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Abstract

This thesis is about Construction of Polynomials in Galois fields Using Normal Bases in finite
fields.In this piece of work, we discussed the following in the text; irreducible polynomials,
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also illustrated how this construction can be done using normal bases. Finally, we found the
general rule for construction of GF (pm) using normal bases and even the rule for producing
reducible polynomials.
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1 Introduction

1.1 Background Of Study

Normal basis in field theory is a special kind of basis for Galois extensions of finite degree, characterised
as forming a single orbit for the Galois group. Every finite Galois extension of fields has a normal
basis. In algebraic number theory, the study of the more refined question of the existence of a
normal integral basis is part of Galois module theory.

In the case of finite fields, this means that each of the bases elements is related to any one of them
by applying the Frobenius p − th power mapping repeatedly, where p is the characteristic of the
field. Let GF(pm) be a field with pm elements, and γ an element of it such that the m elements are
linearly independent. Then this set forms a normal basis for GF(pm) over GF(p). In addition, let
Fq be the finite field of order q, where q = pm, p is a prime and m is a natural number. Its extension
of degree m, Fqm , is generated algebraically over Fq by a root γ of a (monic) irreducible polynomial
f(x) ∈ Fq[x] of degree m, i.e., Fqm = Fq(γ). The Galois group of Fqm over Fq is cyclic and is
generated by the Frobenius mapping ϕ(γ) = γq , γ ∈ Fqm .The set of roots of f then comprises the

conjugates {γ, γq, · · · , γqm−1

} of γ, [1].

Often it is helpful if γ is a generator of the cyclic multiplicative group F ∗
qm (of order qm−1), in

which case γ is called a primitive element of Fqm . The conjugates of a primitive element γ of Fqm

form the roots of a (monic irreducible) primitive polynomial f(x) ∈ Fq[x] of degree m.

Alternatively, an element γ that generates Fpm additively could be sought. Though the additive
structure of Fpm is apparently more complicated, viewed as a GF -module (G being the Galois group
of Fpm over Fq), Fpm is cyclic too. The classical expression of the normal basis theorem is that
there exists an element γ whose conjugates form a basis of Fpm over Fp.

Irreducible polynomial f(x) ∈ Fq[x] of degree m whose roots constitute such a basis is called a
normal basis. Then f is referred to as a normal polynomial over Fq and any of its root is called a
normal element. Now, because of the subtleties of the GF−module structure, it is neither automatic
that a normal basis of Fpm over Fp is a normal basis over an intermediate field Fpd (where d | m)
nor vice versa.

There is still less connection between the multiplicative and additive structures of Fpm , a primitive
polynomial f(x) ∈ Fp[x] of degree m need not be normal, or a primitive polynomial normal.
Nevertheless, for every extension Fpm/Fp, by Lenstra and Schoof (1987), there exists a polynomial
f(x) ∈ Fp[x] of degree m which is both primitive and normal.

The construction of normal basis of Fp over Fpm is another challenging area. In view of that, much
work has not been done in construction of irreducible polynomials in F2m [x] using normal bases.
In this work, a computationally simple construction of polynomials using normal bases over F2n

is presented as well as the formulation of the general rule for constructing polynomials in the field
under consideration.

2 Preliminary Definitions and Basic Theorems

In this section we discuss some terms, their supporting theorems and proofs.
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2.1 Irreducible Polynomial

2.1.1 Definition

A polynomial f(x) is irreducible in GF(q) if f(x) cannot be factored into product of lower-degree
polynomials in GF(q)[x], [2].

1. A polynomial may be irreducible in one ring of polynomials, but reducible in another.

2. In GF(2)[x], if f(x) has degree > 1 and has an even number of terms, then it can’t be
irreducible. Because 1 is its root, and hence x+ 1 is one of its factor.

2.1.1 Theorem
Let f be a polynomial over a field (such as the rationals). Then f is irreducible if and only if
g = f(ax + b), a ̸= 0, is irreducible. If f is a polynomial over the integers, then f is irreducible if
and only if g = f(x+ b) is irreducible, [3].

Proof: We shall show the contrapositive, namely, f is reducible over a area if and most effective if
g = f(ax+ b), a ̸= 0, is reducible. Suppose f is reducible. Then f = p(x)q(x) for some polynomials
p, q of advantageous diploma. By substituting ax+ b for x, we get that g(x) = f(ax+ b) = p(ax+
b)q(ax+ b), whence g is reducible. Note that there is no difference here between fields and integers.
Suppose g = f(ax+b) is reducible. Then g = g(x) = f(ax+b) = p(x)q(x) for a few polynomials p, q
of effective degree. By substituting a−1(x− b) for x, we get that f(x) = p(a−1(x− b))q(a−1(x− b)),
whence f is reducible. Note that we used the fact that during a area, a non-zero element has an
inverse. Over the integers, if f(x+ b) is reducible, we can duplicate the argument with a = 1.

2.2 Primitive polynomials

2.2.1 Definition

A primitive polynomial is the minimal polynomial of a primitive element of the extension field
GF(pm) or a polynomial f(x) with coefficients in GF(p) = Z/pZ is a primitive polynomial if its

degree is m and it has a root γ in GF(pm) such that {0, 1, γ, γ2, · · · , γpm−1

} is the entire field
GF(pm), [4].

1. Given an irreducible polynomial of degree m, to test whether it is primitive, divide it from
xn−1 where m < n < pm−1. If no such n gives 0 remainder, then it is primitive. (The case
when n = pm−1 is guaranteed to have 0 remainder). If there exists n, m < n < pm−1, such
that the remainder is not 0, then it is not primitive.

2. A primitive polynomial p(x) ∈ GF(p)[x] is always irreducible in GF(p)[x] (by definition), but
irreducible polynomials are not always primitive.

3. All irreducible polynomials in GF(2)[x] of degree 2, 3, 5 are primitive.

2.2.1 Theorem

Any minimal polynomial of a primitive element a ∈ GF (pn) with p ≥ 2 prime and n ≥ 1 is a
primitive polynomial, [3].

Proof : Let f(x) be the minimal polynomial of the primitive field element a. Recall a field always
contains a primitive element and minimal polynomials exist for each field element. We’ll show x is
a generator of the field.
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Suppose to the contrary, that xm ≡ 1 (mod f(x), p) for some m, 1 ≤ m ≤ pm − 2. Then there is an
g(x) such that xm − 1 ≡ g(x)f(x)(mod p) Since f is a minimal polynomial of a, it has a as a root:
f(a) ≡ 0 (mod f(x), p) so am ≡ 1 (modf(x), p) contradicting the primitivity of ‘a′ because its order
is not maximal.

By Fermat’s theorem for fields, the non-zero element x satisfies xpn−1 ≡ 1 (modf(x), p) so x is a
generator of the field, and f(x) is a primitive polynomial. �

2.3 Field

2.3.1 Definition

A field is one of the fundamental algebraic structures used in abstract algebra. It is a commutative
ring in which each non-zero element has an inverse, [2].

2.3.1 Theorem
For a prime p and a monic irreducible π(x) in Fp[x] of degree m, the ring Fp[x]/(π(x)) is a field of
order pm, [4].

Proof: The cosets modπ(x) are represented by remainders b0+ b1x+ · · ·+ bm−1x
m−1; bi ∈ Fp; and

there are pm of these. Since the π(x) is irreducible, the ring Fp[x]/(π(x)) is a field using the same
proof that Z/(m) is a field when m is prime. �

2.4 Finite Field or Galois Field

2.4.1 Definition

A field is said to be a Galois field if it contains finite number of elements. As with any field, a
finite field is a set with the operations of multiplication, addition, subtraction and division defined
satisfying certain basic rule, [3]. The most common examples of finite fields are given by the integer
modp when p is a prime number.

2.4.1 Theorem
For every prime power pn, a field of order pn exists, [5].

Proof: Taking our cue from the declaration of Lemma 2.9.1, allow F be a field extension of Fp

over which xpm − x splits absolutely. General theorems from finite theory guarantee there may be
such a field. Inside F , the roots of xpm − x form the set S = {t ∈ F : tp

m

= t}. This set has length
pm since the polynomial xpm − x is separable: (xpm − x)′ = pmxpm−1

− 1 = −1 because p = 0
in F , so xpm − x has no roots in common with its derivative. It splits completely over F and has
degree pm, so it has pm roots in F . We will display S as a sub-field of F . It contains 1 and is
simply closed under multiplication and (for nonzero solutions) inversion. It remains to expose S
is an additive group. Since p = 0 in F , (a + b)p = ap + bp for all a and b in F (the intermediate

terms in (a + b)p coming from the binomial theorem have integral coefficients

(
p
k

)
, which are

all multiples of p and thus vanish in F). Therefore the pth power map t 7→ tp on F is additive. The
map t 7→ tp

n

is also additive since it’s the n-fold composite of t 7→ tp with itself and the composition
of homomorphisms is a homomorphism. The fixed factors of an additive map are a group under
addition, so S is a group under addition. Therefore S is a field of order pn.
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2.5 Order of Finite Fields

2.5.1 Definition

The number of elements of a finite field is known as its order. A finite field of order q exists if and
most effective if the order q is a prime power pk (p is a prime number and k is a positive integer).

2.5.1 Theorem

Any finite field has prime power order, [4].

Proof: For every commutative ring R there is a unique ring homomorphism Z −→ R, given by

m 7−→


1 + 1 + · · ·+ 1, if m ≥ 0,

m times

−(1 + 1 + · · ·+ 1), if m < 0.

| m | times

(2.1)

We apply this to the case when R = F is a finite field. The kernel of Z −→ F is nonzero since Z
is infinite and F is finite. Write the kernel as (m) = mZ for an integer m > 0, so Z/(m) embeds
as a subring of F . Any subring of a field is a domain, so m has to be a prime number, say m = p.
Therefore there is an embedding Z/(p) ↩→ F . Viewing F as a vector space over Z/(p), it is finite-
dimensional since F is finite. Letting n = dimZ/(p)(F ) and picking a basis {e1, · · · , en} for F over
Z/(p), elements of F can be written uniquely as c1e1 + · · ·+ cnen, ci ∈ Z/(p): Each coefficient has
p choices, so ♯F = pn, [5]. �

2.6 Algebraic Extension

2.6.1 Definition

Let E be a finite field extension of F (F is a subfield of E). An element γ ∈ E is said to be
algebraic over F if there exist element a1, a2, · · · , an ∈ F , n ≥ 1, not all equal to zero such that
ao+a1γ+a2γ

2+ · · ·+anγ
n = 0. In other words, an element γ ∈ E is algebraic over F if there exist

a non-constant polynomial q(x) ∈ F [x] such that q(γ) = 0. Otherwise γ is called transcendental
over F , [3].

2.6.1 Theorem

Let Fq be a finite field and Fqn a finite extension field. Then Fqn is a simple algebraic extension of
Fq and every primitive element of Fqn can serve as a defining element of Fqn over Fq , [3].

Proof: Let ξ be a primitive element (the generator of the cyclic group F ∗
q of Fqn . We clearly have

Fq(ξ) ⊆ Fqn . On the other hand, Fq(ξ) contains 0 and all powers of ξ, and so all elements of Fqn .
Therefore Fqn = Fq(ξ). �

2.7 Normal basis

2.7.1 Definition

Let K = Fq and F = Fqm . Then a basis of F over K of the form {γ, γq, · · · , γqm−1

}, consisting of
a suitable element γ ∈ F and its conjugates with respect to K, is referred to as a normal bases of
F over K.
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2.7.1 Theorem

Let N = {β0, β1, · · · , βn−1} be a normal bases of Fqn over Fq. Then an element γ =
∑n−1

i=0 aiβi,
where ai ∈ Fq, is a normal element if and only if the polynomial γ(x) =

∑n−1
i=0 aixi ∈ Fq[x] is

relatively prime to xn − 1, [6].

Proof : Note that
γ
γq

...

γqn−1

 =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

...
...

...
...

a1 a2 a3 · · · a0




β1

β2

...
βn−1

 . (2.2)

The n elements γ, γq, · · · , γqn−1

are linearly independent if and only if the circulant matrix
c[a0, a1, · · · , an−1] is nonsingular, that is, if and only if the polynomial γ(x) =

∑n−1
i=0 aixi ∈ Fq[x]

is relatively prime to xn − 1. �

3 Main Result

3.1 Overview

In this section we present to you how polynomials are constructed in Galois field, and how irreducible
polynomials are constructed in GF (2m) over normal bases.

3.1.1 Construction of Polynomial Over GF (pm)

The construction of GF (pm) is basically given as;

Fpm = {a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1 : ai ∈ Fp} = {0, 1, α, α2, · · · , αpm−2}, αpm−1 = 1,

π(α) = 0, is a set of polynomials with coefficient in Fp of degree less than or equal to m− 1.

3.1.2 Multiplication(•) In Fp

In Constructing polynomials in Fp[x], we need an irreducible polynomial π(x) of degree m in Fp[x]
such that Fp[x]modπ(x) produces a polynomial as a remainder which will be of degree less than or
equal to m− 1 and with the choice of π(x), we take π(x) = 0.

For illustration, we first let q = 4 = 22 = pm.

Fpm = {polynomials of degree less than or equal to 1 : ai ∈ Fp} where p = 2 and m = 2.
The possible elements of F4 = {0, 1, α, α2}. Taking an irreducible polynomial of degree two, that
is, π(x) = x2 + x+ 1 and for π(x) = 0 we have x2 + x+ 1 = 0, implying that α2 = x2 = x+ 1. So
we have the construction as;

F4 = {0, 1, x, x+ 1} = {0, 1, α, α2}, where α3 = 1 and α4 = 0.

Let also consider the case when q = 8 = 23 = pm.
Fpm = {polynomials of degree less than or equal to 2 : ai ∈ Fp} where p = 2,m = 3.

6
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The possible elements of F8 = {0, 1, α, α2, α3, α4, α5, α6} where α7 = 1 and α8 = 0. Choosing an
irreducible polynomial of degree three, ie. π(x) = x3+x+1, for π(x) = 0, implying that x3 = x+1,
we have;

α = x α5 = x2 + x+ 1
α2 = x2 α6 = x2 + 1

α3 = x+ 1 α7 = 1
α4 = x2 + x α8 = 0

∴ F8 = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1} = {0, 1, α, α2, α3, α4, α5, α6} where α7 = 1 in F8.

Let q = 16 = 24 = pm.

Fpm = {polynomials of degree less than or equal to 3 : ai ∈ Fp} where p = 2,m = 4.

The possible elements of F ∗
16 = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15}. Choo-

sing an irreducible polynomial of degree four, ie. π(x) = x4 + x + 1, for π(x) = 0, implying that
x4 = x+ 1, we have;

α = x α6 = x3 + x2 α11 = x3 + x2 + x
α2 = x2 α7 = x3 + x+ 1 α12 = x3 + x2 + x+ 1
α3 = x3 α8 = x2 + 1 α13 = x3 + x2 + 1

α4 = x+ 1 α9 = x3 + x α14 = x3 + 1
α5 = x2 + x α10 = x2 + x+ 1 α15 = 1

∴ F ∗
16 = {1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1, x3, x3 + 1, x3 + x, x3 + x2, x3 + x + 1, x3 + x2 +

x, x3+x2+x+1, x3+x2+1} = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15} where
α15 = 1 in F ∗

16 and each element has a multiplicative inverse.

3.1.3 General Rule for Producing Reducible Polynomials

The general rule below can be used to produce reducible polynomials which is a product of
irreducible polynomials where at least one is a primitive polynomial which we used in constructing
of Galois field above using normal bases.

Let consider GF (8), we have (x3 + x2 + 1)(x+ 1) = x4 + x2 + x+ 1

= x8/2 + x8/4 + x+ 1 8/2∑
i=2j

x8/i

+ x+ 1 = 1 + x+

(
4∑

i=2j

x8/i

)
: f or j = 1, and 2

Therefore we finally have the general rule for constructing reducible polynomial as;

f(x) = 1 + x+

 q/2∑
i=2j

xq/i

 (3.1)

where j = 1, 2, 3, · · · , q is the order of GF (pm), that is GF (2m) = GF (q) and
(∑q/2

i=2j
xq/i

)
is zero

when q ≤ 2.

7



Aidoo and Gyamfi; ARJOM, 14(3): 1-15, 2019; Article no.ARJOM.50061

3.1.4 Multiplication In F2m Using Normal Bases

Here, we first consider multiplication in F4 to see how the construction is done using normal bases.
Let q = 4 = 22 = pm. Then GF (4) = GF (22) = F2(j)/(j

2 + j + 1) which is a polynomial of degree
two.

From j2 + j + 1 we have j2 + j = 1 and j2 = j + 1, implying that j2, j are the bases of GF (4). We
know that the generator polynomial for GF (4) is x2 + x+ 1. Therefore we have the normal bases
as j = (0 1) and j2 = j.j = (1 0).

For j3 = j.j2 = j(j + 1) = j2 + j , adding these bases, we have
j3 = (1 0) + (0 1) = (1 1).

We further consider q = 8 = 23 = pm.

The GF (8) = GF (23) = F2(j)/(j
3 + j2 + 1) which is a polynomial of degree three. From

α(j) = j3 + j2 + 1, for α(j) = 0, we have j3 = j2 + 1. But the reducible polynomial for GF (8) is
x4 + x2 + x+ 1 = 0.

We have, x4 + x2 + x + 1 = 0 = (x3 + x2 + 1)(x + 1) showing that x3 + x2 + 1 is the irreducible
polynomial because its degree is equal to m of GF (8). So, we multiply through the equation by j
to have j3.j = j(j2 + 1).

Then, j4 = j3 + j but j3 = j2 + 1, connoting that, j4 = j2 + j + 1, hence the bases of GF (8) are
j, j2, j4. The normal bases for GF (8) are as follow;

j = (0 0 1) , j = (0 1 0) , j = (1 0 0) since j4 + j2 + j = 1 in GF (8).

But we know that, j4 = j3 + j.

j3 = j4 + j, so adding these bases, we have
j3 = (1 0 0) + (0 0 1) = (1 0 1).

Also, j5 = j.j4 but j4 = j2 + j + 1
j5 = j.(j2 + j + 1) = j3 + j2 + j. We have the addition as;
j5 = (1 0 1) + (0 1 0) + (0 0 1)
J5 = (1 1 0)

For j6 = j2.j4 = j2(j2 + j + 1) = j4 + j3 + j2, adding the bases, we have
j6 = (1 0 0) + (1 0 1) + (0 1 0)
j6 = (0 1 1)

For j8 = j4.j4 = j4(j2 + j + 1) = j6 + j5 + j4

j8 = (0 1 1) + (1 1 0) + (1 0 0)
j8 = (0 0 1).

Next, let consider the case when q = 16 = 24 = pm. The GF(16) =GF(24) is a polynomial of degree
4.

π(j) = 1 + j2 + j4 + j8 and squaring π(j), π(j)2 = (1 + j + j2 + j4 + j8)2 = (1 + j2 + j4 + j8+16).
Therefore we have the bases j, j2, j4, j8, hence j, j2, j4, j8 = 1 1 1 1, implying that j is the root
of the polynomial x8+x4+x2+x+1 = 0 which is the reducing polynomial for GF(16). We factorize
the polynomial x8 + x4 + x2 + x + 1 = (x4 + x3 + 1)(x4 + x3 + x2 + x + 1) into two irreducible
polynomials. This, thus, gives two choices for the construction.

8
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The normal bases for GF(16) are as follow;

j = (0 0 0 1), j2 = (0 0 1 0), j4 = (0 1 0 0) and j8 = (1 0 0 0) since j + j2 + j4 + j8 = (1 1 1 1). So
considering the irreducible polynomial x4 + x3 + 1. j3 = j.j2 but from the irreducible polynomial,
we have j3 = j4 + 1 and j4 = j3 + 1. But we know that j4 = j8 + j2 + j + 1.
j3 + 1 = j8 + j2 + j + 1 + 1 ⇒ j3 = j8 + j2 + j
= (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
j3 = (1 0 1 1)

for j5 = j.j4 = j(j3 + 1) = j4 + j
= (0 1 0 0) + (0 0 0 1)
j5 = (0 1 0 1)

for j9 = j.j8 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
j9 = (0 1 0 1) + (1 0 1 1) + (0 0 1 0) + (0 0 0 1) = (1 1 0 1)
for j6 = j2.j4 = j2(j3 + 1) = j5 + j2

= (0 1 0 1) + (0 0 1 0)
j6 = (0 1 1 1)

for j10 = j2.j8 = j2(j4 + j2 + j + 1) = j6 + j4 + j3 + j2

= (0 1 1 1) + (0 0 1 0) + (1 0 1 1) + (0 1 0 0)
j10 = (1 0 1 0)

for j12 = j4.j8 = j4(j4 + j2 + j + 1) = j8 + j6 + j5 + j4

= (1 0 0 0) + (0 1 1 1) + (0 1 0 1) + (0 1 0 0)
j12 = (1 1 1 0)

for j16 = j8.j8 = j8(j4 + j2 + j + 1) = j12 + j10 + j9 + j8

= (1 1 1 0) + (1 0 1 0) + (1 1 0 1) + (1 0 0 0)
j16 = (0 0 0 1)

We again illustrate the multiplication of the normal bases using x4 +x3 +x2 +x+1. j = (0 0 0 1),
j2 = (0 0 1 0), j4 = (0 1 0 0) and j8 = (1 0 0 0).
For j3 = j.j2 but from the irreducible polynomial, j3 = j4 + j2 + j + 1 and 1 = j4 + j3 + j2 + j.
Also, 1 = j8 + j4 + j2 + j
Then j4 + j3 + j2 + j = j8 + j4 + j2 + j
j3 = j8

j3 = (1 0 0 0)

for j5 = j.j4

= j(j3 + j2 + j + 1)
= j4 + j3 + j2 + j = (0 1 0 0) + (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
j5 = (1 1 1 1)

for j6 = j2.j4 = j2(j3 + j2 + j + 1) = j5 + j4 + j3 + j2

= (1 1 1 1) + (0 1 0 0) + (1 0 0 0) + (0 0 1 0)
j6 = (0 0 0 1)

for j9 = j.j8; But j8 = j4 + j2 + j + 1
j9 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
= (1 1 1 1) + (1 0 0 0) + (0 0 1 0) + (0 0 0 1)
j9 = (0 1 0 0)

for j10 = j2.j8 = j2(j4 + j2 + j + 1) = j6 + j4 + j3 + j2

9



Aidoo and Gyamfi; ARJOM, 14(3): 1-15, 2019; Article no.ARJOM.50061

= (1 0 0 1) + (0 1 0 0) + (1 0 0 0) + (0 0 1 0)
j10 = (1 1 1 1)

for j12 = j4.j8 = j4(j4 + j2 + j + 1) = j8 + j6 + j5 + j4

= (1 0 0 0) + (0 0 0 1) + (1 1 1 1) + (0 1 0 0)
j12 = (0 1 0 0)

for j16 = j8.j8 = j8(j4 + j2 + j + 1) = (j12 + j10 + j9 + j8)
= (0 0 1 0) + (1 1 1 1) + (0 1 0 0) + (1 0 0 0)
j16 = (0 0 0 1)

We consider also the case of q = 32 = 25 = pm which is a polynomial of degree five. The bases
associated with GF(32) are j, j2, j4, j8, j16. Therefore the polynomial is x16 + x8 + x4 + x2 + x+1.
We factorize and get the associated irreducible polynomials

x16+x8+x4+x2+x+1 = (x+1)(x5+x4+x2+x+1)(x5+x4+x3+x+1)(x5+x4+x3+x2+1)
where (x5 + x4 + x2 + x + 1), (x5 + x4 + x3 + x + 1), (x5 + x4 + x3 + x2 + 1) are the irreducible
polynomials and these gives us three options. The normal bases for using x5 + x4 + x2 + x + 1 is
as follows; j = (0 0 0 0 1),j2 = (0 0 0 1 0), j4 = (0 0 1 0 0),j8 = (0 1 0 0 0),j16 = (1 0 0 0 0). Since
α = j + j2 + j4 + j8 + j16 = (1 1 1 1).

j3 = j.j2, but from the irreducible polynomial, we have j5 = j4+j2+j+1 also j+j2+j4+j8+j16 = 1

j6 = j.j5 = j(j4 + j2 + j + 1) = j5 + j3 + j2 + j
= j4 + j2 + j + 1 + j3 + j2 + j
j6 = j4 + j3 + 1

j7 = j.j6 = j5 + j4 + j
= j4 + j2 + j + 1 + j4 + j
j7 = j2 + 1 = j2 + j + j2 + j4 + j8 + j16 = j + j4 + j8 + j16

j8 = j.j7 = j3 + j
j3 = j8 + j = (0 1 0 0 0) + (0 0 0 0 1)
j3 = (0 1 0 0 1)

We know that from above, j5 = j4 + j2 + j + 1 and 1 = j + j2 + j4 + j8 + j16

Then, j5 = j4 + j2 + j + j + j2 + j4 + j8 + j16

= j8 + j16

= (0 1 0 0 0) + (1 0 0 0 1)
j5 = (1 1 0 0 0)

We also know that j6 = j4 + j3 + 1, therefore, j6 = j4 + j3 + j16 + j8 + j4 + j2 + j
= j16 + j8 + j3 + j2 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (0 1 0 0 1) + (0 0 0 1 0) + (0 0 0 0 1)
j6 = (1 0 0 1 0)

For j.j8 = j9 = j(j3 + j) = j4 + j2

j9 = (0 0 1 0 0) + (0 0 0 1 0)
j9 = (0 0 1 1 0)

For j.j8 = j9 = j(j3 + j) = j4 + j2

j9 = (0 0 1 0 0) + (0 0 0 1 0)
j9 = (0 0 1 1 0)

For j10 = j2.j8 = j2(j3 + j) = j5 + j3

10
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= (1 1 0 0 0) + (0 1 0 0 1)
j10 = (1 0 0 0 1)

For j12 = j4.j8 = j4(j3 + j) = j7 + j5

But j7 = j16 + j8 + j4 + j
j12 = j16 + j8 + j5 + j4 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (1 1 0 0 0) + (0 0 1 0 0) + (0 0 0 0 1)
j12 = (0 0 1 0 1)

For j17 = j.j16 but = (j8)2 = (j3 + j)2 = j7 + j5

Then, j17 = j(j3 + j)2 = j(j6 + j2) = (j7 + j3)
j17 = j + j4 + j8 + j16 + j3 but j3 = j8 + j
= j + j4 + j8 + j16 + j8 + j
= j16 + j4

= (1 0 0 0 0) + (0 0 1 0 0)
j17 = (1 0 1 0 0)

For j18 = j2.j16 = j2(j6 + j2) = j8 + j4

= (0 1 0 0 0) + (0 0 1 0 0)
j18 = (0 1 1 0 0)

For j20 = j16.j4 = j4(j6 + j2) = j10 + j6

= (1 0 0 0 1) + (1 0 0 1 0)
j20 = (0 0 0 1 1)

For j24 = j16.j8 = j8(j6 + j2) = j14 + j10

but j14 = j7.j7 = (j2 + 1)2 = j4 + 1 = j16 + j8 + j4 + j + j4 + j2

= j16 + j8 + j
Hence, j24 = j16 + j10 + j8 + j2 + j
= (1 0 0 0 1) + (1 0 0 0 0) + (0 1 0 0 0) + (0 0 0 1 0) + (0 0 0 0 1)
j24 = (0 1 0 1 0)

For j32 = (j16)2 = (j6 + j2)2 = j12 + j4

= (0 0 1 0 1) + (0 0 1 0 0)
j32 = (0 0 0 0 1)

For the irreducible polynomial x5 + x4 + x3 + x + 1, we have j = (0 0 0 0 1),j2 = (0 0 0 1 0),
j4 = (0 0 1 0 1),j8 = (0 1 0 0 0),j16 = (1 0 0 0 0) and 1 = j + j2 + j4 + j8 + j16. For j3 = j2.j, but
from the polynomial, j5 = j4 + j3 + j + 1
j6 = j.j5 = j(j4 + j3 + j + 1) = j5 + j4 + j2 + j
= j4 + j3 + j + 1 + j4 + j2 + j
j6 = j3 + j2 + 1

j7 = j.j6 = j4 + j3 + j

j8 = j.j7 = j5 + j4 + j2 = j4 + j3 + j + 1 + j4 + j2

j8 = j3 + j2 + j + 1 = j3 + j2 + j + j + j2 + j4 + j8 + j16

j8 = j16 + j8 + j4 + j3

Then, j3 = j8 + j8 + j16 + j4

j3 = j16 + j8 + j4 = (1 0 0 0 0) + (0 0 1 0 0)
j3 = (1 0 1 0 0)

11
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We know that j5 = j4 + j3 + j + 1 = j4 + j3 + j + j + j2 + j4 + j8 + j16

= j16 + j8 + j3 + j2 = (1 0 1 0 0) + (1 0 0 0 0) + (0 1 0 0 0) + (0 0 0 1 0)
j3 = (0 0 1 1 0)

We also know that j6 = j3 + j2 + 1 = j3 + j2 + j + j + j2 + j4 + j8 + j16 = j16 + j8 + j4 + j3 + j
= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 0 1)
j6 = (0 1 0 0 1)

For j9 = j8.j = j(j3 + j2 + j + 1) = j4 + j3 + j2 + j
= (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 1 0) + (0 0 0 0 1)
j9 = (1 0 0 1 1)

For j10 = j2.j8 = j2(j3 + j2 + j + 1) = j5 + j4 + j3 + j(2)
= (0 1 1 1 0) + (0 0 1 0 0) + (1 0 1 0 0) + (0 0 0 1 0)
j10 = (1 1 1 0 0)

For j12 = j4.j8 = j4(j3 + j2 + j + 1) = j7 + j6 + j5 + j4

but j7 = j4 + j3 + j
Then, j12 = j4 + j3 + j + j6 + j5 + j(4) = j6 + j5 + j3 + j
= (1 0 1 0 0) + (0 0 0 0 1) + (0 1 0 0 1) + (0 1 1 1 0)
j12 = (1 0 0 1 0)

For j17 = j.j16 = j.(j8)2 = j(j3 + j2 + j + 1)2 = j.(j6 + j4 + j2 + 1) = j7 + j5 + j3 + j
but j7 = j4 + j3 + j
Then, j17 = j4 + j3 + j + j5 + j3 + j = j5 + j4

= (0 1 1 1 0) + (0 0 1 0 0)
j17 = (0 1 0 1 0)

For j18 = j2.j16 = j2(j3 + j2 + j + 1)2 = j2(j6 + j4 + j2 + 1) = j8 + j6 + j4 + j2

= (0 1 0 0 0) + (0 1 0 0 1) + (0 0 1 0 0) + (0 0 0 1 0)
j18 = (0 0 1 1 1)

For j20 = j4.j16 = j4(j3 + j2 + j + 1)2 = j4(j6 + j4 + j2 + 1) = j10 + j8 + j6 + j4

= (1 1 1 0 0) + (0 1 0 0 0) + (0 1 0 0 1) + (0 0 1 0 0)
j20 = (1 1 0 0 1)

For j24 = j8.j16 = j8(j6 + j4 + j2 + 1) = j14 + j12 + j10 + j8

but j14 = (j7)2 = (j4 + j3 + j)2 = j8 + j6 + j2

Hence, j24 = j8 + j6 + j2 + j12 + j10 + j8

= j12 + j10 + j6 + j2

= (1 0 0 1 0) + (1 1 1 0 0) + (0 1 0 0 1) + (0 0 0 1 0)
j24 = (0 0 1 0 1)

For j32 = (j16)2 = (j6 + j4 + j2 + 1)2 = j12 + j8 + j4 + 1 = j12 + j8 + j4 + j + j2 + j4 + j8 + j16

= j16 + j12 + j2 + j
= (1 0 0 0 0) + (1 0 0 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j32 = (0 0 0 0 1)

For the irreducible polynomial x5 + x4 + x3 + x2 + 1, we have the normal bases as:
j2.j = j3, but from the polynomial, j5 = j4 + j3 + j2 + j + 1
j6 = j.j5 = j5 + j4 + j3 + j = j4 + j3 + j2 + 1 + j4 + j3 + j
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j6 = j2 + j + 1

j7 = j.j6 = j(j2 + j + 1) = j2 + j2 + j
j8 = j.j7 = j4 + j3 + j2

= j3 = j8 + j4 + j2

= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0)
j3 = (0 1 1 1 0)

j5 = j4 + j3 + j2 + 1 = j4 + j3 + j2 + j16 + j8 + j4 + j2 + j
= j16 + j8 + j3

= (1 0 0 0 0) + (0 1 0 0 0) + (0 1 1 1 0)
j5 = (1 0 1 1 1)

j6 = j2 + j + 1 = j2 + j + j + j2 + j4 + j8 + j16 = j16 + j8 + j4

= (1 0 0 0 0) + (0 1 0 0 0) + (0 0 1 0 0)
j6 = (1 1 1 0 0)

j9 = j.j8 = j(j4 + j3 + j2) = j5 + j4 + j3

= (1 0 1 1 1) + (0 0 1 0 0) + (0 1 1 1 0)
j9 = (1 1 1 0 1)

j10 = j2.j8 = j2(j4 + j3 + j2) = j6 + j5 + j4

= (1 1 1 0 0) + (1 0 1 1 1) + (0 0 1 0 0)
j10 = (0 1 1 1 1)

j12 = j4.j8 = j4(j4 + j3 + j2) = j8 + j7 + j6 = j8 + j6 + j3 + j2 + j
= (0 1 0 0 0) + (1 1 1 0 0) + (0 1 1 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j12 = (1 1 0 0 1)

j17 = j.j16 = j(j8)2 = j(j8 + j6 + j4) = j9 + j7 + j5 = j9 + j5 + j3 + j2 + j
= (1 1 1 0 1) + (1 0 1 1 1) + (0 1 1 1 0) + (0 0 0 1 0) + (0 0 0 0 1)
j17 = (0 0 1 1 1)

j18 = j2.j16 = j2(j8 + j6 + j4) = j10 + j8 + j6

= (0 1 1 1 1) + (0 1 0 0 0) + (1 1 1 0 0)
j18 = (1 1 0 1 1)

j20 = j4.j16 = j4(j8 + j6 + j4) = j12 + j10 + j8

= (1 1 0 0 1) + (0 1 1 1 1) + (0 1 0 0 0)
j20 = (1 1 1 1 0)

j24 = j8.j6 = j8(j8 + j6 + j4) = j16 + j14 + j12

but j14 = (j7)2 = (j3.j2 + j)2 = (j6 + j4 + j2)
Hence, j24 = j16 + j12 + j6 + j4 + j2

= (1 0 0 0 0) + (1 1 0 0 1) + (1 1 1 0 0) + (0 0 1 0 0) + (0 0 0 1 0)
j24 = (1 0 0 1 1)

j32 = (j16)2 = (j8 + j6 + j4)2 = j16 + j12 + j8

= (1 0 0 0 0) + (1 1 0 0 1) + (0 1 0 0 0)
j32 = (0 0 0 0 1)
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3.1.5 General Construction Of GF (pm) Using Normal Bases

We postulate the general rule for constructing Galois field using the normal bases expressed above.

For all Γ, β ∈ GF (pm), we uniquely express them as;

β =

m−1∑
k=0

bkj
pk , and Γ =

m−1∑
i=0

aij
pi , ∀ai, bk ∈ F2

Let

Z = Γ • β

Z =

(
m−1∑
i=0

aij
pi

)
•

(
m−1∑
k=0

bkj
pk

)

Z =

m−1∑
i=0

m−1∑
k=0

(
aibkj

pi • jp
k
)

(3.2)

4 Conclusion

In conclusion, polynomials from Galois fields using normal bases have been constructed as well as
the general rule for constructing polynomials in finite fields with normal bases in the field under
consideration.
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