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Abstract 
 

This work investigates the problem of dynamic response to variable-magnitude moving distributed 
masses of Bernoulli-Euler beam resting on bi-parametric elastic foundation. The governing equation is a 
fourth order partial differential equation with variable and singular co-efficients. This equation is reduced 
to a set of coupled second order ordinary differential equation by the method of Garlerkin. For the 
solutions of these equations, two cases are considered; (1) the moving force case – when the inertia is 
neglected and (2) the moving mass case – when the inertia term is retained. To solve the moving force 
problem, the Laplace transformation and convolution theory are used to obtain the transverse-
displacement response to a moving variable-magnitude distributed force of the Bernoulli-Euler beam 
resting on a bi-parametric elastic foundation. For the solution of the moving mass problem, the celebrated 
struble’s technique could not simplify the coupled second order ordinary differential equation with 
singular and variable co-efficient because of the variability of the load magnitude; hence use is made of a 
numerical technique, precisely the Runge-Kutta of fourth order is used to solve the moving mass problem 
of the response to variable-magnitude moving distributed masses of Bernoulli-Euler beam resting on 
Pasternak elastic foundation. The analytical and the numerical solutions of the moving force problem are 
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compared and shown to compare favourably to validate the accuracy of the Runge-Kutta scheme in 
solving this kind of dynamical problem. The results show that response amplitude of the Bernoulli-Euler 
beam under variable-magnitude moving load decrease as the axial force N increases for all variants of 
classical boundary conditions considered. For fixed value of N, the displacements of the beam resting on 
bi-parametric elastic foundation decrease as the foundation modulus K0 increases. Furthermore, as the 
shear modulus G0 increases, the transverse deflections of the beam decrease. The deflection of moving 
mass is greater than that of moving force for all the variants of boundary conditions considered, therefore, 
the moving force solution is not a safe approximation to the moving mass problem. Hence safety is not 
guaranteed for a design based on the moving force solution for the beam under variable-magnitude 
moving distributed masses and resting on bi-parametric elastic foundation. 
 

 
Keywords: Beam; Bernoulli-Euler; Pasternak; Runge-Kutta; axial force; shear modulus. 
 

1 Introduction 
 
The dynamic effects of a load on beam and beam-like structural members play significant role in railway 
tracks, road tracks and highway pavement designs. In modern engineering practices, beam- like structures 
resting on both variable and constant elastic foundation have wide applications and for this reason several 
authors have investigated the dynamic deflection of beam [1-4]. Many structures are designed to support 
moving masses such as bridges, guide ways, overhead cranes, rails, roadways tunnels, and pipeline etc. Also 
many structural members can be modeled as beams under moving loads in the design of machining 
processes. The dynamics responses of a beam acted upon by moving masses have been studied extensively 
in connection with the design of railway tracks and machining processes by Lee [5]. The equation of motion 
in matrix form has been formulated for the dynamics response of a beam acted upon by a moving mass by 
using Lagrangian approach and the assumed mode method, and found that separation of the mass from the 
beam may occur for a relatively slow speed and small mass when the beam is clamped at  both ends. 
 
When the Chester rail bridge collapsed in England, various kinds of moving load problem associated with 
structural dynamics have been presented in excellent monograph by Fryba [2]. In the Fryba book detailed 
solution of the problem of a constant force moving along infinite beam over an elastic foundation including 
its all possible speed and values of viscous damping is presented. Dynamic problem of a simply supported 
beam subjected to a constant force moving at a constant speed is analyzed by Olsson [6]. Analytical and 
finite element solutions to this fundamental moving load problem is shown and the result given by the author 
and other investigators are intended to give a basic understanding of the moving load problem and some 
computational algorithms discussed. Furthermore, Kenny, [1] took up the problem of investigating the 
dynamic response of infinite elastic beam on elastic foundation when the beam is under the influence of a 
dynamic load moving with constant speed. He included the effect of viscous damping in the governing 
differential equation of motion. Eisenberger and Clastornik [7] solved the problem of a beam on a bi-
parametric elastic foundation and presented a finite element procedure for analyzing the flexural vibrations. 
Cao and Zhong [8] solved the problem of a beam on a Pasternak foundation and under a moving load. The 
method of Fourier integral is used to obtain the solution to the formulation of the problem. The effect of the 
moving load velocity on the dynamic displacement response of the beam is discussed.  Recently, Awodola 
[9] considered the influence of foundation and axial force on the vibration of thin beam under variable 
harmonic moving load. The technique is based on the finite Fourier sine transformation. More recently, Oni 
and Awodola [10] investigated the dynamic behaviour under moving concentrated masses of simply 
supported rectangular plates resting on variable Winkler elastic foundation.  
 
Over the years, the problem of assessing the dynamic behavior of structural members subjected to moving 
loads investigated by several researchers are limited to the case in which the loads are simplified as a 
harmonic time variable concentrated moving force and cases in which the elastic foundation has been 
usually modeled by a Winkler foundation [11-14]. This kind of model proposed by Winkler, consisting of a 
system of mutually independent linear springs, is assumed that the deflection of foundation at any point on 
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the surface is directly proportional to the stress and there is no interaction between the lateral springs. It does 
not accurately represent the continuous element of many practical foundations. Therefore, to find a more 
physically close and practically applicable model, bi-parametric foundations were proposed by the following 
researchers [15-19]. This research work considers bi-parametric foundation model because of the 
discontinuity of Winkler foundation model. Hence, this research work investigates the dynamic response to 
variable-magnitude moving distributed masses of Bernoulli-Euler beam resting on Pasternak elastic 
foundation. 
 

2 Governing Equation 
 
The problem of assessing the dynamic response to variable-magnitude moving distributed masses of 
Bernoulli-Euler beam resting on bi-parametric elastic foundation is considered. 
 
Consider the dynamic response to variable-magnitude moving distributed masses of Bernoulli-  Euler beam, 
resting on bi-parametric elastic foundation, the governing equation of motion is given by the fourth order 
partial differential equation [15]. 
 

��

���
���

��

���
�(�, �)� −N

��

���
�(�, �) +µ

��

���
�(�, �)+���(�, �) − ��

��

���
W (�, t)=P(�, �)             (1) 

 
Where, �is the spatial co-ordinate, t is the time coordinate,�(�, �)is the transverse displacement, E is the 
Young modulus, J is the moment of inertia, N is the axial force, µ is the mass per unit length of the beam, EJ 
is the flexural rigidity, K0 is the foundation modulus, G0 is the shear modulus, P(�, �) is the variable-
magnitude moving uniformly distributed load on the beam. 
 
When the effect of the mass of the moving load on the response of the beam is taken into consideration, the 
distributed load P(�, �) takes the form 
 

P(�, �) = P�(�, t) �1 −
�

�    

�

��
W (�, t)�                                                                                                (2) 

 
where, 
 
P�(�, t) is the continuous moving force acting on the beam model given by 
 

p�(�, t) = �M �gcosωtH(� − c�t)                                                                                                             (3)

�

���

 

 
g is the acceleration due to gravity, 
 
�

��
  is the convective acceleration defined by Fryba [7] 

 
�

��
=

∂

∂t�
+ 2c

∂�

∂� ∂t
+ c�

∂�

∂��
                                                                                                                       (4) 

 
and cos�� is the variable-magnitude of the moving load. 
 
In this work, the moving load is assumed to move with constant speed c. 
 
Substituting equations (2), (3) and (4) into (1), one obtains 
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Equation (6) can also be re-written as 
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The boundary conditions of the structure under consideration are first taken to be arbitrary. The initial 
condition without any loss of generality is taken as; 
 

W(�, �) = W(�, 0) = 0 = 
�

��
�(�, �) =

�

��
�(�, 0)                                                                            (7)  

 

3 Analytical Approximate Solution 
 
An exact closed form solution of the above fourth order partial differential equation (1) does not exist. 
Therefore, an approximate solution is sought. The Galerkin method is employed, this technique requires the 
solution of equation (1) takes the form 
 

�(�, �) =  � ��

�

���

(�)��(�)                                                                                                                          (8) 

 

where, 
 

��(�) =  sin
�� �

�
+ �� cos

�� �

�
+ �� sinh

�� �

�
+ �� cosh

�� �

�
                                                     (9)  

 
is the beam function chosen so that the concerned boundary conditions are satisfied. 
 
Substituting equation (8) into equation (6), one obtains 
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In order to determine  ��(�), it is required that the expression on the left hand side of (10) be orthogonal to 
the function   ��(�), where k is the dummy index. Therefore, one obtains 
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Equation (11) can be re-written as 
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��(�, �) = � cos��� (

�

�

� − ��)��
��(�)��(�)��                                                                                    (17) 

 

��(�, �) = � cos��� (

�

�
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In order to evaluate the integralsA�(m, k), A�(m, k), A�(m, k), and A�(m, k), one makes use of the Fourier 
series representation for the Heaviside function in the form; 
 

� (� − ��) =
1

4
+
1

�
�
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2� + 1
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∞

���

         0 < � < 1                                                     (19) 

 
Substituting (19) in (10), after some simplifications and rearrangements, one obtains 
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=
Mg� cos��

���
�−cos�� + �� sin�� + �� cosh�� + �� sinh�� + cos

����

�

− �� sin
����

�
− �� cosh
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����
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�                                                                     (20)   

 
where,  
 

        ��(�, �) = ��(�, �) − ��(�, �) + ��(�, �) − ��(�, �)                                                                    (21) 
 

λ� =
M

μL
                                                                                                                                                              (22) 

 
Equation (20) is the transformed equation governing the problem of the dynamic response to variable-
magnitude moving distributed masses of Bernoulli-Euler beam resting on bi-parametric elastic foundation. 
This coupled non-homogeneous second order ordinary differential equation holds for all variant of the 
classical boundary conditions. 
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3.1 Case I: Moving force problem 
 
In moving force, we account for only the load being transferred to the structure. In this case, the inertia 
effect is negligible. Setting �� = 0 in the transformed equation (20), one obtains 
 

�{��(�, �)Ÿ�(�) + ��(�, �)��(�)}

�

���

=
���� cos��

���
�−cos�� + �� sin�� + �� cosh�� + ���� sinh+cos

����

�

− �� sin
����

�
− �� cosh

����

�
−�� sinh

����

�
�                                                                    (23) 

 
Equation (23)is an approximate model of the differential equation describing the response of Bernoulli-Euler 
beam with general boundary conditions when under the action of moving distributed force which assumes 
the inertia effect of the moving mass as negligible.  
 
Further rearrangement of (23) yields 
 

Ÿ�(�) + ��
���(�) = �� cos�� [−cos�� + �� sin�� + �� cosh�� + �� sinh�� + cos�� � 

−�� sin��� −�� cosh��� − �� sinh���]                                                                                            (24) 
 
where, 
 

�� =
����

�����(�, �)
                                                                                                                                         (25) 

 

��
� =

��(�, �)

��(�, �)
                                                                                                                                                (26) 

 

��� 
���

�
                                                                                                                                                            (27) 

 
Solving equation (24) using Laplace transformation and convolution theory and taking into account equation 
(8), one obtains. 
 

�(�, �) = �
MgL

μλ
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A�(m, k)

�

���

×
cos��
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����
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{����1 − cos�������

� − ��
�� + (��

� − ��
�) 

���
�(cos�� � − cos���) − ����(�� sin��� − �� sin���)� − (��

� − ��
�) 

�B�β
�
�(coshα�t− cosβ

�
t) + C�β

�
(β

�
sinhα�t− α� sinβ�t)�} 

  × [sin
���

�
+ A� cos

���

�
+ �� sinh

���

�
+C� cosh

���

�
 ]                                                              (28) 

 
Equation (28) represents the transverse-displacement response to a variable-magnitude moving force of a 
Bernoulli-Euler beam resting on a bi-parametric elastic foundation. 
 

3.2 Case II: Moving mass problem 
 
If the mass of the structure and that of the load are of comparable magnitude, the inertia effect of the moving 
mass is not negligible. Thus, �� ≠ 0 and solution to the entire equation (20) is required. This is termed 
moving mass problem. To this end, equation (20) is rearranged to take the form 
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2�����(�,�, �) cos��
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=
                 ���� cos��
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[−cos�� + �� sin�� + �� cosh�� + �� sinh�� + cos

����

�

− ��sin
����
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− �� cosh
����

�
− �� sinh

����

�
]                                                                                            (29)      

 
Where, 
 

��(�,�, �) =
∆�(�, �)

4
+
1

�
�

cos(2� + 1)���

2� + 1
∆�(�,�, �) −

∞

�

1

�
�

sin(2� + 1)���

2� + 1
∆�(�,�, �)

∞
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   (30)    

 

��(�, �, �) =
∆�(�, �)

4
+
1

�
�

cos(2� + 1)���

2� + 1
∆�(�,�, �) −

∞

�

1

�
�

sin(2� + 1)���

2� + 1
∆�(�,�, �)      (31)

∞

�

 

 

��(�,�, �) =
∆�(�, �)

4
+
1

�
�

cos(2� + 1)���

2� + 1
∆�(�,�, �) −

∞

�

1

�
�

sin(2� + 1)���

2� + 1
∆�(�,�, �)

∞

�

  (32) 

 
Evidently, unlike the moving force problem, an exact analytical solution to the equation (29) does not exist, 
and there is no known approximate analytical solution technique that can be used to solve the equation, even 
the popular struble’s technique cannot simplify the equation due to the variability of the load magnitude. 
Hence, one resorts to numerical technique and to this end use is made of Runge-Kutta of fourth order to 
solve the second order coupled ordinary differential equation. We now proceed to use Runge-Kutta of fourth 
order.  
 
The second order ordinary differential equation (29) is first reduced to two systems of first order as follow: 
 

�̇�(�) = ��                                                                                                                                                  (33) 
 

�̇�(�) = ��� − ����� − �����(�)                                                                                              (34)     
  
Where, 
 

��� =
2�����(�,�, �) cos��

��(�, �) + ����(�,�, �) cos��
                                                                                                   (35) 

 

��� =
��(�, �) + ���

���(�,�, �) cos��

��(�, �) + ����(�,�, �) cos��
                                                                                              (36) 

 

��� =
                 ���� cos��

��(��(�, �) + ����(�,�, �) cos��)
[−cos��

+ �� sin�� + �� cosh�� + ��sinh�� + cos
����

�
  − �� sin

����

�
− �� cosh

����

�
 

−�� sinh
����

�
]                                                                                                                                     (37) 

 
The fourth order Runge-Kutta scheme is given by  
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���� = �� +
1

6
(�� + 2�� + 2�� + ��)                                                                                                   (38) 

    

���� = �� +
1

6
(�� + 2�� + 2�� + ��)                                                                                                       (39) 

 
Where, 
 

�� = ℎ�(��, ��, ��) 
 
 �� = ℎ�(�� , �� , ��) 
 

 �� = ℎ� ��� +
ℎ

2
, �� +

��
2
, �� +

��
2
� 

 

 �� = ℎ� ��� +
ℎ

2
, �� +

��
2
, �� +

��
2
� 

 

�� = ℎ� ��� +
ℎ

2
, �� +

��
2
, �� +

��
2
� 

 

�� = ℎ� ��� +
ℎ

2
, �� +

��
2
, �� +

��
2
� 

 
�� = ℎ�(�� + ℎ, �� + ��, �� + ��) 
 
 �� = ℎ�(�� + ℎ, �� + ��, �� + ��)                                                                                                      (40)      

 

4 Discussion of the Analytical Solution and Numerical Solution 
 
For thisundamped system, it is desirable to examine the phenomenon of resonance. From equation (28), it is 
clearly shown that the uniform Bernoulli-Euler beam resting on bi-parametric elastic foundation and traverse 
by moving distributed force with uniform speed reaches a state of resonance whenever   
 

�� = ��                                                                                                                                                              (41) 

 
where 
 

�� =  
���

�
                                                                                                                                                       (42)  

 
That is, 
 

�� =  
���

�
                                                                                                                                                       (43) 

 
For the solution of the moving distributed mass problem, the problem is not solvable by any conventional 
method, even the popular struble’s technique could not simplify the transformed governing coupled 
differential equation (29), and hence the fourth order Runge-Kutta scheme is used to obtain the numerical 
solution of the moving distributed mass problem. The Runge-Kutta scheme of order four is used to solve the 
moving distributed force problem and the results are shown to compare favourably with the analytical results 
of the moving force problem thereby confirming the accuracy of the Runge-Kutta scheme in solving this 
kind of dynamical problem. 
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5 Illustrative Examples 
 
5.1 Simply supported boundary conditions  
 
As an example, we consider a uniform beam simply support at the ends � = 0 and elastically supported at 
the other end � = �, the conditions are expressed as 
 

�(0, �) = �(�, �)     ,               
���(0, �)

���
= 0 =

���(�, �)

���
                                                             (44) 

 
and hence for the normal modes 
 

��(0) = 0 = ��(�)  ,    
����(0)

���
= 0 =  

����(�)

���
                                                                           (45) 

 
this implies that 
 

��(0) = 0 = ��(�) ,   
����(0)

���
= 0 =  

����(�)

���
                                                                                (46) 

 
Thus, it can be shown that  
 

�� = �� = 0 ;  �� = �� = 0 ;  �� = �� = 0                                                                                       (47) 
 

λ� = kπ and     λ� = mπ                                                                                                                              (48) 
 

5.2 Clamped end boundary conditions 
 
At a clamped end, both deflection and slope vanish. Thus, 
 

�(0, �) = 0 = �(�, �)and 
��(0, �)

��
 = 0 =

��(�, �)

��
                                                                       (49) 

 
Hence for normal modes          
                                                                                                   

��(0, �) = 0 = ��(�) ���   
���(0, �)

��
= 0 =

���(�)

��
                                                                     (50)  

 
Which implies that  
 

��(0, �) = 0 = ��(�)  ���      
���(0, �)

��
= 0 =

���(�)

��
                                                                     (51)  

 
Thus it can be shown that 
 

�� =
sinh�� − sin��
cos�� − cosh��

=
cos�� − cosh��
sinh�� + sin��

= −��               ���      �� = −1                              (52) 
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The frequency equation is given as  
 

cos�� cosh�� = 1                                                                                                                                      (53) 
 
Hence, we have 
 

�� = 4.73004,   �� = 7.85320, �� = 10.99561                                                                              (54) 
 

Expression for ��,��,    ��, and the corresponding frequency equation are obtained by a simple  interchange 
of m and k in (52) 
 

5.3 Free end boundary conditions 
 
For free ends condition at x=0 and x=L, the pertinent boundary conditions are  
 

���(0, �)

���
= 0 =

���(�, �)

���
 ��� 

���(0, �)

���
= 0

���(�, �)

���
                                                               (55)   

 
Thus, for normal modes  
 

����(0)

���
= 0 =

����(�)

���
 ��� 

����(0)

���
= 0 =

����(�)

���
                                                               (56) 

 
Which implies that 
 

����(0)

���
= 0 =

����(�)

���
 ��� 

����(0)

���
= 0 =

����(�)

���
                                                                   (57) 

 
Thus, it can be shown that  
 

�� =
sin�� − sinh��
cosh�� − cos��

=
cos�� − cosh��
sin�� + sinh��

= �� ��� �� = 1                                                    (58) 

 
and from (4.24), one obtains  
 

cos�� cosh�� = 1                                                                                                                                        (59)
   

 

 
Which is termed the frequency equation for the dynamical problem, such that  
 

�� = 4.73004,   �� = 7.85320, �� = 10.99561                                                                              (60) 
 

6 Numerical Results and Discussion 
 
6.1 Graphs for simply supported boundary conditions 
 
Figs. 6.1 and 6.2 display the effect of axial force N on the deflection profile of simply supported uniform 
beam under the action of variable-magnitude distributed forces moving at constant velocity in both cases of 
moving distributed force and moving distributed mass respectively. The graphs show that the response 
amplitude decreases as the value of the axial force increases.  
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Fig. 6.1. Deflection profile of a simply supported uniform beam under moving distributed force for 
various values of axial force N for fixed values of shear modulus G0= 100000 and foundation modulus 

K0 = 400000 
 

 
 

Fig. 6.2. Deflection profile of a simply supported uniform beam under moving distributed mass for 
various values of axial force N for fixed values of shear modulus G0= 100000 and foundation modulus 

K0 = 400000 
 
Figs. 6.3 and 6.4 display the effect of shear modulus G0 on the deflection profile of simply supported 
uniform beam under the action of variable-magnitude distributed forces moving at constant velocity in both 
cases of moving distributed force and moving distributed mass respectively. The graphs show that the 
response amplitude decreases as the value of the shear modulus G0 increases. 
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Fig. 6.3. Deflection profile  of a simply supported uniform beam under moving distributed force for 
various values of shear modulus G0 for fixed values of shear modulus N = 24000 and foundation 

modulus K0 = 400000. 
 

 
 

Fig. 6.4. Deflection profile of a simply supported uniform beam under moving distributed mass for 
various values of shear modulus G0 for fixed values of axial force N= 24000 and foundation modulus 

K0 = 400000 
 
Figs. 6.5 and 6.6 display the effect of foundation modulus K0 on the deflection profile of simply supported 
uniform beam under the action of variable-magnitude distributed forces moving at constant velocity in both 
cases of moving distributed force and moving distributed mass respectively. The graphs show that the 
response amplitude decreases as the value of the foundation modulus K0 increases. 
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Fig. 6.5. Deflection profile of a simply supported uniform beam under moving distributed force for 
various values of foundation modulus K0 for fixed values of axial force N= 10000 and foundation 

modulus G0= 100000 
 

 
 

Fig. 6.6. Deflection profile of a simply supported uniform beam under moving distributed mass for 
various values of Foundation  modulus K0for fixed values of axial force  N= 10000 and Foundation 

modulus G0 = 10000 
 
Fig. 6.7 shows thecomparison of the moving distributed forces and moving distributed masses for fixed the 
values of N, K0 and G0. 
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Fig. 6.7. Comparison of the deflection profile of moving force and moving mass for a simply supported 
uniform beam for fixed values of N, K0 and G0. 

 

6.2 Graphs for clamped end boundary conditions 
 
Figs. 6.8 and 6.9 display the effect of foundation modulus K0 on the deflection profile of clamped end 
uniform beam under the action of variable-magnitude distributed forces moving at constant velocity in both 
cases of moving distributed force and moving distributed mass respectively. The graphs show that the 
response amplitude decreases as the value of the foundation modulus K0 increases. 
 

 
 
Fig. 6.8. Deflection profile of a clamped end uniform beam under moving distributed force for various 

values of foundation  modulus K0for fixed values of axial force  N= 100000 and shear  modulus G0 = 
1000000 
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Fig. 6.9. Deflection profile of a clamped end uniform beam under moving distributed massfor various 
values of foundation  modulus K0for fixed values of axial force  N= 100000 and shear  modulus G0 = 

1000000 
 
Figs. 6.10 and 6.11 display the effect of shear modulus G0 on the deflection profile of clamped end uniform 
beam under the action of variable-magnitude distributed forces moving at constant velocity in both cases of 
moving distributed force and moving distributed mass. The graphs show that the response amplitude 
decreases as the value of the shear modulus G0 increases. 
 

 
 
Fig. 6.10. Deflection profile of a clamped end uniform beam under moving force for various values of 

shear  modulus G0for fixed values of axial force  N= 100000 and foundation modulus K0 = 1000000 
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Fig. 6.11. Deflection profile of a clamped end uniform beam under moving mass for various values of 

shear  modulus G0for fixed values of axial force  N= 100000 and foundation modulus K0 = 1000000 
 
Figs. 6.12 and 6.13 display the effect of axial force N on the deflection profile of clamped end uniform beam 
under the action of variable-magnitude distributed forces moving at constant velocity in both cases of 
moving distributed force and moving distributed mass respectively. The graphs show that the response 
amplitude decreases as the value of the axial N force increases. 
 

 
 

Fig. 6.12. Deflection profile of a clamped end uniform beam under moving distributed force for 
various values of axial force N for fixed values of foundation modulusK0= 100000 and shear modulus 

G0 = 100000 
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Fig. 6.13. Deflection profile of a clamped end uniform beam under moving distributed mass for 
various values of axial force N for fixed values of foundation modulusK0= 100000 and shear modulus 

G0 = 100000 
 

 
 

Fig. 6.14. Shows the comparison of the moving distributed forces and moving distributed masses for 
fixed values of N, K0 and G0 

 
Fig. 6.15 shows the comparison of the displacement response of the moving distributed force for analytical 
solution and numerical solution for a free ends uniform beam. 
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Fig. 6.15. Comparison of the displacement response of the moving distributed force for analytical 
solution and numerical solution for a free ends uniform beam 

 

7 Conclusions 
 
The problem of assessing the dynamic response to variable-magnitude moving distributed masses of 
Bernoulli-Euler beam resting on bi-parametric elastic foundation is considered. The close form solution of 
the governing fourth order partial differential equation with variable and singular coefficients of uniform 
Bernoulli-Euler beam for moving force is presented. Firstly, the Galerkin’s method is used to transform the 
governing fourth order partial differential equation with singular and variable coefficients to a set of coupled 
second order ordinary differential equations called the Galerkin’s equations. The resulting Galerkin’s 
equations are solved, for the moving force problem, using Laplace transform and convolution theory.For the 
solution of the moving mass problem, the problem is not solvable by any conventional method, even the 
popular struble’s technique could not simplify the transformed governing coupled differential equation, and 
hence the fourth order Runge-Kutta scheme is used to obtain the numerical solution of the moving mass 
problem. The Runge-Kutta scheme of order four is used to solve the moving force problem and the results 
are shown to compare favourably with the analytical results of the moving force problem thereby confirming 
the accuracy of the Runge-Kutta scheme in solving this kind of dynamical problem.The results show that 
response amplitude of the Bernoulli-Euler beam under variable-magnitude moving load decrease as the axial 
force N increases for all variants of classical boundary conditions considered. For fixed value of N, the 
displacements of the beam resting on bi-parametric elastic foundation decrease as the foundation modulus K0 
increases. Furthermore, as the shear modulus G0 increases, the transverse deflections of the beam decrease. 
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