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Abstract 
 

We have proposed an efficient numerical method to solve a class of mixed Volterra-Fredholm integral 
equations (VFIE’s) of the second kind, numerically based on Hybrid Orthonormal Bernstein and Block-
Pulse Functions (OBH). The aim of this paper is to apply OBH method to obtain approximate solutions of 
nonlinear Fuzzy Fredholm Integro-differential Equations. First we introduce properties of Hybrid 
Orthonormal Bernstein and Block-Pulse Functions, we used it to transform  the  integral  equations  to  
the system  of  linear algebraic equations then an iterative approach is proposed to obtain approximate 
solution of class of  linear algebraic equations, a numerical examples is presented to illustrate the 
proposed method. The error estimates of the proposed method is given.  
 

 
Keywords: Hybrid orthonormal Bernstein and Block-Pulse functions; linear Volterra-Fredholm integral 

equations; integration of the cross product; product matrix; coefficient matrix. 
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1 Introduction 
 
Integral equations are encountered in various fields of science and numerous applications such as physics 
[1], biology [2] and engineering [3,4]. But we can also use it in numerous applications, such as 
biomechanics, control, economics, elasticity, electrical engineering, electrodynamics, electrostatics, filtration 
theory, fluid dynamics, game theory, heat and mass transfer, medicine, oscillation theory, plasticity, queuing 
theory, etc. [5]. Fredholm and Volterra integral equations of the second kind show up in studies that includes 
airfoil theory [6], elastic contact problems [7,8], fracture mechanics [9], combined infrared radiation and 
molecular conduction [10]  and so on. 
 
Numerical Solution Of Linear Volterra-Fredholm Integral Equations, such as Block-Pulse functions [11-16], 
Triangular functions [17-19], Haar functions [20], Hybrid Legendre and Block-Pulse functions [21-22], 
Hybrid Chebyshev and Block-Pulse functions [22-23], Hybrid Taylor, Block-Pulse functions [24], Hybrid 
Fourier and Block-Pulse functions In  recent years, many researchers have been successfully applying 
Bernstein polynomials method (BPM) to various  linear and nonlinear integral equations. For example, 
Bernstein polynomials method is applied to find an approximate solution for Fredholm integro-Differential  
equation  and integral equation  of  the second  kind in (AL-Juburee 2010). (Al-A'asam 2014) used Bernstein 
polynomials for deriving the modified Simpson's 3/8, and the composite modified Simpson's 3/8 to solve one 
dimensional linear Volterra integral equations of the second kind. Application of two-dimensional Bernstein 
polynomials for solving mixed Volterra-Fredholm integral equations can be found in (Hosseini et al. 2014). 
In this paper, Hybrid Orthonormal Bernstein and Block-Pulse Functions (OBH) to solve mixed Volterra-
Fredholm integral equations (VFIE’s) of the second kind: 
 

dttutxkdttutxkxfxu
b

a

x

a

)(),()(),()()( 2211 ∫∫ ++= λλ  

 

where 21,, λλbxa ≤≤ are  scalar parameters, ),(,),(,)( 21 txktxkxf  are continuous functions  and 

)(xu is the unknown function to be determine. 

 
The advantage of this method to other existing methods is its simplicity of implementation besides some 
other advantages.  
 
This paper is organized as follows: In Section 2, we introduce Bernstein polynomials and their properties. 
Also we orthonormal these polynomials and hybrid them with Block-Pulse functions to obtain new basis. In 
Section 3, these new basis together with collocation method are used to reduce the linear Volterra-fredholm 
integral equation to a linear system that can be solved by various method. Section 4 illustrates some applied 
models to show the convergence, accuracy and advantage of the proposed method and compares it with 
some other existed method. In Section 5, numerical experiments are conducted to demonstrate the viability 
and the efficiency of the proposed method computationally. Finally Section 6 concludes the paper. 
 

2 Basic Definition 
 
In this section we introduce Bernstein polynomials and their properties to get better approximation, we 
orthonormal these polynomials and hybrid them with Block-Pulse functions. 
 
2.1 Definition of Bernstein polynomials 
 
B-polynomials (Bernstein polynomials basis) of nth-degree were introduced in the approximation of 
continuous functions f(x) on an interval [0, 1] (see [25]), 
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There are (n +1) nth-degree polynomials and for convenience,  
 

we set 0)(, =xB ni , if 0<i  or ni > . 

 
A recursive definition also can be used to generate the B-polynomials over this interval, so that the ith nth 
degree B-polynomial can be written; 
 

)()()1()( 1,11,, xxBxBxxB ninini −−− +−=                             (2) 

 

The explicit representation of the orthonormal Bernstein polynomials, denoted by ( )(, xOB ni ) here, was 

discovered by analyzing the resulting orthonormal polynomials after applying the Gram-Schmidt process on 

sets of Bernstein polynomials of varying degree n . For example, for 5=n , using the Gram-Schmidt 

process on )(5, xOBi  normalizing, and simplifying the resulting functions, we get the following set of 

orthonormal polynomials; 
 

5
5,0 )1(11)( txOB −=  

)111()1(3)( 4
5,1 −−= ttxOB  

)12055()1(7)( 23
5,2 +−−= tttxOB  

)127135165()1(5)( 232
5,3 −+−−= ttttxOB  

)132216480330)(1(3)( 234
5,4 +−+−−= tttttxOB  

)1352808401050462()( 2345
5,5 −+−+−= tttttxOB  

 
We can see from these equations that the orthonormal Bernstein polynomials are, in general, a product of a 
factorable polynomial and a non-factorable polynomial. For the factorable part of these polynomials, there 
exists a pattern of the form 
 

.,....,1,0)1)(1)(2( nitin in =−+− −  

 
While it is less clear that there is a pattern in the non-factorable part of these polynomials, the pattern can be 
determined by analyzing the binomial coefficients present in Pascal’s triangle. In doing this, we have 
determined the explicit representation for the orthonormal Bernstein polynomials to be 
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2.2 Definition of Block-Pulse functions (BPFs) and their properties 
 
BPFs are studied by many authors and applied for solving different problems, for example see [26 27 - ]. 
 
A k - set of BPFs over the interval [0, T) is defined as 
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with a positive integer value for k . In this paper, it is assumed that T = 1 , so BPFs are defined over [0, 1) . 
BPFs have some main properties, the most important of these properties are disjointness, orthogonality, and 
completeness. 
 

(1)  The disjointness property can be clearly obtained from the definition of BPFs 
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(2) The orthogonality property of these functions is 
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(3) The third property is completeness. For every ),1,0[2Ly∈  when k  approaches to the infinity, 
Parseval’s identity holds, that is 
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3 Some Properties of Hybrid Functions 
 
3.1 Hybrid functions of block-pulse and Orthonormal Bernstein polynomials 
 
We define OBH  on the interval [0; 1] as follow: 
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where Mi ,....2,1=  and nj ,....2,1,0= . thus our new basis is },...,,{ ,1,10,1 nMOBHOBHOBH  and we 

can approximate function with this base. for example for M = 2 and n = 1. 
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3.2 Function approximation by using OBH functions  
 
Any function )(ty which is square integrable in the interval )1,0[  can be expanded in a hybrid 

Orthonormal Bernstein and Block-Pulse Functions  
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where the hybrid Orthonormal Bernstein and Block-Pulse coefficients 
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In (10), ).,.( denotes the inner product. Usually, the series expansion Eq. (9) contains an infinite number of 

terms for a smooth ).(ty  If ).(ty is piecewise constant or may be approximated as piecewise constant, then 

the sum in (9) may be terminated after nm terms, that is 
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Therefore we have 
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then by using (7) ),...,2,1( MiDi =  is defined as follow: 
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We can also approximate the function ]1,0[),( Ltxk ∈  as follow: 

 

),()(),( tOBHKxOBHtxk T≈  

 

where K  is an )1( +nM  matrix that we can obtain as follows: 
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3.3 Integration of OBH functions 
 
In OBH function analysis for a dynamic system, all functions need to be transformed into OBH functions. 
Since the differentiation of OBH functions always results in impulse functions which must be avoided, the 
integration of OBH functions is preferred. The integration of OBH functions should be expandable into 
OBH functions with the coefficient matrix P.  
 

),1,0[),()()( ))1((

0
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t

mnmnmn ττ                                       (14) 

 

where the )1( +mn -square matrix P is called the operational matrix of integration, and )())1(( tOBH mn +×  

is defined in Eq. (8). A subscript )1()1( +×+ mnmn  of P  denotes its dimension and P is given in [4] 
as: 
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and H  is the operational matrix of integration  and can be obtained as: 
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The integration of the cross product of two OBH function vectors can be obtained as 
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where L  is an )1( +× nM diagonal matrix given by 
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Eq. (14-18) are very important for solving Volterra- Fredholm integral equation of the second kind 
problems, because the D and P  matrix can increase the calculating speed, as well as save the memory 
storage. 
 
3.4 Multiplication of hybrid functions 
 
It is usually necessary to evaluate )())1(( tOBH mn +× )())1(( tOBH mn

T
+×  for the Volterra- Fredholm integral 

equation of the second kind via OBH functions: 
 

Let the product of )())1(( tOBH mn +× and )())1(( tOBH mn
T
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functions: 
 

)()()( ))1()1(())1(())1(( tMtOBHtOBH mnmnmn
T

mn +×+++ ≅                                                             (20) 

 

























++++

+

+

+

+×+

)()()()()()(

)()()()()()(

)()()()()()(

)()()()()()(

=)(

1,1,201,101,

1,3020301030

1,2020201020

1,1020101010

))1()1((

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tM

nMnMnMnM

nM

nM

nM

nMnM

L

MLMM

L

L

L

 

With the above recursive formulae, we can evaluate )(
))1,)1,(( tM

nMnM +×+  for any M and n . 

 

The matrix )(
))1,)1,(( tM

nMnM +×+ in (20) satisfies 
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where ))1(( +mnc is defined in Eq. (10) and ))1()1(( +×+ mnmnC is called the coefficient matrix. We consider that 

4=M  and 3=n . That is 
 























×

)()()()()()(

)()()()()()(

)()()()()()(

)()()()()()(

=)(

44144120441044

443020301030

442020201020

441020101010

)16)16(

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

tM

L

MLMM

L

L

L

 

],,,,,,,,,,,,,,,[ 433231422212412111402010)16( ccccccccccccc LLLL≡                          (22) 

 
and 
 

TtOBHtOBHtOBHtOBHtOBHtOBHtOBH

tOBHtOBHtOBHtOBHtOBHtOBH

)](,),(),(),(,),(),(),(

,),(),(),(,),(),([)(

43323142221241

2111402010)16(

LL

LL≡
 

 

Using the vector )16(c in Eq. (22), the coefficient matrix  1616×C  in Eq. (21) determined by 
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where 3,2,1,0, =iCi  are 44×  matrices given by 
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With the powerful properties of Eqs. (13-23), the solution of Volterra-Fredholm integral equation of the 
second kind can be easily found. 
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4 Solution of Volterra- Fredholm Integral Equation of the Second Kind 
via Hybrid Functions 

 
Consider the following integral equation: 
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∫

∫

+

+=

x
TT

TTTT

dtYtOBHtOBHKxOBH

dtYtOBHtOBHKxOBHFxOBHYxOBH

0

2

1

0

1

)()()(

)()()()()(

 (25) 

∫

∫

+

+=

x
TT

TTTT

dtYtOBHtOBHKxOBH

dtYtOBHtOBHKxOBHFxOBHYxOBH

0

2

1

0

1

)()()(

)()()()()(
 

 
Applying Eqs. (10), (12) and (20) to Eq. (25) and Eq. (25) becomes  
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obtained by multiplying the operation matrix of integration of (14) as follows: 
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In order to find Y  we collocate Eq. (27) in )1( +nM  nodal points of Newton-Cotes [9] as  
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From Eqs. (27) and (28), we have a system of )1( +nM linear equations and )1( +nM  unknowns. After 

solving above linear system, we can achieve the unknown vectorsY . The required approximated solution 
)(xy for Volterra–Fredholm integral Eq. (1) can be obtained by using Eqs. (22), (26) and (27) as follows 

 

)(
~

)()()()( 21 xOBHPYKxOBHYDKxOBHxfxy TT ++=  
 

5 Numerical Examples 
 
We applied the presented schemes to the following Volterra- Fredholm integral equation of second kind. For 
this purpose, we consider two examples. 
 
Example 1: Consider the following linear Volterra- Fredholm integral equation [28]. 
 

4
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1

0

3

1

3

2
)(

)()()()(

xxxf

dttyxtdttyxtxfxy
x

−=

++= ∫∫
  (29) 

 
If we solve (29) for )(xy directly, the analytic solution can be shown to be .)( xxy =  

 
The comparison among the OBH solution and the analytic solution for )1,0[∈t is shown in Table 1 for 
M=4 and n=3, which confirms that the OBH method gives better solution as the Scaling Function 

Interpolation method. The average relative errors of our method 61012574987.6 −× . Better 
approximation is expected by choosing the optimal values of M and n.  
 

Table 1. The comparison among OBH and scaling function interpolation method for example 1 
 

x OBH solution Analytic 

solution 

Absolute errors of 

OBH method 

Absolute errors of Scaling 

Function Interpolation method 

[28] 

0.1 0.10000003 0.1 8103 −×  710348.3 −×  

0.2 0.19999999 0.2 8101 −×  710263.1 −×  

0.3 0.29999999 0.3 8101 −×  710905.1 −×  

0.4 0.40000002 0.4 8102 −×  810564.2 −×  

0.5 0.49999999 0.5 8101 −×  810316.1 −×  

0.6 0.60000001 0.6 8101 −×  710876.1 −×  

0.7 0.69999999 0.7 8101 −×  710735.6 −×  

0.8 0.79999999 0.8 8101 −×  710064.2 −×  

0.9 0.90000007 0.9 8107 −×  710589.2 −×  
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Example 2: Consider the following linear Volterra- Fredholm integral equation [29]. 
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With the exact solution xexy =)(  
 
The comparison among the OBH solution and the analytic solution for )1,0[∈t is shown in Table 2 for 

M=2 and n=1 which confirms that the OBH method gives almost the same solution as the analytic method. 

The average relative errors of our method 81064518.7 −×  at M=8, n=7. Better approximation is expected 
by choosing the higher values of M and n.  
 

Table 2. The comparison among OBH and analytic solutions for example 2 
 

x OBH solution The exact 

solution 

Absolute errors of 

OBH method at 

M=4,n=3 

Absolute errors of 

OBH method at M=8, 

n=7 

0.1 1.105134 1.10586745 4103345.7 −×  910532.4 −×  

0.2 1.221474 1.2217852 410112.3 −×  810156.3 −×  

0.3 1.349841 1.349112 41029.7 −×  710653.9 −×  

0.4 1.491835 1.491474 41061.3 −×  810261.7 −×  

0.5 1.648742 1.648536 41006.2 −×  810146.8 −×  

0.6 1.822146 1.822787 41041.6 −×  710745.5 −×  

0.7 2.013712 2.013752707 5100707.4 −×  610541.3 −×  

0.8 2.2255464 2.225540928 610472.5 −×  710521.2 −×  

0.9 2.45960213 2.459603111 71081.9 −×  610348.3 −×  

 

6 Conclusion 
 
In this paper, we have worked out a combination of orthonormal Bernstein and Block-Pulse functions to 
approximating solution of linear Volterra- Fredholm integral equations. The method is based upon reducing 
the system into a set of algebraic equations. The generation of this system needs just sampling of functions 
multiplication and addition of matrices and needs no integration. The matrix D and P are sparse; hence are 
much faster than other functions and reduces the CPU time and the computer memory, at the same time 
keeping the accuracy of the solution. The numerical examples support this claim. Also we noted that when 
the degree of Hybrid Orthonormal Bernstein and Block-Pulse Functions is increasing the errors decreasing 
to smaller values. The results show that the proposed method is a promising tool for this type of linear 
Volterra- Fredholm integral equations. The main advantage of these methods are the ability, reliability and 
low cost of setting up the equations without using any projection method.  
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