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Abstract

In this paper we examine a simple model of sediment transport, induced by the breaking waves
in the surf zone. Essentially the bottom is allowed to move in response to the divergence of a
sediment flux, in turn determined by the breaking waves. The effect of this extra term on the
previous solutions for set-up, longshore currents and rip currents is then determined. It is found
that the solutions for the mean flow are now unsteady on a slow timescale determined by a certain
sediment transport parameter. There is a change in beach slope in the rip currents controlled
by the sediment transport. The system of equations now forms a three-by-three nonlinear
hyperbolic system of equations. These we solve approximately, using a simple wave solution
based on the simple wave speed corresponding to the small sediment transport parameter.
However, this solution will always breakdown after a long time, so we show that by adding
another term proportional to the beach slope into the expression for the sediment flux, we can
obtain a steady-state solution.
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1 Introduction

The hydrodynamics of the nearshore zone constitutes an important area of studies. The interest
is mainly driven by a combination of engineering, shipping and coastal interests. There has been
much research on shoaling nonlinear waves, on how currents affect waves and how waves can drive
currents. The basis for this subject was laid down by [1], [2], who analyzed the nonlinear interaction
between short waves and long waves (or currents), and showed that variations in the energy of the
short waves correspond to work done by the long waves against the radiation stress of the short
waves. In the shoaling zone this radiation stress leads to what are now known as wave setup and
wave setdown, surf beats, the generation of smaller waves by longer waves, and the steepening of
waves on adverse currents, see [3], [4]. The divergence of the radiation stress was shown to generate
an alongshore current by obliquely incident waves on a beach [5], [6]. During the shoaling of the
waves there is a discontinuity in the wave energy in the mean vorticity equation of the waves. Thus
there is sharp distinction in the behaviour of waves in the regimes due largely to forcing.

As wave groups propagate towards the shore, they enter shallower water and eventually break on
beaches. The important process here is the wave breaking and dissipation of energy. The focusing
of energy and the wave height variation across the group forces low frequency long waves that
propagate with the group velocity [1]. These long waves may be amplified by continued forcing
during the shoaling of the short wave group into shallower water [3], [7], [8] and [9]. In sufficiently
shallow water, the short waves within the group may break at different depths leading to further
long wave forcing by the varying breaker-line position [10], [11]. This means that the shoreward
propagating waves may reflect at the shoreline and subsequently propagate offshore [12].

Wave breaking leads to a transfer of the incoming wave energy to a range of different scales of
motions, and particularly to lower frequencies (see, for instance, [13]). Thus waves called surf beat
[12], [14], may propagate in the cross-shore direction (called leaky waves). Waves may be trapped
refractively as edge waves [15]. Wave breaking may occur for two reasons. Firstly due to natural
variation in the wave direction and amplitude. These changes occur in space and time. Secondly
wave may break due to topographic influences. When this is the case, as in the nearshore zone, the
location and form of the wave breaking is influenced by the bottom depth profile.

Essentially we derived a model for the interaction between waves and currents. The aim is to
provide analytical solution for waves in the nearshore zone on time scales longer than an individual
wave. This is possible on long-time scales using the wave-averaging procedure often employed in
the literature (see the textbook [16]). We describe solutions for rip currents, in the shoaling zone
matched to the surf zone, for two different beach profiles.

The structure of the mathematical model is based on the Euler equations for an inviscid incompressible
fluid. We then employ an averaging over the phase of the waves, exploiting the difference in time
scales between the waves and the mean flow, which is our main interest. The nearshore zone is
divided into regions, a shoaling zone where the wave field can be described by linear sinusoidal
waves, and the surf zone, where the breaking waves are modelled empirically. The breakerline is
fixed at x = xb but in general could vary.

In the shoaling zone wave field, we use an equation set consisting of a wave action equation, combined
with the local dispersion relation and the wave kinematic equation for conservation of waves. The
mean flow field is then obtained from a conservation of mass equation for the mean flow, and a
momentum equation for the mean flow driven by the wave radiation stress tensor. In the surf zone,
we use a standard empirical formula for the breaking wave field, together with the same mean flow
equations.
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2 Governing Equations and Fundamentals

With sediment transport, the kinematic bottom boundary condition becomes

w + ht + u.∇h = 0 , at z = −h(x, y, t) , (2.1)

which is combined with a sediment flux law

ht = ∇.Q , at z = −h(x, y, t) , (2.2)

where Q is the sediment flux. In the literature there are many flux laws proposed, depending on the
assumed sediment type (see, for instance [17], [18], [19] and others). Here we follow the concepts
used by [19] in particular, but with some simplifications. Thus

Q =
1

1− ps
(Qb +Qs) .

note here we put µ = 1 as we assume that the waves are always breaking where p ≈ 0.4 is the bed
porosity. The quantities Qb,s are the bed-load and suspended sediment fluxes respectively, and are
given by expressions of the form

Qb = νb(|uw|2u− λb|uw|3∇h) ,

Qs = νs(H|uw|3u− λs|uw|5∇h) .

Here |uw| is the wave velocity magnitude, νb and νs are coefficients of bed-load and suspended
transport respectively. Usually these expressions are used outside the surf zone, but here we assume
that they remain valid, at least in qualitative form, inside the surf zone. Then we assume that
|uw| ≈ |u| and ignore the terms in ∇h as, in our theory, the beach slope is assumed small. Assuming
also that in the surf zone |u| ≈ 2

√
gH (the simple wave expression) we finally get that

Q = C|u|βu . (2.3)

Here the coefficient β varies between 2 and 5, depending on whether the bed-load or suspended
sediment flux term dominates. The constant C similarly then varies from νb/1−ps and νs/4g(1−ps).
We choose β = 3 for analytical convenience, and basing an estimate for C on νb(= 4×10−5s2m−1),
we set C = νb/ub(1− ps) where ub is a suitable velocity scale, say ub =

√
ghb.

The mass equation holds as before, but now allowing for the time dependence in h,

Ht +∇.(
∫ ζ

−h

u )dz = 0 , where H = h+ ζ . (2.4)

Now, as before, let all quantities be written as a mean plus a fluctuation, so that for instance
h = h̄+ h′. But because Q is nonlinear, we see that h′ is at least second order in wave-amplitude,
and hence can be neglected. It may be necessary to examine this hypothesis later. Proceeding, we
can average the new equations (2.2 , 2.4) to get

H̄t +∇.(H̄ū) = 0 , (2.5)

where H̄ = h̄+ ζ̄, together with

h̄t = ∇.Q̄ , (2.6)

where Q̄ = C < |u|3u > , (2.7)

and now needs to be evaluated as a function of both the mean and fluctuating components.
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The momentum balance equation

∂ζ̄

∂t
+

∂

∂xi
(H̄Ui) = 0 (2.8)

H̄
∂Ui

∂t
+ H̄Uj

∂Ui

∂xj
= − ∂

∂xj
Si j − g(ζ + h)

∂ζ̄

∂xj
(2.9)

is still essentially but with the modified H as above, that is, again henceforth omitting the “overbar”
on all mean quantities henceforth for convenience,

H
∂Ui

∂t
+HUj

∂Ui

∂xj
= −∂Sij

∂xj
− gH

∂ζ

∂xj
. (2.10)

Altogether three equations for ζ̄, h̄,U, where the new feature is that h̄ is a new unknown, and so
there as new equation for it. Now we reexamine the wave-setup and longshore current problems,
taking account of this new sediment term only inside the surf zone. We now seek solutions of (2.8
& 2.9 ) which are steady, and do not depend on the longshore coordinate. Thus all variables depend
on x only. For convenience here we shall omit the ”overbar”, that is “Ū = U and so on. Thus (2.8)
immediately implies that U =0.

3 Shoaling Zone

Here we express, as before, the horizontal velocity u = (u, v) as a mean plus a fluctuation, thus

u = u′ + ū ,

for instance, where u′ is O(a) and ū is O(a2). Indeed here in the shoaling zone u′ ∝ sin θ, θ =
kx+ ly − ω t. But the averaging of

< | sin θ|3 sin θ >=

∫ π

0

sin4 θ dθ +

∫ 2π

π

− sin4 θ dθ = 0,

and so outside the surf zone Q̄ = 0. Indeed, this result will hold for all values of the index β. Thus,
to the amplitude order considered, there is no mean sediment flux in x > xb, and hence no change
to our previous results.

4 Wave Set Up: Surf Zone

Inside the surf zone, we assume that |u| ≈ 2
√
gH (the simple wave expression) in the expression

(2.7) to get that
Qx = δ0H

2, (4.1)

where δ0 = 16g2C .

Also in the y direction, since v ≈ u tan θ,and since θ < 1,

Qy = δ0H
2 tan θ. (4.2)

We note that δ0 has dimensions of inverse time, and setting the velocity scale ub =
√
ghb = 4.43ms−1

say , corresponding to hb = 2m, we find that δ0 = 2.32× 10−2s−1.

We now examine the effect of this extra effect on wave set-up in the surf zone. Thus the momentum
balance between the setup and flux term is again found from the mean momentum equation (2.10),
keeping only the leading order terms,

∂S11

∂x
+ g H

∂ζ

∂x
= 0. (4.3)
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This is solved exactly as in Chapter 3, since as before S11 = 1/2Γg H2, but note that Γ = 3γ2/8 so
that

ΓgHHx + gH(Hx − h̄x) = 0 .

and so Hx[1 + Γ] = h̄x. (4.4)

Integration gives that
H[1 + Γ] = h̄+ C(t) . (4.5)

In general C = C(t) but here we impose the boundary condition that h̄b = hb is a constant. Then
C > 0 is a constant, found from the matching at the edge of the surf zone, x = xb.

[1 + Γ]Hb = h̄b + C .

or C = Γhb + [1 + Γ]ζb .

Next, use the sediment equation (2.6) to get

h̄t = 2δ0HHx . (4.6)

Hence, eliminating h̄ we get

h̄t =M(h̄+ C)h̄x , M =
2δ0

(1 + Γ)2
. (4.7)

The initial condition is that h̄ = h(x), x < xb at t = 0, and, as above, there is a boundary condition
that h̄ = hb at x = xb, t > 0. Hence the solution, found using characteristics is

dx

dt
= −M(C + h̄),

dh̄

dt
= 0 , so that (4.8)

h̄ = h(x+MCt+Mh̄t) , for x+MCt+Mhbt < xb , (4.9)

h̄ = hb , for x+MCt+Mhbt > xb , (4.10)

However, the characteristics (4.8) from x < xb intersect and a shock forms, eventually making the
solution invalid.

For example, for a linear beach, h = αx we get

h̄ =
α(x+MCt)

1− αMt
, for x+M(C + αxb)t < xb .

The solution blows up as αMt→ 1. Before that the depth increases and the shore line where h̄ = 0
recedes. The total depth is now given by equation (4.5), but we recall that it is only valid for small
time, Mt << 1. For the linear depth profile, this is

H(1 + Γ) =
αx+ C

1− αMt
. (4.11)

Note that the shoreline x = xs is given by αxs = −C, which is unaffected by the sediment transport.
But the total depth increases uniformly at all locations as αMt increases. Here, setting γ = 0.88,
we find that M = 2.79× 10−2s−1; thus for a beach slope of α = 0.1, we see that the time scale for
the sediment transport to take effect is 1/αM = 360 s. Although we have made several simplifying
approximations, this estimate seems quite reasonable, being about 30− 40 wave periods.

Next, we now see from equation (2.5) that Ū ̸= 0 and so one must use the new expression for H,
that is Ht to estimate Ū . In turn this is then a correction to equation (2.10). So the set-up can be
re-calculated, as described in the next section.
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5 Wave Set Up: Surf Zone, Second Iteration

With h̄,H now determined as above, return to the mass conservation equation (2.5) to find the
mean velocity U (overbar omitted here)

Ht = −(HU)x , or
2δ0HHx

(1 + Γ)
= −(HU)x . (5.1)

Assuming that HU = 0 at the shoreline where H = 0 we get

U = − δ0H

(1 + Γ)
. (5.2)

This expression does imply a non-zero onshore flow at x = xb and so strictly an onshore flow is now
needed in x > xb as well. Since at x = xb, this flow is independent of t it can be found also from
(2.5) by looking for a time-independent solution, which is

HU = constant = HbUb = − δ0H
2
b

(1 + Γ)
. (5.3)

We now return to the momentum equation, where we see that the term H∂U/∂t is not zero, and
can be found from (5.2). Thus (4.3) is replaced by

∂S11

∂x
+ g H

∂ζ

∂x
+H

∂U

∂t
= 0 .

Using (5.2) we get
∂S11

∂x
+ g H

∂ζ

∂x
=
δ0HHt

(1 + Γ)
= δ0MH2Hx . (5.4)

This can now be integrated to give

H(1 + Γ) = h̄+ C +
δ0M

2g
H2 . (5.5)

As before C is a constant found by putting H = Hb at x = xb. The last term can be approximated
using the first iteration to give

H(1 + Γ) = h̄+ C +
M2

2g
(h̄+ C)2 . (5.6)

This can now be substituted into the sediment equation (4.6) to get a correction to (4.7),

h̄t =M(h̄+ C +
3M2

2g
(h̄+ C)2)h̄x . (5.7)

With the same initial conditions and boundary conditions as before, this can be integrated as before
by characteristics.

dx

dt
= −M(C + h̄)− 3M3

2g
(h̄+ C)2,

dh̄

dt
= 0 , so that (5.8)

h̄ = h(x+ (h̄+ C)Mt+ (h̄+ C)2
3M3t

2g
) , for x+MCt+Mhbt < xb , (5.9)

h̄ = hb , for x+MCt+Mhbt > xb , (5.10)
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Now, for a linear depth, h(x) = αx we get a quadratic equation for h̄. But as the quadratic term
is a small correction, we can simplify to get that

h̄ ≈ α(x+ CMt)

1− αMt
+

3M3αt(αx+ C)2

2g(1− αMt)2
, (5.11)

and H(1 + Γ) ≈ αx+ C

1− αMt
+
M2(αx+ C)2(1 + 3αMt)

2g(1− αMt)2
. (5.12)

Thus the correction term acts to increase the depth h̄ and to move the shoreline onshore.

6 Wave Set Up: Surf Zone, Simple Wave Solution

The basic equations for set-up, with only x, t dependence are given by equations (2.8) and (2.9)
with use of the sediment law equation (2.6), these are

Ht + (HU)x = 0 , (6.1)

h̄t − 2δ0HHx = 0 , (6.2)

Ut + UUx + gHx − gh̄x + ΓgHx = 0 . (6.3)

This is a 3× 3 nonlinear hyperbolic system. This can be written in the form

vt +A(v)vx = 0 , where vt = [H,U, h̄] , (6.4)

and the 3× 3 matrix A is given by

A = [U,H, 0], [g(1 + Γ), U,−g], [−2δ0H, 0, 0]. (6.5)

The eigenvalues λ of A are given by

det[A(v)− λI] = 0 , (6.6)

which leads to the cubic equation

λ[g(1 + Γ)H − (U − λ)2] + 2gδ0H
2 = 0 . (6.7)

The system is hyperbolic if this has three real roots. For small δ0 the roots are

λ1 ≈ − 2gδ0H

[g(1 + Γ)H − U2]
, λ2.3 ≈ U ± [g(1 + Γ)H]1/2 . (6.8)

All are real-valued, and so in this limit the system is hyperbolic. The first root is the one of main
interest here, as it is due directly from the sediment transport term. More generally, we can show
that all the roots are real-valued, and so the system is hyperbolic, provided that

27gδ0H
2 < U3 + [U2 + 3g(1 + Γ)H]3/2 − 9Ug(1 + Γ)H. (6.9)

We assume henceforth that this condition is always satisfied. Note that the left-hand side is greater
than zero for all values of U and all H > 0, except when U = [g(1 + Γ)H]1/2 when it is zero.

The previous small-time perturbation solution suggests that we seek a simple-wave solution in the
form

v = v(α) , (6.10)

where α = α(x, t) is an arbitrary new variable, and could be taken as any one of the set H,U, h̄.
Substituting into (6.4) shows that

αt = c(α)αx , where − c = λ (6.11)

7



Osaisai; ARJOM, 5(1): 1-11, 2017; Article no.ARJOM.34052

is one of the eigenvalues of A, and vα is then a corresponding eigenvector, so that for instance

(U − λ)Hα +HUα = 0 , (6.12)

2δ0HHα + λ = 0 . (6.13)

We choose λ = λ1, the root corresponding to the sediment transport term, and given approximately
by (6.8) when δ0 is small. In this limit, we choose α = h̄ and readily find that

c =
2δ0(h̄+ C)

(1 + Γ)2
+

3δ30(h̄+ C)2

g(1 + Γ)6
+ · · · , (6.14)

U = −δ0(h̄+ C)

(1 + Γ)2
, (6.15)

H =
(h̄+ C)

(1 + Γ)
+
δ20(h̄+ C)2

2g(1 + Γ)5
+ · · · . (6.16)

The leading order expressions agree with those found before.

Returning to the simple wave equation (4.4), the solution can again be found by the method of
characteristics, that is

dx

dt
= −c(h̄), dh̄

dt
= 0 , for x < xb , (6.17)

h̄ = hb at x = xb , (6.18)

so that x+ c(h̄)t = x0 , h̄ = h(x0) for x0 < xb , (6.19)

where x0 is the initial value of x along each characteristic. This can then be rewritten in the form

h̄ = h(x+ c(h̄)t) , for x+ c(hb)t < xb , (6.20)

h̄ = hb for x+ c(hb)t < xb , (6.21)

It follows that if c(h̄) is an increasing function of h̄, that is ch̄ > 0, then the characteristics will
intersect, and a shock, indicating a breakdown of this simple wave solution. In turn this implies a
breakdown of the present sediment transport model. The approximate expression (6.14) indicates
that ch̄ > 0 at least for sufficiently small δ0. We also note that c(h̄) is independent of the initial
profile h(x) and the breakdown will therefore occur for all beach profiles, provided only that hx > 0.

7 Wave Set Up: Surf Zone, Steady State

Indeed, it is already clear from (6.2) that the present sediment transfer model cannot allow any
steady state to form, as h̄t = 0 would then imply that H = 0, which is unacceptable. Hence, if a
steady state is to be reached, we must replace the sediment law (2.3) by an expression which takes
account of the actual beach slope. Thus, from the discussion in section 5.1, we now replace (2.3)
with

Q = C|u|βu−D|u|β+2∇h . (7.1)

Here D, like C, is an empirical constant. Choosing β = 3 as before, and averaging we now replace
(4.1) with (again omitting the “overbar”)

Qx = δ0H
2 − δ1H

5/2h̄x . (7.2)

Here δ1 is an empirical constant, whose value we estimate to be δ1 = (2 g)1/2 0.7δ0m
−1/2. Substituting

this into (2.6) we get instead of (6.2)

h̄t = 2δ0HHx − δ1(H
5/2h̄x)x . (7.3)

8



Osaisai; ARJOM, 5(1): 1-11, 2017; Article no.ARJOM.34052

This is a nonlinear diffusion equation, and so there is a possibility that a steady-state can be
achieved. Indeed if we assume that there is a steady-state solution then (7.3) implies that Qx = 0,
so that

δ1H
1/2h̄x = δ0 , (7.4)

where a constant of integration has been set to zero since H = 0 at the shore line. Further, in a
steady-state, (6.1) implies that U = 0 and (6.3) can be integrated to yield

[1 + Γ]H = h̄+ C , (7.5)

compare (4.5), where C is a constant, that is

[1 + Γ]Hb = h̄b + C .

Substituting into (7.4) and integrating we find that

2[1 + Γ]δ1H
3/2

3δ0
= x− xs , where

2[1 + Γ]δ1
3δ0

H
3/2
b = xb − xs . (7.6)

Here x = xs is the shoreline. Thus in the equilbrium state, this model predicts that the total depth
follows the power law (x− xs)

2/3. Remarkably this is precisely the famous Dean’s law! ([20],[21]).

7.1 Long-shore transport

Assuming as above that we can ignore the time-dependence at the leading order, we recall that the
momentum balance

ν0
dV

dx
= B0

where B0 = 1
8
gγ2 cos θb yields, that is,

ν0V = B0(x− xs), (7.7)

where B0 is some known constant.The only effect comes from the shoreline xs, which is now time-
dependent.

7.2 Sediment controlled rip currents in surf zone

For the rip current model see [22], the shoaling zone remains unchanged. But in the surf zone, we
need to take account of the sediment transport. Assuming that the effect of the sediment transport
is small, that is as above, assume that Mt << 1, we can estimate the effect as follows. First we
recall that the steady-state equations are

H[U
∂U

∂x
+ V

∂U

∂y
] = −g H ∂ζ

∂x
− [τx], (7.8a)

H[U
∂v

∂x
+ V

∂V

∂y
] = −g H ∂ζ

∂y
− [τy], (7.8b)

while the vorticity equation is

ψx(
Ω

H
)y − ψy(

Ω

H
)x = [

τx
H

]y − [
τy
H

]x, (7.9)

where Ω is define as

Ω = Vx − Uy = (
ψx

H
)x + (

ψy

H
)y . (7.10)
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Previously, we approximated H with h(x). Here we now retain the full H given by (4.5) (for the
case of a linear depth profile), noting again that although this has a small time-dependence, we
shall nevertheless continue to use the steady-state equations above.

For this case of a linear depth, H is given by (4.11), and we see that in effect, the only change
due to the sediment transport is that we have in effect replaced H = αx by

H =
α(x− xs)

(1 + Γ)(1− αMt)
.

Apart from the change of origin, noting that xs does not depend on t, the most significant consequnce
is in effect the slope has changed form α to 1/(1 + Γ)(1 − αMt). Here the first factor in the
denominator acts to reduce the slope independently of the sediment transport, but the second
factor which is due to the sediment transport, then acts to increase the slope. As discussed in [22]
an increase (decrease) in slope decreases (increases) the ratio parameter R, which in turn decreases
the rip current circulation vis-a-vis the longshore current field.

8 Conclusion

We examined a simple model of sediment transport, induced by the breaking waves in the surf zone.
Essentially the bottom is allowed to move in response to the divergence of a sediment flux, in turn
determined by the breaking waves. The effect of this extra term on the previous solutions for set-up,
longshore currents and rip currents is then determined. It is found that the solutions for the mean
flow are now unsteady on a slow timescale determined by a certain sediment transport parameter.
There is a change in beach slope in the rip currents controlled by the sediment transport. The
system of equations now forms a three-by-three nonlinear hyperbolic system of equations. These
we solve approximately, using a simple wave solution based on the simple wave speed corresponding
to the small sediment transport parameter. However, this solution will always breakdown after
a long time, so we show that by adding another term proportional to the beach slope into the
expression for the sediment flux, we can obtain a steady-state solution.
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