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Abstract

In this paper we consider the initial value problem of an inertial model for a generalized semilinear
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1 Introduction

In this paper we consider the initial value problem of an inertial model for the following generalized
semilinear plate type equation with memory in Rn ( n ≥ 1):{

utt −∆utt + (−∆)pu+ u+ g ∗∆u = f(u, ut,∇u),
u(x, 0) = u0(x), ut(x, 0) = u1(x).

(1.1)

Here p ≥ 1 is a real number, the subscript t in ut and utt denotes the time derivative (i.e., ut = ∂tu
and utt = ∂2

t u), u = u(x, t) is the unknown function of (x, t) ∈ Rn × R+, and ∆utt corresponds to
the rotational inertia. The memory term g ∗ ∆u :=

∫ t

0
g(t − τ)∆u(τ)dτ means that the stress at

an instant depends on the whole history of the strains the material has suffered. We assume the
following assumptions:

Assumption [A]: g ∈ C2(R+), g(s) > 0, and there exist Ci > 0 (i = 0, 1, 2) such that

i) −C0g(s) ≤ g′(s) ≤ −C1g(s), |g′′(s)| ≤ C2g(s), ∀s ∈ R+,

ii)
∫∞
0
g(s)ds < 1.

Assumption [B]: f ∈ C∞(Rn+2) and there exists α ∈ Z+ satisfying α > αn := 1+max{ 2
n
, 4(p−2)
n(p−1)

}
such that f(λu, λut, λ∇u) = λαf(u, ut,∇u), ∀λ > 0.

We note that the above assumptions are similar to that in [1], which corresponds to the case p = 2.
And we will use the operator |∇| (which is defined by the Fourier transform) to measure regularity.
If we let

σp(r, n) = (n
2
+ r)(p− 1) + r (1.2)

denote the index of regularity-loss, then we can state our main theorem:

Theorem 1.1 (existence and decay estimates). Let s ≥ 0, p ≥ 1 be real numbers, s > max{ p
2
+ 1, p− 1

2
}

for n = 1 and s ≥ np
2

+ 1 for n ≥ 2. Assume that u0 ∈ Hs+max{1,p−1}(Rn) ∩ L1(Rn) and
u1 ∈ Hs(Rn) ∩ L1(Rn), and put

E0 := ∥u0∥Hs+max{1,p−1} + ∥u1∥Hs + ∥(u0, u1)∥L1 .

Then there exists a unique solution u(x, t) to the problem (1.1), which satisfies

u ∈ C0([0,∞);Hs+max{1,p−1}(Rn)) ∩ C1([0,∞);Hs(Rn)),

and the following decay estimates:

∥|∇|ru(t)∥
Hs+max{1,p−1}−σp(r,n) ≤ CE0(1 + t)−

n
4
− r

2 , (1.3)

for real number r ≥ 0 satisfying σp(r, n) ≤ s+max{1, p− 1}, and

∥|∇|rut(t)∥Hs−σp(r,n) ≤ CE0(1 + t)−
n
4
− r

2 , (1.4)

for real number r ≥ 0 satisfying σp(r, n) ≤ s.

Remark 1. The case p = 2 corresponds essentially to the result in [2].

For the plate type equations, there are many results in the literature. In [4], da Luz and Charão
studied a semilinear damped dissipative plate equation:

utt −∆utt +∆2u+ ut = f(u). (1.5)
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They proved the global existence of solutions and a polynomial decay of the energy by exploiting
an energy estimate method. However their result was restricted to the dimension 1 ≤ n ≤ 5. This
restriction on the space dimension was removed by Sugitani-Kawashima [5] by the fundamental
method of energy estimates in the Fourier (or frequency) space and some sharp decay estimates. For
the case of memory dissipative plate equations, Liu-Kawashima [3] studied the following semilinear
plate equation with memory term

utt +∆2u+ u+ g ∗∆u = f(u),

and obtained the global existence and decay estimates of solutions by employing the energy method
in the Fourier space. In [1], Liu studied the following problem with memory and rotational term

utt −∆utt +∆2u+ u+ g ∗∆u = f(u, ut,∇u),
and proved similar results as in [3]. The results in these papers [1, 3] and the general dissipative
plate equation [5, 6, 7] show that they are of regularity-loss property. The decay structure of the
regularity-loss type in [1, 3] is characterized by a function in the frequency space

ρ(ξ) =
|ξ|2

1 + |ξ|4 .

A similar decay structure of the regularity-loss type was also observed for the dissipative Timoshenko
system ([8]) and a hyperbolic-elliptic system related to a radiating gas ([9]). For more studies on
various aspects of dissipation of plate equations, we refer to [10, 11, 12, 13]. Also, as for the study
of decay properties for hyperbolic systems of memory-type dissipation, we refer to [14, 15, 16].

The main purpose of this paper is to study the decay estimates and regularity-loss property of
solutions to the initial value problem (1.1) in the spirit of [1, 3]. In [2], Mao-Liu studied the linear
equation corresponding to (1.1) and obtained a result which shows that in the case of p > 1, the
decay structure of the linear equation is of regularity-loss property and this property is characterized
by the following function in the frequency space

ρp(ξ) =
|ξ|2

1 + |ξ|2p

while in the case of p = 1 there is no regularity-loss. Our goal is to check whether this property is
stable under the semilinear perturbation. By a similar argument as in [1], we proved this stability
under our assumptions. We note since our result is in the frame of fractional order derivative and
fractional Sobolev spaces, more subtle and delicate estimates must be needed, and it will be done
in Section 2.

Before closing this section, we give some notations to be used below. Let F [f ] denote the Fourier
transform of f defined by

F [f ](ξ) = f̂(ξ) :=
1

(2π)
n
2

∫
Rn

e−ix·ξf(x)dx,

and we denote its inverse transform as F−1.

For s ∈ R, we denote the Sobolev spaces by Hs(Rn), its norm is defined by

∥f∥Hs = ∥(1−∆)
s
2 f∥L2(Rn

x )
∼= ∥⟨ξ⟩sf̂∥L2(Rn

ξ
),

here ⟨ξ⟩ = (1 + |ξ|2)
1
2 denotes the Japanese bracket.

Also, Ck(I;Hs(Rn)) denotes the space of k-times continuously differentiable functions on the
interval I with values in the Sobolev space Hs = Hs(Rn).

Finally, in this paper, we denote various constants by the same symbol C or c, which may change
line to line.
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2 Proof of the Main Theorem

In this section, we prove the global existence and decay estimates for solution to the problem (1.1)
by employing the contraction mapping theorem. First we recall some properties for the fundamental
solution G(x, t) and H(x, t), which satisfy the following equations:{

(1−∆)Gtt + (1 + (−∆)p)G+ g ∗∆G = 0,

G(x, 0) = δ(x), Gt(x, 0) = 0,

and {
(1−∆)Htt + (1 + (−∆)p)H + g ∗∆H = 0,

H(x, 0) = 0, Ht(x, 0) = δ(x),

respectively.

Lemma 2.1 (see [2]). Let r, µ, ν, s ≥ 0, p ≥ 1 be real numbers , φ ∈ Hs+max{1,p−1}(Rn) ∩
Lq(Rn), ψ ∈ Hs(Rn) ∩ Lq(Rn), 1 ≤ q ≤ 2, then the following estimates hold:

Case I (p > 1) :

1) ∥|∇|rG(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + C(1 + t)
− ν

2(p−1) ∥φ∥Hr+µ+ν ,
for r ≥ 0, µ ≥ 0, ν ≥ 0, r + µ+ ν ≤ s+max{1, p− 1}.

2) ∥|∇|rGt(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + C(1 + t)
− ν

2(p−1) ∥φ∥Hr+µ+ν+max{1,p−1} ,
for r ≥ 0, µ ≥ 0, ν ≥ 0, r + µ+ ν ≤ s.

3) ∥|∇|rH(t) ∗ ψ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥ψ∥Lq + C(1 + t)
− ν

2(p−1) ∥ψ∥Hr+µ+ν−max{1,p−1} ,
for r ≥ 0, µ ≥ 0, ν ≥ 0, r + µ+ ν ≤ s+max{1, p− 1}.

4) ∥|∇|rHt(t) ∗ ψ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥ψ∥Lq + C(1 + t)
− ν

2(p−1) ∥ψ∥Hr+µ+ν ,
for r ≥ 0, µ ≥ 0, ν ≥ 0, r + µ+ ν ≤ s.

Case II (p = 1) :

1)′ ∥|∇|rG(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + Ce−ct∥φ∥Hr+µ ,
for 0 ≤ r + µ ≤ s.

2)′ ∥|∇|rGt(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + Ce−ct∥φ∥Hr+µ ,
for 0 ≤ r + µ ≤ s.

3)′ ∥|∇|rH(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + Ce−ct∥φ∥Hr+µ ,
for 0 ≤ r + µ ≤ s.

4)′ ∥|∇|rHt(t) ∗ φ∥Hµ ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− r

2 ∥φ∥Lq + Ce−ct∥φ∥Hr+µ ,
for 0 ≤ r + µ ≤ s.

Then in terms of G(x, t) and H(x, t), the solution u(t, x) to the equation (1.1) can be formally
written as

u(t) = G(t) ∗ u0 +H(t) ∗ u1 +

∫ t

0

H(t− τ) ∗ (1−∆)−1f(u, ut,∇u)(τ)dτ. (2.1)

We also need the following lemma which can be proved by inductive argument combined with the
Littlewood-Paley theory:

Lemma 2.2. Assume that α ≥ 1 and β ≥ 1 are integers, then the following estimates hold:

(1). ∥∂m
x (uαvβ)∥L1 ≤ C∥u∥α−1

L∞ ∥v∥β−1
L∞ (∥u∥L2∥∂m

x v∥L2 + ∥v∥L2∥∂m
x u∥L2), ∀m ∈ Z+.

(2). ∥|∇|r(uαvβ)∥L2 ≤ C∥u∥α−1
L∞ ∥v∥β−1

L∞ (∥u∥L∞∥|∇|rv∥L2 + ∥v∥L∞∥|∇|ru∥L2),∀r ∈ R+.
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Finally we recall the decay estimates for solutions to the linear problem (i.e., with f(u, ut,∇u) = 0
in (1.1)) in [2]: {

utt −∆utt + (−∆)pu+ u+ g ∗∆u = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x).
(2.2)

Lemma 2.3 ( see [2]). Let s ≥ 0 be a real number. Assume that u0 ∈ Hs+max{1,p−1}(Rn)∩L1(Rn)
and u1 ∈ Hs(Rn) ∩ L1(Rn), and put

E0 := ∥u0∥Hs+max{1,p−1} + ∥u1∥Hs + ∥(u0, u1)∥L1 .

Let u be the solution to (2.2), then u satisfies the following decay estimates:

(1). If s ≥ n
2
(p− 1)−max{1, p− 1}, then

∥|∇|ru(t)∥
Hs+max{1,p−1}−σp(r,n) ≤ CE0(1 + t)−

n
4
− r

2 ,

for r ≥ 0 and σp(r, n) ≤ s+max{1, p− 1}.
(2). If s ≥ n

2
(p− 1), then

∥|∇|rut(t)∥Hs−σp(r,n) ≤ CE0(1 + t)−
n
4
− r

2 ,

for r ≥ 0 and σp(r, n) ≤ s, here σp(r, n) are defined in (1.2).

Remark 2. We state the results in the previous lemma in somewhat different form, and it can be
directly verified by checking the argument in [2].

Now in order to prove theorem 1.1, we define

X := {u ∈ C0([0,∞);Hs+max{1,p−1}(Rn)) ∩ C1([0,∞);Hs(Rn)); ∥u∥X <∞},

here

∥u∥X := sup
t≥0

∥u(t)∥Hs+max{1,p−1} + sup
t≥0

∥ut(t)∥Hs

+ sup
{r;σp(r,n)≤s+max{1,p−1}}

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|ru(t)∥
Hs+max{1,p−1}−σp(r,n)

+ sup
{r;σp(r,n)≤s}

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|rut(t)∥Hs−σp(r,n) .

Denote

U := (u, ut,∇u),
BR := {u ∈ X; ∥u∥X ≤ R}, ∀R > 0,

ϕ[u](t) := G(t) ∗ u0 +H(t) ∗ u1 +

∫ t

0

H(t− τ) ∗ (1−∆)−1f(U)(τ)dτ,

ϕ0(t) := G(t) ∗ u0 +H(t) ∗ u1.

In the following we will prove that u→ ϕ[u] is a contraction mapping on BR for some small R > 0.
First we give two propositions which will be frequently used in the subsequent computation.

Proposition 1. If u ∈ X, then the following estimate holds:

∥U(t)∥L∞ ≤ C∥u∥X(1 + t)−dn , (2.3)

here

dn =

{
1
2
, n = 1,

n
4
, n ≥ 2.
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Proof. By the Gagliardo-Nirenberg inequality, we have

∥U(t)∥L∞ ≤ C∥U(t)∥1−θ
L2 ∥|∇|s0U(t)∥θL2 ,

here s0 = n
2
+ ϵ0, with ϵ0 ∈

(
0, (s− p+ 1

2
)/p

]
fixed, and θ = n

2s0
.

(1). When n = 1, since s ≥ p
2
+ 1, we have s+max{1, p− 1} − σp(0, 1) ≥ 1, thus ∥U(t)∥L2 ≤

(1+ t)−
1
4 ∥u∥X by the definition of ∥u∥X . Similarly, since s > p− 1

2
, which implies s−σp(s0, 1) ≥ 0,

we have ∥|∇|s0U(t)∥L2 ≤ (1 + t)−
1
4
− s0

2 ∥u∥X . Then dn = (1− θ) 1
4
+ θ( 1

4
+ s0

2
) = 1

2
, it yields (2.3)

with n = 1.

(2). When n ≥ 2, since s ≥ np
2

+ 1, we have s− σp(0, n) ≥ s0, thus ∥U(t)∥L2 ≤ (1 + t)−
n
4 ∥u∥X

and ∥|∇|s0U(t)∥L2 ≤ (1+ t)−
n
4 ∥u∥X . Then dn = (1− θ)n

4
+ θ n

4
= n

4
, it yields (2.3) with n ≥ 2.

Proposition 2. Let a ≥ 0 and b ≥ 0 be real numbers. If a + b ≥ 1, then there exists C > 0
(independent of t > 0) such that the following estimate holds,∫ t

0

(1 + t− τ)−a(1 + τ)−bdτ ≤ C.

Proof. Directly computation!

Proof of Theorem 1.1. We denote V := (v, vt,∇v),W := (w,wt,∇w), then

ϕ[v](t)− ϕ[w](t) =

∫ t

0

H(t− τ) ∗ (1−∆)−1(f(V )− f(W ))(τ)dτ.

Case I (p > 1) : We split the proof into four steps.

Step 1: By applying Lemma 2.1 3) with q = 1 and µ = s+max{1, p− 1}, we have that

∥(ϕ[v]− ϕ[w])(t)∥Hs+max{1,p−1} = ∥
∫ t

0

H(t− τ) ∗ (f(V )− f(W ))(τ)dτ∥Hs+max{1,p−1}−2

≤ C

∫ t

0

(1 + t− τ)−
n
4 ∥f(V )− f(W )∥L1dτ

+ C

∫ t

0

(1 + t− τ)
− ν

2(p−1) ∥f(V )− f(W )∥Hs−2+νdτ

= I1 + I2. (2.4)

By using Lemma 2.2, we get that

∥(f(V )− f(W ))(τ)∥L1 ≤ C∥(V,W )(τ)∥α−2
L∞ ∥(V,W )(τ)∥L2∥(V −W )(τ)∥L2 .

In view of (2.3), we have that

∥(f(V )− f(W ))(τ)∥L1 ≤ C∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−2)−n

2

≤ C∥(v, w)∥α−1
X ∥v − w∥X

{
(1 + τ)−

α−1
2 , n = 1,

(1 + τ)−
nα
4 , n ≥ 2.

(2.5)

Then by Assumption [B] and Proposition 2, we have

I1 ≤ C∥(v, w)∥α−1
X ∥v − w∥X . (2.6)

6
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Taking ν = 2, by using Lemma 2.2, it holds that

∥f(V )− f(W )∥Hs ≤ C∥(v, w)∥α−2
L∞ (∥(v, w)∥L∞∥v − w∥Hs

+∥(v, w)∥Hs∥v − w∥L∞).
(2.7)

It yields that

∥f(V )− f(W )∥Hs ≤ C∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−1). (2.8)

Then by Assumption [B] and Proposition 2, we have

I2 ≤ C∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for I1 and I2 in (2.4), then we obtain

∥(ϕ[v]− ϕ[w])(t)∥Hs+max{1,p−1} ≤ C∥(v, w)∥α−1
X ∥v − w∥X . (2.9)

Step 2: By applying Lemma 2.1 4) with q = 1, µ = s− 2 and ν = 2, we have that

∥∂t(ϕ[v]− ϕ[w])(t)∥Hs = ∥
∫ t

0
Ht(t− τ) ∗ (f(V )− f(W ))(τ)dτ∥Hs−2

≤ C
∫ t

0
(1 + t− τ)−

n
4 ∥f(V )− f(W )∥L1dτ

+C
∫ t

0
(1 + t− τ)

− 1
p−1 ∥f(V )− f(W )∥Hsdτ

= I3 + I4.

(2.10)

We can estimate I3 and I4 similarly as for I1 and I2 in step 1, then we have

∥∂t(ϕ[v]− ϕ[w])(t)∥Hs ≤ C∥(v, w)∥α−1
X ∥v − w∥X . (2.11)

Step 3: Let r ≥ 0 be a real number satisfying σp(r, n) ≤ s+max{1, p−1}, and µ = s+max{1, p−
1} − σp(r, n), then we have

∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+max{1,p−1}−σp(r,n)

≤ (

∫ t
2

0

+

∫ t

t
2

)∥|∇|r−[r]H(t− τ) ∗ |∇|[r](f(V )− f(W ))∥
Hs+max{1,p−1}−σp(r,n)−2dτ

= I5 + I6. (2.12)

By virtue of Lemma 2.1 3), we have

I5 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+ C

∫ t
2

0

(1 + t− τ)
− ν

2(p−1) ∥∂[r]
x (f(V )− f(W ))∥

Hr−[r]+s−σp(r,n)−2+νdτ

= I5a + I5b. (2.13)

In view of (2.5) and by a similar argument to (2.6), we have that

∥∂[r]
x (f(V )− f(W ))∥L1 ≤ C∥(V,W )(τ)∥α−2

L∞ (∥(V,W )(τ)∥L2∥∂[r]
x (V −W )(τ)∥L2

+ ∥∂[r]
x (V,W )(τ)∥L2∥(V −W )(τ)∥L2)

≤ C∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−2)−n

2
− [r]

2 . (2.14)

7
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Thus

I5a ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r−[r]

2 ∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−2)−n

2
− [r]

2 dτ

≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

If r+ µ− 2+ ν −max{1, p− 1} < s+max{1, p− 1}, taking ν = σp(r, n)− r+max{1, p− 1}, then
ν

2(p−1)
≥ n

4
+ r

2
+ 1

2
, by virtue of (2.7) we have

∥∂[r]
x (f(V )− f(W ))∥Hs+max{1,p−1}−[r]−2

≤ C∥(v, w)∥α−2
L∞ (∥(v, w)∥L∞∥∂[r]

x (v − w)∥Hs+max{1,p−1}−[r]−2

+ ∥∂[r]
x (v, w)∥Hs+max{1,p−1}−[r]−2∥v − w∥L∞). (2.15)

It yields that

∥∂[r]
x (f(V )− f(W ))∥Hs+max{1,p−1}−[r]−2 ≤ C∥(v, w)∥α−1

X ∥v − w∥X(1 + τ)−dn(α−1).

Since α > 1 by Assumption [B], we have

I5b ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for I5a and I5b in (2.13), we obtain that

I5 ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.16)

In view of Lemma 2.1 3) with ν = p− 1, we have that

I6 ≤ C
∫ t

t
2
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

t
2
(1 + t− τ)

− ν
2(p−1) ∥∂[r]

x (f(V )− f(W ))∥Hr−[r]+s−2+p−1dτ

= I6a + I6b.

(2.17)

Since

∥∂[r]
x (f(V )− f(W ))∥L1 ≤ C∥(V,W )(τ)∥α−2

L∞ (∥(V,W )(τ)∥L2∥∂[r]
x (V −W )(τ)∥L2

+ ∥∂[r]
x (V,W )(τ)∥L2∥(V −W )(τ)∥L2)

≤ C∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−2)−n

2
− [r]

2 . (2.18)

We have that

I6a ≤ C

∫ t

t
2

(1 + t− τ)−
n
4
− r−[r]

2 ∥(v, w)∥α−1
X ∥v − w∥X(1 + τ)−dn(α−2)−n

2
− [r]

2 dτ

≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

By virtue of (2.15), we obtain

∥∂[r]
x (f(V )− f(W ))∥Hr−[r]+s−2+p−1 ≤ C∥(v, w)∥α−1

X ∥v − w∥X(1 + τ)−dn(α−1)−n
4
− [r]

2 .

By virtue of Assumption [B], we have

I6b ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for I6a and I6b in (2.17), we obtain that

I6 ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.19)

8
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Combining the estimates (2.12) (2.16), and (2.19) we obtain that

∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+max{1,p−1}−σp(r,n) ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

It yields that

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+max{1,p−1}−σp(r,n) ≤ C∥(v, w)∥α−1

X ∥v − w∥X . (2.20)

Step 4: Assume that r ≥ 0 be a real number with σp(r, n) ≤ s and µ = s− σp(r, n), then we have

∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n)

≤ (

∫ t
2

0

+

∫ t

t
2

)∥|∇|r−[r]Ht(t− τ) ∗ |∇|[r](f(V )− f(W ))∥
Hs−σp(r,n)−2dτ

= I7 + I8. (2.21)

By virtue of Lemma 2.1 4), we have

I7 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+ C

∫ t
2

0

(1 + t− τ)
− ν

2(p−1) ∥∂[r]
x (f(V )− f(W ))∥

Hr−[r]+s−σp(r,n)−2+νdτ

= I7a + I7b. (2.22)

Similar to the proof of (2.6), we obtain

I7a ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

If r + µ − 2 + ν ≤ s, by virtue of (2.15), with r − [r] + µ − 2 + ν − max{1, p − 1} replaced by
r + µ− 2 + ν, taking ν = σp(r, n)− r, then ν

2(p−1)
= n

4
+ r

2
and we have

∥∂[r]
x (f(V )− f(W ))∥Hs−[r]−2 ≤ C∥(v, w)∥α−1

X ∥v − w∥X(1 + τ)−dn(α−1)−n
4
− r

2 .

Thus we have that
I7b ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for I7a and I7b in (2.22), we obtain that

I7 ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.23)

By virtue of Lemma 2.1 4) with ν = 2, we have

I8 ≤ C
∫ t

t
2
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

t
2
(1 + t− τ)

− ν
2(p−1) ∥∂[r]

x (f(V )− f(W ))∥
Hr−[r]+s−σp(r,n)dτ

= I8a + I8b.

(2.24)

Since

∥∂[r]
x (f(V )− f(W ))∥L1 ≤ C∥(V,W )(τ)∥α−2

L∞ (∥(V,W )(τ)∥L2∥∂[r]
x (V −W )(τ)∥L2

+ ∥∂[r]
x (V,W )(τ)∥L2∥(V −W )(τ)∥L2).

thus

∥∂[r]
x (f(V )− f(W ))∥L1 ≤ C∥(v, w)∥α−1

X ∥v − w∥X(1 + τ)−dn(α−2)−n
2
− [r]

2 .

9
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It yields that
I8a ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Similar to the proof of I7b, we obtain

I8b ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for I8a and I8b in (2.24), we obtain that

I8 ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.25)

Combining (2.21), (2.23) and (2.25) we obtain that

∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n) ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

It yields that

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n) ≤ C∥(v, w)∥α−1

X ∥v − w∥X . (2.26)

Case II (p = 1) : We split the proof into four steps.

Step 1′: In view of Lemma 2.1 3)′, with q = 1, µ = s+ 1, we have that

∥(ϕ[v]− ϕ[w])(t)∥Hs+1 = ∥
∫ t

0
H(t− τ) ∗ (f(V )− f(W ))(τ)dτ∥Hs+1−2

≤ C
∫ t

0
(1 + t− τ)−

n
4 ∥f(V )− f(W )∥L1dτ

+C
∫ t

0
e−c(t−τ)∥f(V )− f(W )∥Hs+1−2dτ

= J1 + J2.

(2.27)

By a similar proof to (2.5) and (2.7), we have that

J1 ≤ C∥(v, w)∥α−1
X ∥v − w∥X , J2 ≤ C∥(v, w)∥α−1

X ∥v − w∥X .

Put the estimates for J1 and J2 in (2.27), we obtain

∥(ϕ[v]− ϕ[w])(t)∥Hs+1 ≤ C∥(v, w)∥α−1
X ∥v − w∥X , (2.28)

for p = 1.

Step 2′: In view of Lemma 2.1 4)′ with q = 1 and µ = s, we have that

∥∂t(ϕ[v]− ϕ[w])(t)∥Hs = ∥
∫ t

0

Ht(t− τ) ∗ (f(V )− f(W ))(τ)dτ∥Hs−2

≤ C

∫ t

0

(1 + t− τ)−
n
4 ∥f(V )− f(W )∥L1dτ

+ C

∫ t

0

e−c(t−τ)∥f(V )− f(W )∥Hs−2dτ

= J3 + J4. (2.29)

We can estimate J3 and J4 similarly as for J1 and J2 in step 1′, then we have

∥∂t(ϕ[v]− ϕ[w])(t)∥Hs ≤ C∥(v, w)∥α−1
X ∥v − w∥X , (2.30)

for p = 1.

10
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Step 3′: Assume that r ≥ 0 be a real number with σp(r, n) ≤ s+ 1 and µ = s+ 1− σp(r, n), then
we have

∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+1−σp(r,n)

≤ (

∫ t
2

0

+

∫ t

t
2

)∥|∇|r−[r]H(t− τ) ∗ |∇|[r](f(V )− f(W ))∥
Hs+1−σp(r,n)−2dτ

= J5 + J6. (2.31)

In view of Lemma 2.1 3)′, we have that

J5 ≤ C
∫ t

2
0
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

2
0
e−c(t−τ)∥∂[r]

x (f(V )− f(W ))∥
Hr−[r]+s+1−σp(r,n)−2dτ

= J5a + J5b.

(2.32)

Similar to the proof of I5a and I5b, we obtain

J5a ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X ,

and
J5b ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Thus
J5 ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.33)

In view of Lemma 2.1 3)′, we have that

J6 ≤ C
∫ t

t
2
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

t
2
e−c(t−τ)∥∂[r]

x (f(V )− f(W ))∥
Hr+s+1−σp(r,n)−2dτ

= J6a + J6b.

(2.34)

Similar to the proof of I6a and I6b, we obtain

J6a ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X ,

and
J6b ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Thus
J6 ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.35)

Combining the estimates (2.31) (2.33), and (2.35) we obtain that

∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+1−σp(r,n) ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

It yields that

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|r(ϕ[v]− ϕ[w])(t)∥
Hs+1−σp(r,n) ≤ C∥(v, w)∥α−1

X ∥v − w∥X . (2.36)

Step 4′: Assume that r ≥ 0 be a real number with σp(r, n) ≤ s and µ = s− σp(r, n), then we have

∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n)

≤ (

∫ t
2

0

+

∫ t

t
2

)∥|∇|r−[r]Ht(t− τ) ∗ |∇|[r](f(V )− f(W ))∥
Hs−σp(r,n)−2dτ

= J7 + J8. (2.37)

11
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In view of Lemma 2.1 4)′, we have that

J7 ≤ C
∫ t

2
0
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

2
0
e−c(t−τ)∥∂[r]

x (f(V )− f(W ))∥
Hr−[r]+s−σp(r,n)dτ

= J7a + J7b.

(2.38)

Similar to the proof of I7a and I7b, we obtain

J7a ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X ,

and
J7b ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Thus
J7 ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.39)

By virtue of Lemma 2.1 4)′, we have

J8 ≤ C
∫ t

t
2
(1 + t− τ)−

n
4
− r−[r]

2 ∥∂[r]
x (f(V )− f(W ))∥L1dτ

+C
∫ t

t
2
e−c(t−τ)∥∂[r]

x (f(V )− f(W ))∥
Hr−[r]+s−σp(r,n)dτ

= J8a + J8b.

(2.40)

Similar to the proof of I8a and I8b, we obtain

J8a ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X ,

and
J8b ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

Put the estimates for J8a and J8b in (2.40), we obtain that

J8 ≤ C(1 + t)−
n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X . (2.41)

Combining (2.37), (2.39) and (2.41) we obtain that

∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n) ≤ C(1 + t)−

n
4
− r

2 ∥(v, w)∥α−1
X ∥v − w∥X .

It yields that

sup
t≥0

(1 + t)
n
4
+ r

2 ∥|∇|r∂t(ϕ[v]− ϕ[w])(t)∥
Hs−σp(r,n) ≤ C∥(v, w)∥α−1

X ∥v − w∥X . (2.42)

Step 5: Combining the estimates (2.9), (2.11), (2.20) and (2.26) for p > 1; (2.28), (2.30), (2.36)
and (2.42) for p = 1, we obtain that

∥(ϕ[v]− ϕ[w])(t)∥X ≤ C∥(v, w)∥α−1
X ∥v − w∥X .

So far we proved that ∥(ϕ[v]− ϕ[w])(t)∥X ≤ C1R
α−1∥v−w∥X if v, w ∈ BR. If E0 is suitably small

such that R < 1 and C1R ≤ 1
2
, then we have that

∥(ϕ[v]− ϕ[w])(t)∥X ≤ 1

2
∥v − w∥X .

On the other hand, from Lemma 2.3 we know that ∥ϕ0∥X ≤ C2E0. Since ϕ[0](t) = ϕ0(t), by taking
R = 2C2E0, it yields that, for v ∈ BR,

∥ϕ[v]∥X ≤ ∥ϕ0∥X +
1

2
∥v∥X ≤ C2E0 +

1

2
R = R.

Thus v → ϕ[v] is a contraction mapping on BR, and by the fixed point principle there exists a
unique u ∈ BR satisfying ϕ[u] = u, and it is the solution to the semilinear problem (1.1) satisfying
the decay estimates (1.3) and (1.4). Thus we complete the proof of Theorem 1.1.
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Conclusion

In this paper, we studied the semilinear regularity-loss type equation with memory. By the time-
weighted energy estimates and the contracting theorem, we proved the global existence and the
decay estimate, as well as the regularity-loss estimates.
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