods is the perturbation method. However,
solutions obtained by perturbation method are restricted to small perturbation parameters, therefore
to overcome this restriction, another method called Homotopy perturbation method was introduced.

He [18] was first studied to solve linear, non-linear and coupled problems in partial or ordinary
form. He [19] studied a coupling method of a Homotopy technique and a perturbation technique
for non-linear problems. In another article, He [20] studied a new non linear analytical technique
using Homotopy perturbation methods. Da-Hua [21] studied Homotopy perturbation method for
nonlinear oscillators.
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From the computational point of view it is identified and proved beyond all doubts
that the Homotopy perturbation method is very efficient and powerful tool for solving
coupled and nonlinear system of differential equations. In this paper, we extend
the work of Jha and Ajibade [17] to investigate the effect of variable viscosity on
natural convection flow through a vertical parallel plates in the presence of heat
generation/absorption. The velocity and temperature field are obtained and discussed
for some carefully selected values of the flow parameters.

2 Mathematical Analysis

We considers a steady natural convection flow of an incompressible viscous fluid in a vertical channel
of width h. The flow is assumed to be in the x∗ - direction which is taken vertically along one of
the plates while y∗ - axis is taken normal to it. The second is placed h distance away from the first.
The temperature of the fluid and one of the channel plates are kept at T0 while the temperature of
the plate y∗ = 0 is raised or fell to Tw and thereafter maintained constant. Also, the plate y∗ = 0
moves in its own plane impulsively at a uniform velocity u∗ = U while the other plate remains at
rest. The flow configuration and coordinates system is shown in figure 1.

Fig. 1. Schematic diagram of the problem

Under the usual assumption of Boussinesq’s approximation, the governing equations of the
continuity, momentum and energy are as follows:

du∗

dx∗ = 0, (1)

1

ρ

d

dy∗

(
µ∗ du

∗

dy∗

)
+ gβ(T ∗ − T0) = 0, (2)

α
d2T ∗

dy∗2 − Q0

ρcp
(T ∗ − T0) = 0. (3)
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The viscosity of the working fluid is assumed to vary linearly with temperature as follows

µ∗ = µ0(1− λ∗(T ∗ − T0))

while the boundary conditions are:

u∗ = U, T ∗ = Tw at y∗ = 0,

u∗ = 0, T ∗ = T0 at y∗ = h.
(4)

Due to the nature of the quantities that are given in different dimensions, we introduce some
dimensionless quantities that can transform the governing equations and their boundary conditions
into dimensionless form. The dimensionless quantities used in equations (1) - (3) and the boundary
condition (4) are:

y =
y∗

h
, u =

u∗

U
, T =

T ∗ − T0

Tw − T0
, S =

Q0h
2

k
,

Gr =
gβh2(Tw − T0)

vU
, λ = λ∗(Tw − T0).

(5)

By using the dimensionless quantities, the governing equations and the boundary conditions are
transformed into non-dimensional form as

du

dx
= 0, (6)

(1− λT )
d2u

dy2
− λ

du

dy
· dT
dy

+Gr(1− λT )T = 0, (7)

d2T

dy2
− ST = 0. (8)

And the boundary conditions are:

u = 1, T = 1 at y = 0,

u = 0, T = 0 at y = 1.
(9)

2.1 Homotopy Perturbation Method

In order to illustrate the basic ideas of the Homotopy Perturbation Method (HPM), we consider
the following nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (10)

with the boundary conditions

B(u,
∂u

∂n
) = 0 r ∈ Γ, (11)

where A is a general differential operator, B is a boundary operator, f(r) is known analytical
function and Γ is the boundary of the domain Ω, respectively. Generally speaking, the operator A
can be divided into two parts which are L and N , where L is linear part and N is nonlinear part.
Therefore (10) can be written as:

L(u) +N(u)− f(r) = 0, r ∈ Ω, (12)

By the homotopy techniques, we construct a homotopy as follows
v(r, p) : Ω× [0, 1] → R which satisfies:

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (13)
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in equation (13), p ∈ [0, 1] is an embedding parameter, while u0 is an initial approximation of
equation (10), which satisfies the boundary conditions. Clearly from eqn (13), we have

H(v, 0) = L(v)− L(u0) = 0, (14)

H(v, 1) = A(v)− f(r) = 0. (15)

We can assume that the solution of equation (13) can be written as a power series in p:

v = v0 + pv1 + p2v2 + ..., (16)

setting p = 1 gives the approximate solution of eqn (10) as

u = lim
p→1

v = v0 + v1 + v2 + .... (17)

Applying the Homotopy perturbation technique to solve the governing equations in the present
problem, we construct a convex Homotopy on eqs. (7) and (8) to get

H(u, p) = (1− p)

[
d2u

dy2

]
+ p

[
d2u

dy2
+ λT

d2u

dy2
+ λ

du

dy
· dT
dy

−GrT + λGrT 2

]
= 0, (18)

H(T, p) = (1− p)

[
d2T

dy2

]
+ p

[
d2T

dy2
− ST

]
= 0, (19)

using infinite series (18) and (19) to define u and T as follows

u = u0 + pu1 + p2u2 + ...,

T = T0 + pT1 + p2T2 + ....
(20)

Substituting eqn. (20) into eqns. (18) and (19), we have

d2u0

dy2
+ p

d2u1

dy2
+ p2

d2u2

dy2
+ p3

d2u3

dy2
+ ... = pλT0

d2u0

dy2
+ p2

[
λT0

d2u1

dy2
+ λT1

d2u0

dy2

]
+ p3

[
λT0

d2u2

dy2
+ λT2

d2u0

dy2
+ λT1

d2u1

dy2

]
+ ...

+ pλ
du0

dy
· dT0

dy
+ p2

[
du0

dy
· dT1

dy
+ λ

du1

dy
· dT0

dy

]
+ p3

[
λ
du0

dy
· dT2

dy
+ λ

du2

dy
· dT0

dy
+ λ

du1

dy
· dT1

dy

]
+ ...

− pGrT0 − p2GrT1 − p3GrT2 − ...

+ pλGrT 2
0 + p2 [2λGrT0T1]

+ p3
[
2λGrT0T2 + λGrT 2

1

]
+ ...

(21)

d2T0

dy2
+ p

d2T1

dy2
+ p2

d2T2

dy2
+ p3

d2T3

dy2
+ ... = pST0 + p2ST1 + p3ST2 + ... (22)

By comparing the coefficient of p0, p1, p2 and p3 of eqns. (21) and (22), we have

P 0 :
d2u0

dy2
= 0, (23)
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P 0 :
d2T0

dy2
= 0, (24)

P 1 :
d2u1

dy2
= λT0

d2u0

dy
+ λ

du0

dy
· dT0

dy
−GrT0 + λGrT0

2, (25)

P 1 :
d2T1

dy2
= ST0, (26)

P 2 :
d2u2

dy2
= λT0

d2u1

dy2
+ λT1

d2u0

dy2
+ λ

du0

dy
· dT1

dy
+ λ

du1

dy
· dT0

dy
−GrT1

+ 2λGrT0T1,

(27)

P 2 :
d2T2

dy2
= ST1, (28)

P 3 :
d2u3

dy2
= λT0

d2u2

dy2
+ λT2

d2u0

dy2
+ λT1

d2u1

dy2
+ λ

du0

dy
· dT2

dy
+ λ

du2

dy
· dT0

dy

+ λ
du1

dy
· dT1

dy
−GrT2 + 2λGrT0T2 + λGrT 2

1 ,

(29)

P 3 :
d2T3

dy2
= ST2. (30)

:
:
:

The boundary conditions are transformed also as

T0(0) = 1, T1(0) = T2(0) = T3(0) = ... = 0,

T0(1) = T1(1) = T2(1) = ... = 0,

u0(0) = 1, u1(0) = u2(0) = u3(0) = ... = 0,

u0(1) = u1(1) = u2(1) = ... = 0.

(31)

Since the zeroth order of the Homotopy gives a linear ordinary differential equations, it is easily
solvable without making recourse to initial guess. Therefore solving eqs. (23) and (24) and applying
the boundary conditions T0(0) = 1 and T0(1) = 0, u0(0) = 1 and u0(1) = 0, we obtain eqs. (32)
and (33) as

u0 = A1y +A2, (32)

T0 = B1y +B2. (33)

Solving eqs. (25) and (26) and applying the boundary conditions T1(0) = 0 and T1(1) = 0, u1(0) = 0
and u1(1) = 0, we obtain eqs. (34) and (35) as

u1 =
λy2

2
+ λGr

[
y2

2
− y3

3
+

y4

12

]
−Gr

[
y2

2
− y3

6

]
+A3y +A4, (34)
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T1 = S

[
y2

2
− y3

6

]
+B3y +B4. (35)

Solving eqs. (27) and (28) and applying the boundary condition T2(0) = 0 and T2(1) = 0, u2(0) = 0
and u2(1) = 0, we obtain eqs. (36) and (37) as

u2 = λ2

[
y2

2
− y3

6

]
+ λ2Gr

[
y2

2
− y3

2
+

y4

4
− y5

20

]
− λGr

[
y2

2
− y3

3
+

y4

12

]
− λS

[
y3

6
− y4

24

]
+

λSy2

6
− λ2y3

6
− λ2Gr

[
y3

6
− y4

24
+

y5

60

]
− λGry2

6

+ λGr

[
y3

6
− y4

24

]
+

λ2y2

4
+

λ2Gry2

8
−GrS

[
y4

24
− y5

120

]
+

GrSy3

18

+ 2λGrS

[
y4

24
− y5

30
+

y6

180

]
− 2λGrS

3

[
y3

6
− y4

12

]
+A5y +A6,

(36)

T2 = S2

[
y4

24
− y5

120

]
− S2y3

18
+B5y +B6. (37)

Solving eqs. (29) and (30) and applying the boundary condition T2(0) = 0 and T2(1) = 0, u2(0) = 0
and u2(1) = 0, we obtain eqs. (38) and (39) as

u3 = λ3

[
y2

2
− y3

3
+

y4

12

]
+ λ3Gr

[
y2

2
− 2y3

3
+

y4

2
− y5

5
+

y6

30

]
− λ3

[
y3

6
− y4

12

]
− λ2Gr

[
y2

2
− y3

2
+

y4

4
− y5

20

]
+

λ2S

3

[
y2

2
− y3

6

]
− λ2S

[
y3

6
− y4

8
+

y5

40

]
− λ3Gr

[
y3

6
− y4

6
+

y5

15
− y6

90

]
+ λ2Gr

[
y3

6
− y4

8
+

y5

40

]
+

λ3

2

[
y2

2
− y3

6

]
− λ2Gr

3

[
y2

2
− y3

6

]
+

λ3Gr

4

[
y2

2
− y3

6

]
+

λS2y2

72
+

λGrS

3

[
y3

6
− y4

12

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ 2λ2GrS

[
y4

24
− 7y5

120
+

y6

36
− y7

252

]
− λS2y2

90

8
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− 2λ2GrS

3

[
y3

6
− y4

6
+

y5

20

]
+ λ2S

[
y4

24
− y5

120

]
− λGrS

[
y4

24
− y5

30
+

y6

180

]
+ λ2GrS

[
y4

24
− 7y5

120
+

y6

36
− y7

252

]
− λ2Sy3

18
− λ2GrS

3
+

[
y3

6
− y4

6
+

y5

20

]
+

λGrS

3

[
y3

6
− y4

12

]
− λS2

[
y5

120
− y6

720

]
− λ3

[
y3

6
− y4

24

]
+

λ2Gry3

18
− λ3y3

12

− λ3Gr

[
y3

6
− y4

8
+

y5

20
− y6

120

]
+ λ2S

[
y4

24
− y5

120

]
+ λ2Gr

[
y3

6
− y4

12
+

y5

60

]
+ λ3Gr +

[
y4

24
− y5

60
+

y6

360

]
− λ2Gr

[
y4

24
− y5

120

]
+ λGrS

[
y5

120
− y6

720

]
+

λ3y4

24
− λ3Gry3

24
− λ2Sy3

18
− 2λ2GrS

[
y5

120
− y6

180
+

y7

1260

]
− λGrSy4

72

+
2λ2GrS

3

[
y4

24
− y5

60

]
+

5λ3y2

24
+

9λ3Gry2

80
− 7λ2Gry2

48
+

λ2Sy2

48
+

λGrSy2

90

− λ2GrSy2

72
+ λ2S

[
y4

12
− y5

40

]
− λ2Sy3

18
+ λ2GrS

[
y4

12
− 3y5

40
+

y6

36
− y7

252

]
− λ2GrS

3

[
y3

6
− y4

12
+

y5

60

]
− λGrS

[
y4

12
− y5

20
+

y6

120

]
− λ2S

2

[
y3

6
− y4

24

]
+

λGrS

3

[
y3

3
− y4

12

]
− λGrSy2

18
+

λ2Sy2

12
− λ2GrS

4

[
y3

6
− y4

24

]
+

λ2GrS

24

−GrS2

[
y6

720
− y7

5040

]
+

GrS2y3

360
− GrS2y3

270
− λGrS2

9

[
y5

20
− y6

30

]
− λ2Sy3

18

+ λGrS2

[
y6

120
− y7

252
+

y8

2016

]
+ 2λGrS2

[
y6

720
− y7

840
+

y8

6720

]
+

λGrS2y4

108

− 2λGrS2

3

[
y5

40
− y6

180

]
+A7y +A8,

(38)

T3 = S3

[
y6

720
− y7

5040

]
− S3y5

360
+

S3y3

270
+B7y +B8. (39)

Eqns (32) - (39) gives the expressions for the velocity and temperature as

u = u0 + u1 + u2 + u3 + ..., (40)

T = T0 + T1 + T2 + T3 + .... (41)

where,

A1 = B1 = −1, A2 = B2 = 1, A3 =
Gr

3
− λ

2
− λGr

4
, B3 = −S

3
,

A4 = B4 = A6 = B6 = A8 = B8 = 0,

A5 = −5λ2

12
− 9λ2Gr

40
+

7λGr

24
− λS

24
− GrS

45
+

λGrS

36
, B5 =

S2

45
,

A7 = −3λ3

8
− 151λ3Gr

720
+

193λ2Gr

720
− 2λ2S

45
− 13λGrS

720
+

1673λ2GrS

70560

+
λS2

240
+

2GrS2

945
− λGrS2

270
, B7 = −2S3

945
.

9
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To obtain the skin friction and rate of heat transfer at the surfaces of the channel boundaries,
the expressions for velocity and temperature are differentiated with respect to y, that is τ = (1 −
λT ) du

dy
|y=0,y=1 and Nu = dT

dy
|y=0,y=1 so that,

du

dy
|y=0 = −1 +A3 +A5,

τ0 = (1− λT )
du

dy
|y=0, (42)

du

dy
|y=1 = −1 + λ− Gr

2
+A3 +

λ2

2
+

λ2Gr

12
+

GrS

24
− 2λGrS

45
+A5,

τ1 = (1− λT )
du

dy
|y=1, (43)

dT

dy
|y=0 = −1 +B3 +B5, (44)

dT

dy
|y=1 = −1 +

S

2
+B3 −

S2

24
+B5, (45)

To obtain the mass flux Q, we have

Q =
1

2
+

λ

6
− λGr

45
− Gr

8
+

A3

2
+

λ2

6
+

4λ2Gr

45
+

GrS

144
− λGrS

840
+

λS

45
+

A5

2
, (46)

and mean temperature θm, we have

θm =

∫ 1

0
uT (y)dy∫ 1

0
u(y)dy

, (47)

3 Results and discussion

The present work analyses the effects of variable viscosity on natural convection flow between
vertical parallel plates in the presence of heat generation/absorption using Homotopy perturbation
method. The velocity and temperature fields are presented graphically in figures 2-5 for various
values of Grashof number (Gr), heat generation/absorption parameter (S) and variable viscosity
(λ). For the purpose of this discussion, the parameters of interest are carefully selected between
1 ≤ Gr ≤ 10, −2 ≤ S ≤ 2 and −1 ≤ λ ≤ 1.

Figures 2 and 3 display temperature and velocity profiles for different values of heat generation/abso-
rption parameter (S). It should be noted that positive values of S signifies heat absorption while
negative values of S signifies heat generation. It is seen from the figures that as the heat generation
(S < 0) increases, fluid temperature and velocity increase while, fluid temperature and velocity
decrease with increase in heat absorption (S > 0). Increasing the heat generation parameter causes
the fluid temperature to increase and it strengthens the convection current within the channel which
in turn increases the fluid velocity. In addition, fluid temperature drop as a result of increasing the
heat absorption parameter and the thermal boundary layer becomes thinner thereby reduces the
velocity distribution of the fluid as shown in figure 3.

Figure 4 shows the influence of thermal buoyancy parameter (Gr) on the fluid velocity for fixed
values of heat generation/absorption parameter (S) and variable viscosity parameter (λ). It is clear
from this figure, the velocity profile increases with increases in the values of thermal buoyancy.
Increasing the buoyancy parameter is made possible by decreasing the fluid viscosity which lead to
thickening of the momentum boundary layer and hence an increase in velocity with growing Gr.
Figure 5 depict the effect of viscosity parameter (λ) on the velocity profile for fixed values of heat
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generation/absorption parameter (S) and Grashof number (Gr). It is seen from the figure that
velocity decreases with the increase of the viscosity parameter and hence reduced resistance to flow.

The skin friction on both plate is simulated and presented in Table 1. From Table 1 it is evident
to show that growing buoyancy parameter, heat generation as well as viscosity have tendency to
increase the skin friction on both plates. However, heat absorption contributes a decrease in the skin
friction and this due to velocity decrease caused by increasing heat absorption which consequently
leads to decrease in the skin friction on both plates.

Table 2 reveals the numerical values of rate of heat transfer on both plates. A general view of this
table indicates that growing buoyancy parameter, heat generation as well as viscosity leads to a
significant changes in the rate of heat transfer, this can be attributed to decrease on the heated
plate while the opposite trend is observed on the cold plate. Furthermore, heat absorption leads to
increase in the heat transfer on the heated plate.

Table 3 presents the mass flux Q within the channels. It is clearly seen that the mass flux increases
with the increase in heat generation and decreases with increasing heat absorption. The table
further shows that growing buoyancy parameter and viscosity leads to increase the mass flux.

Table 4 shows the numerical values of mean temperature θm. It is observed that with the increase in
heat generation, mean temperature decreases and the reverse trend is observed in heat absorption.

To validate this problem, we compare our results obtained for temperature as well as velocity are
in good agreement with those of Jha and Ajibade [17] as shown in table 5 which shows that the
Homotopy perturbation method is an efficient tool for solving coupled and nonlinear system of
differential equations.

Fig. 2. Velocity profile for different values of S (Gr = 8.0, λ = −0.2)
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Fig. 3. Temperature profile for different values of S (Gr = 8.0, λ = −0.2)

Fig. 4. velocity profile for different values of Gr (S = 2.0, λ = −0.2)

Table 1. Estimated numerical values of skin friction τ0 and τ1

Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1
S τ0 τ1 τ0 τ1
-1 0.98240 2.23681 2.04270 2.60022
-0.5 0.89122 2.16944 1.93499 2.51369
0.5 0.70886 2.03472 1.71958 2.34064
1 0.61768 1.96736 1.61187 2.25411

Table 2. Estimated numerical values of rate of heat transfer Nu0 and Nu1

Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1
S Nu0 Nu1 Nu0 Nu1

-1 0.64444 1.18611 0.64313 1.93121
-0.5 0.82778 1.08819 0.81146 1.96662
0.5 1.16111 0.92153 1.16010 1.99301
1 1.31111 0.85278 1.29000 2.03011

12



Tafida and Ajibade; ARJOM, 14(3):1-15, 2019; Article no.ARJOM.46759

Fig. 5. Velocity profile for different values of λ (S = 2.0, Gr = 8.0)

Table 3. Estimated numerical values of mass flux Q

Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1
S Q Q

-1 0.64444 0.64513
-0.5 0.82778 0.83146
0.5 1.16111 1.18210
1 1.31111 1.41000

Table 4. Estimated numerical values of mean temperature θm

Gr = 5.0, λ = −0.3 Gr = 8.0, λ = −0.1
S θm θm
-1 0.49416 0.40148
-0.5 0.55081 0.50380
0.5 0.67386 0.72479
1 0.74085 0.84436

Table 5. Comparison of numerical values between the present problem and of Jha
and Ajibade (17)

Jha and Ajibade (17) Present work
Gr = 8.0, y = 0.5 Gr = 8.0, λ = 0, y = 0.5

S Temperature V elocity Temperature V elocity

-1 0.56974696 1.05797571 0.56967230 1.05737847
-0.5 0.53296476 1.02743612 0.53289252 1.02736545
0.5 0.47029886 0.97521826 0.47029486 0.97528212
1 0.44340944 0.95272446 0.44348524 0.95321181
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4 Conclusion

In this paper we have studied the effect of variable viscosity on natural convection flow between
vertical parallel plates in the presence of heat generation/absorption, the work concluded that
as the heat generation increases, fluid temperature and velocity increase while fluid temperature
and velocity decreases with increase in heat absorption and also the velocity profile increases with
increase in thermal buoyancy parameter. In addition, velocity decreases with the increase of the
viscosity and hence reduced resistance to flow. Finally, it is concluded that the skin friction on both
plates increase as viscosity increases.
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