Asian Research Journal of Mathematics

4(4): 1-14, 2017; Article no.ARJOM.34324
ISSN: 2456-477X

Numerical Solution of Volterra-Fredholm Integral Equations
Using Hybrid Orthonormal Bernstein and Block-Pulse
Functions

Mohamed A. Ramadart and Mohamed R. Alf°

'Department of Mathematics, Faculty of Science, Menoufiaddsity, Egypt.
“Department of Mathematics, Faculty of Engineering, Benha sityeEgypt.

Authors’ contributions

This work was carried out in collaboration between both axghAuthor MAR designed the study,
performed the analysis, wrote the protocol and wrote tiseédraft of the manuscript.
Author MRA managed the analyses of the study and approvédahmanuscript.

Article Information

DOI: 10.9734/ARJOM/2017/34324
Editor(s):
(1) Wei-Shih Du, Professor in the Department of iMamatics, National Kaohsiung Normal University, Waih.
Reviewers:
(1) Ignatius N. Njoseh, Delta State University, &lig.
(2) Nese, Mehmet Akif Ersoy University, Turkey.
(3) W. Obeng-Denteh, Kwame Nkrumah University of Sceeand Technology, Ghana.
Complete Peer review Historiattp://www.sciencedomain.org/review-history/19692

Received: 24 May 2017

_ Accepted: 18 June 2017
Data Article Published: 28' June 2017

Abstract

We have proposed an efficient numerical method to solvass df mixed Volterra-Fredholm integra
equations (VFIE’s) of the second kind, numerically basedHglorid Orthonormal Bernstein and Block
Pulse Functions (OBH). The aim of this paper is to a@#y method to obtain approximate solutions| of
nonlinear Fuzzy Fredholm Integro-differential EquationgstFwe introduce properties of Hybrid
Orthonormal Bernstein and Block-Pulse Functions, we ustdtinsform the integral equations (to

the system of linear algebraic equations then an ierafpproach is proposed to obtain approximate
solution of class of linear algebraic equations, a emical examples is presented to illustrate the
proposed method. The error estimates of the proposed methiodns

Keywords: Hybrid orthonormal Bernstein and Block-Pulse fumdtj linear Volterra-Fredholm integral
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1 Introduction

Integral equations are encountered in various fields ohsei@and numerous applications such as physics
[1], biology [2] and engineering [3,4]. But we can alsse it in numerous applications, such as
biomechanics, control, economics, elasticity, eleat@dngineering, electrodynamics, electrostatics, fitirati
theory, fluid dynamics, game theory, heat and massfegmmedicine, oscillation theory, plasticity, queuing
theory, etc. [5]. Fredholm and Volterra integral equatiohthe second kind show up in studies that includes
airfoil theory [6], elastic contact problems [7,8], fra@ mechanics [9], combined infrared radiation and
molecular conduction [10] and so on.

Numerical Solution Of Linear Volterra-Fredholm Integeajuations, such as Block-Pulse functions [11-16],
Triangular functions [17-19], Haar functions [20], Hybriegendre and Block-Pulse functions [21-22],
Hybrid Chebyshev and Block-Pulse functions [22-23], Hylraylor, Block-Pulse functions [24], Hybrid
Fourier and Block-Pulse functions In recent years, masgarchers have been successfully applying
Bernstein polynomials method (BPM) to various linear andlinear integral equations. For example,
Bernstein polynomials method is applied to find an approtérsalution for Fredholm integro-Differential
equation and integral equation of the second kind inJéburee 2010). (Al-A'asam 2014) used Bernstein
polynomials for deriving the modified Simpson's 3/8, andctiraposite modified Simpson's 3/8 to solve one
dimensional linear Volterra integral equations of theosddkind. Application of two-dimensional Bernstein
polynomials for solving mixed Volterra-Fredholm integral equagican be found in (Hosseini et al. 2014).
In this paper, Hybrid Orthonormal Bernstein and Block-P#sactions (OBH) to solve mixed Volterra-
Fredholm integral equations (VFIE’s) of the second kind:

u(x) = f(x) + Alf k,(x,t)u(t) dt + AZT k, (x,t)u(t) dt

wherea< X< b,A,,A, are scalar parameter(X),k; (X,t),K,(X,t) are continuous functions and
u(x) is the unknown function to be determine.

The advantage of this method to other existing methods niglicity of implementation besides some
other advantages.

This paper is organized as follows: In Section 2, wenthice Bernstein polynomials and their properties.
Also we orthonormal these polynomials and hybrid them with BRualse functions to obtain new basis. In
Section 3, these new basis together with collocation meth@dised to reduce the linear Volterra-fredholm
integral equation to a linear system that can be solveditigus method. Section 4 illustrates some applied
models to show the convergence, accuracy and advantage pfofiesed method and compares it with
some other existed method. In Section 5, numerical expetsnage conducted to demonstrate the viability
and the efficiency of the proposed method computationally. FiSaityion 6 concludes the paper.

2 Basic Definition

In this section we introduce Bernstein polynomials andr thesperties to get better approximation, we
orthonormal these polynomials and hybrid them with Blocls@finctions.

2.1 Definition of Bernstein polynomials

B-polynomials (Bernstein polynomials basis) of nth-degwesre introduced in the approximation of
continuous functions f(x) on an interval [0, 1] (see [25]),
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B, (% :[injx' -Y™,  O<i<n 1)

There are (n +1) nth-degree polynomials and for convenjence
we setB, [ (X) =0,if i<Oori>n.

A recursive definition also can be used to generate thelytomials over this interval, so that the ith nth
degree B-polynomial can be written;

B.(9 =028, ,9+xB;,4(X) @

The explicit representation of the orthonormal Beiinsgolynomials, denoted byQBI’n(X)) here, was
discovered by analyzing the resulting orthonormal polynonaifiés applying the Gram-Schmidt process on
sets of Bernstein polynomials of varying degi@e For example, fon =5, using the Gram-Schmidt
process orOB,’S(X) normalizing, and simplifying the resulting functionse get the following set of
orthonormal polynomials;

OBy (x) =411 (1~ 1)°
OB (x) = 3(1-t)* @i -1
OB, (X) =+/7 (1—1)° B5t? — 20t +1)
OB, (x) = /5 (1-t)?(165t* ~1352 + 27t - 1)
OB, ;(X) = /3 (1-1t)(330t* - 48Qt° + 216t% —32t +1)
OB;5(x) = (462t° -105Q* +840t° — 280t + 35t —1)
We can see from these equations that the orthonormal Bierpsiynomials are, in general, a product of a

factorable polynomial and a non-factorable polynomial. the factorable part of these polynomials, there
exists a pattern of the form

(/2(n-i)+1)1-t)""  i=0L...n

While it is less clear that there is a pattern inrtbe-factorable part of these polynomials, the pattern can be
determined by analyzing the binomial coefficients presenPascal’s triangle. In doing this, we have
determined the explicit representation for the orthonoBeahstein polynomials to be

i 2n+1-k\(i ),
Oav”(x):(\/m)(l‘t)”"Z(—l)K[ n+1 J(I jtl_K o

i—k k
2.2 Definition of Block-Pulse functions (BPFs) andheir properties

BPFs are studied by many authors and applied for solvingreliff problems, for example see [26-27].

A k - set of BPFs over the interval [D) is defined as
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1 T #T
B (t) = k k ,i=01....k-1 4)

0, elsewhere

with a positive integer value fdr. In this paper, it is assumed that 1 , so BPFs are defined over [0, 1) .
BPFs have some main properties, the most importanesétproperties are disjointness, orthogonality, and

completeness.

(1) The disjointness property can be clearly obtained fromefiritibn of BPFs

B (t)B;(t) = B0) i:i i,j=01...k-1
. 0, i Z 5)

(2) The orthogonality property of these functions is

x|

- 1F) i,j=0L..k-1

(B/(1),B,(t)) = [ B (t) B, (t)dt = 6
0 i £ ©

o

(3) The third property is completeness. For evgryl L2 [0), when k approaches to the infinity,
Parseval’s identity holds, that is

[y ®dt=Yc’B )
where C, = kj f(t) B (t)dt (7)

3 Some Properties of Hybrid Functions
3.1 Hybrid functions of block-pulse and OrthonormalBernstein polynomials

We defineOBH on the interval [0; 1] as follow:

. i—-1 i
B (Mx-i+1l —<x<—
OBHH(X) - j,n( ) Gl ) M X M .
0 otherewise ®

wherei =12,...M and j = 01,2,...n. thus our new basis fOBH,,,OBH,,...,0BH,, .} and we

can approximate function with this base. for example for #1and n = 1.
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1
-2X+1 0 x<=
OBH,,(x) = ( ) 2
0 otherewise
(2x) lsx<1
OBH,,(x) = 2
0 otherewise
1
—-2X+ 2 Osx<=
OBH,,(x) = ( ) 2
0 otherewise
1
2X—1 —<x<1
OBH,,(x) = ( ) 2
0 otherewise

3.2 Function approximation by using OBH functions

Any function y(t) which is square integrable in the intervfD,1) can be expanded in a hybrid
Orthonormal Bernstein and Block-Pulse Functions

y(t) => > ¢;0BH; (t),i =12,...00, j = 01.2,...,0,t 1 [0]), )
i=1 j=0
where the hybrid Orthonormal Bernstein and Block-Pulse ioierfts

_ (y(®),0BH; ()
' (OBH, (t),0BH, (t))

10§

In (10), (.,.) denotes the inner product. Usually, the series expansjo(@Econtains an infinite number of

terms for a smoothy(t). If y(t).is piecewise constant or may be approximated as piecewnmstant, then
the sum in (9) may be terminated after nm terms, ¢hat i

M n
y(t) O0) > c;OBH; (t)=C"OBH(t) (11)
i=1 j=0
where
OBH(x) =[OBHLO,OBHM,....,OBHM’n]T ,
and

C= [Cl,01cl,11""’CM,n]T
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Therefore we have

C" <OBH(x),0BH(x) >=<u(x),OBH(x) >
then

C =D <u(x),0BH(x) >,
Where

D =< OBH(X),OBH(X) >,

1
= j OBH(X)OBHT (X)dx (12)
0
D, 0 - 0
0D, -0
RE -0
00 - D,

then by using (7)D; (I = 1,2,...,M) is defined as follow:
W
(D)iaju = | Bio(Mx=i +1) B, ,(Mx— j +1)dx
i-1

M

:ﬁiaﬂmaﬁmw

L)

M (2n+1)[i2: J

We can also approximate the functlof,t) O L[01] as follow:
k(x,t) = OBH' (x) K OBH(t),
where K is anM (n+1) matrix that we can obtain as follows:

K =D™ <OBH(x) < k(x,t),OBH(t) >>D™ (13)
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3.3 Integration of OBH functions

In OBH function analysis for a dynamic system, all functions rteelde transformed into OBFunctions.
Since the differentiation of OBIfunctions always results in impulse functions which musabeded, the
integration of OBHfunctions is preferred. The integration of OBthctions should be expandable into
OBH functions with the coefficient matrix P.

t
IOBH(nx(m+l)) (T) d(r) = Pn(m+1)xn(m+1) OBH(nx(m+1)) (t)!t D [Ovl)’ (14)
0

where then(m+ 1) -square matrixP is called the operational matrix of integration, &0BH, ... ®

is defined in Eq. (8). A subscript(m+1)xn(m+1) of P denotes its dimension arfdis given in [4]
as:

H GG .- G
OHG -+ G
I:)n(m+1)><n(m+1) =10 OH - G (15)
i 0O 0 0 - H |
1 1 1 1 1
Gn(m+l)><n(m+1) = m 1 1 1 1 (16)
i o o O - 1_

and H is the operational matrix of integration and can be obtaised a

(1 263 263 71]
35 105 105 35
-3 17 87 67
Hn(m+1)xn(m+1) :; 35 35 3535 (17)
2n(m+1) 3 A7 53 73
35 35 35 35
-1o17 53 69
L 35 105 105 35
The integration of the cross product of two OBH function wsotan be obtained as
1
D= j OBH gy (1) OBH (ox(meny (1) dl(t) (18)
0
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L 0 - 0
_ L 0
0 o L

where L is an M x (n + 1) diagonal matrix given by

1 111

2 5 20

139 1
_ 1 |25 2 5 19
M(n+M))1 9 3 1

5 20 5 2

111y

L20 5 2 |

Eq. (14-18) are very important for solving Volterrare@holm integral equation of the second kind

problems, because the D and P matrix can increase thdatialg speed, as well as save the memory
storage.

3.4 Multiplication of hybrid functions

It is usually necessary to evalu@BH 1 (t) OBH (nx(ms1) (t) for the Volterra- Fredholm integral
equation of the second kind via OBH functions:

Let the product ofOBH .4 (t) and OBH (nx(m+1) (t) be called the product matrix of OBH
functions:

OBH(n(m+1)) (t)OBHT(“(m+1)) (t) UM (n(m+L)xn(m+1)) (t) (20)
(OBH,()OBH,(t) ~ OBH,(t)OBH,(t) - OBH,(t)OBH, (1) |
OBH,()OBH,(t)  OBH,()OBH,(t)  --- OBH,(t)OBH, (1)
M(M(n+1)><M(n+1)) (t) = OBH;O(t)OBHo(t) OBH&o(t)OBF&o(t) OB"Qo(t)OBHw,nﬂ (t)
[OBH, () OBH,(t) OBH,,,(1)OBH,(t) -+ OBH, .(t)OBH, (1) |
With the above recursive formulae, we can evaltMt@Mml)xM 1) (t) foranyM and n.
The matrixM (y n.ayx,, 1) (t) in (20) satisfies
M w1 ns1y () S nery = Coun (nsaypemt (o) OBHewn sy (1) (21)
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where C, .y is defined in Eq. (10) anﬂl(n(m+l)xn(m+1)) is called the coefficient matrix. We consider that
M =4 andn=3. Thatis

[OBH,,(t) OBH,,(t)  OBH,,(t)OBH,,(t) OBH,,(t) OBH,, (t) |
OBH,, (t) OBH,4(t) OBH,,, (t)OBH,, (t) OBH,, (t) OBH,,(t)
M (16)x16) (t) = OBH3o(t) OBHlo(t) OBH30(t)OBH20(t) OBH3o(t) OBH44 (t)
_OBH44(I) OBHlo(t) OBH44(I) OBHzo(t) OBH441(I)OBH441(t)_
C(lG) E[010,020,”-,040,011,021,---,C4l,012,022,---,C42,C31,C32,-~-,C43] (22)

and

OBH ) (t) =[OBH,(t), OBH (), -+, OBH,,(t), OBH,, (t), OBH 4 (1), -+,
OBH4l(t)lOBH12(t)1OBHZZ(t)l' o ,OBH42(t),OBH31(t),OBH32(t), e lOBH43(t)]T

Using the VvectorC in Eq. (22), the coefficient matridC,,,, in Eq. (21) determined by

C, 000
c |oc 00
(M (N*+D)X (v (neryy 00 CZ 0 (23)
000 C,
whereC, ,i = 0123 are 4 x 4 matrices given by
_EC +£C gC +£C iC +3C ;10 +iC ]
4 1i 21 2i 24 1 14 2i 21 1i 14 2i 21 1 21 2i
_icai _icm +£C3i +ic4i _icm +ic4i +i 3i - 4i
105 210 35 105 70 105 210 210
Ecli +£C2i gCli +£C2i iCli +iczi ;1C1i +iC2i
4 21 24 14 21 14 21 21
_icai _icm +£C3i +ic4i _icm +ic4i L 3 L 4i
c _| 105 210 35 105 70 105 210 210
PRI TR 241 T 1a 21 1 12 21 U pp 2
_icai _icm +£C3i +ic4i _icm +ic4i +ic3i _icm
105 210 35 105 70 105 210 210
ECli £C2i écu +£Czi ECli iCzi ;1C1i +ic2i
4 21 24 14 21 14 21 21
_icai _icm +£C3i +ic4i _icm +ic4i +ic3i _icm
105 210 35 105 70 105 210 210 |

With the powerful properties of Egs. (13-23), the solution oftdrm-Fredholm integral equation of the
second kind can be easily found.
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4 Solution of Volterra- Fredholm Integral Equation of the Second Kind
via Hybrid Functions

Consider the following integral equation:
1 X
y)=f(X)+ j k (xt) y(t) dt+ j k, (1) yt)dt (24)
0 0

y(X) = YTOBH(X)
k,(x,t) = OBHT (x) K, OBH(t)
k,(xt) = OBHT (X) K, OBH(t)
f (x) = FTOBH(X)

with substituting in Eq. (24)

1
OBH" (x)Y = OBHT () F + [OBH () K, OBH(t) OBH (t) Y dit
0

(25)
+fOBHT(x) K, OBH(t) OBH (t)Y dt
0
OBH" (X)Y =OBH" (x) F +OBH" (x) KJ OBH(t) OBH™ (1) Y dt
o
+OBH" (x) Kzf OBH(t) OBH (1) Y dt
0
Applying Egs. (10), (12) and (20) to Eq. (25) and Eq) (#tomes
OBH" (x)Y =OBH" (x) F +OBH" (x) K, DY +OBH" (x) Kzf Y OBH(t) dt (26)
0

where\?OBH(t) =M (t)Y =OBH(t)OBH (t)Y is a copy of (21). The integrals of (26) can be
obtained by multiplying the operation matrix of integratior§1ef) as follows:

OBH™ (x)Y =OBH™ (x) F+OBHT (x) K, DY +OBHT (X) K, Y P OBH(X) (27)
In order to findY we collocate Eq. (27) ifM (n +1) nodal points of Newton-Cotes [9] as

2i -1

= (28)
2M (n+1)

10
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From Egs. (27) and (28), we have a systenivbfn + 1) linear equations and (n +1) unknowns. After

solving above linear system, we can achieve the unknowmors¥c. The required approximated solution
y(X) for Volterra—Fredholm integral Eq. (1) can be obtainedidigig Egs. (22), (26) and (27) as follows

y(x) = f(X)+OBH" (X) K, DY +OBH" (x) K, Y POBH(X)
5 Numerical Examples

We applied the presented schemes to the following Veké&redholnmintegral equation of second kind. For
this purpose, we consider two examples.

Example 1: Consider the following linear Volterra- Fredhointegral equation [28].

y(x) = f(x) + j xty(t)dt+ JX‘ xty(t) dt
0 0 (29)

2 1
f(x)==x-=x*
(x) 3%73

If we solve (29) fory(X) directly, the analytic solution can be shown toyiex) = X.

The comparison among the OBH solution and the analytigisnl for t [1[0,1) is shown in Table 1 for
M=4 and n=3, which confirms that the OBH method gives bett#ution as the Scaling Function

Interpolation method. The average relative errors of onethod 6.12574987107° . Better
approximation is expected by choosing the optimal values aidvha

Table 1. The comparison among OBH and scaling function farpolation method for example 1

X OBH solution Analytic Absolute errors of  Absolute errors of Scaling
solution OBH method Function Interpolation method
(28]
0.1 0.1000000 0.1 3x1078 3.348x1077
0.2 0.19999999 0.2 1x107 1.263x10™
0.2 0.2999999 0.3 1x10°8 1.905%x107
0.4 0.40000002 0.4 2x10°8 2.564x10°®
0.5 0.49999999 0.5 1x107 1.316x107®
0.€ 0.6000000 0.6 1x10°8 1.876x107
0.7 0.69999999 0.7 1x107 6.735x1077
0.8 0.79999999 0.8 1x10°8 2.064x1077
0.¢ 0.9000000 0.9 7x1078 2.589x1077

11
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Example 2: Consider the following linear Volterra- Fredhointegral equation [29].

y(x) =f(x) +£(x2 —t) y(t)dt+ E[ (xt+x) y(t)dt )

f(x) =€ +e'x—e* - xe-x’e* +x* +1
With the exact solutiory(x) = €*

The comparison among the OBH solution and the analytigisnl for t [1[0,1) is shown in Table 2 for
M=2 and n=1 which confirms that the OBH method gives alrtiastsame solution as the analytic method.

The average relative errors of our metha$4518x107° at M=8, n=7. Better approximation is expected
by choosing the higher values of M and n.

Table 2. The comparison among OBH and analytic solutions faxample 2

X OBH solution The exact Absolute errors of Absolute errors of
solution OBH method at OBH method at M=8,
M=4,n=3 n=7
01 1105134 1.10586745 73345x 10 4532x107°
02  1.22147. 1.221785 3112x10° 3156x10°°
03 1349841 1.349112 729%x10™ 0.653x 107
04  1.491835 1.491474 361x10™ 7261x10°®
05 1648742 1.648536 206x10™ 8.146x10°°
06 1822146 1.822787 641x10™ 5.745%10"7
07  2.01371 2.01375270 4.0707%10° 3541x10°
08 22255464 2.225540928  §5479x10° 2521x107
09 245960213 2459603111  981x10~7 3.348x10°°
6 Conclusion

In this paper, we have worked out a combination of orthoabBernstein and Block-Pulse functions to
approximating solution of linear Volterra- Fredholm integrqguations. The method is based upon reducing
the system into a set of algebraic equations. The gaémeia this system needs just sampling of functions
multiplication and addition of matrices and needs no integraliba matrix D and P are sparse; hence are
much faster than other functions and reduces the CPUadethe computer memory, at the same time
keeping the accuracy of the solution. The numerical exanspiggort this claim. Also we noted that when
the degree of Hybrid Orthonormal Bernstein and Block-Pulsetieunscis increasing the errors decreasing
to smaller values. The results show that the proposed thésha promising tool for this type of linear
Volterra- Fredholm integral equations. The main advantdgeese methods are the ability, reliability and
low cost of setting up the equations without using any projectiethod.

12
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