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Abstract 
 

In this paper, we investigated the effect of pulse amplitude, radius of constriction and Reynolds number 
on the blood flow through a multi-stenosed artery under the influence of viscous dissipation and 
insignificant free convective force. The blood flowing through the artery is assumed Newtonian and the 
artery rigid. The governing nonlinear and coupled partial differential equations are simplified using the 
stream function and vorticity. The resulting equations are non-dimensionalized and solved by the 
perturbation series solutions method, as developed by Rao and Devanathan [12]. Analytical expressions 
are obtained for the flow velocities, pressure and temperature. The effects of the embedded parameters 
are analyzed quantitatively using graphs. Discussions are considered from a physiologic or clinical point 
of view. The present model may have some bio-medical applications. 
 

 
Keywords: Peristaltic transport; viscous dissipation; arterial stenoses; perturbation; vorticity.  
 

1 Introduction 
 
A number of diseases infest the cardiovascular system. Among these is the atherosclerosis of the arteries, 
which involves the lesion or hardening of the arteries due to deposition of plagues or lipid (a generic term for 
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sterols, esters and fats) in the intima (internal walls of the arteries). The sterols cause fribrosis- a thickening 
and scaring of the connective tissues of the arteries. The local disorders in the process called fibrinolysis 
leads to the adherence of proteins, fats and blood platelets on the internal walls. The mounting up of these 
substances gives rise to the formation of constrictions in the channel. The localized atherosclerotic 
constrictions in the arteries, called stenoses (the narrowing process that causes obstruction to blood flow) 
[1,2] are noticed mainly in the internal carotid artery, coronary artery and femoral artery, which supplies 
blood to the brain, cardiac muscles and lower limbs, respectively. [3] Stenosis can occur at the level of the 
valve or directly below it. And this is regarded as the sub-pulmonary stenosis [4]. The atherosclerotic 
constrictions serve as blockages to the flow of blood in the arteries. Clinically, the closure of the arteries 
constitutes a health risk to the patient [5]. The complete closure of the arteries (called atresia) may lead to 
stroke or heart attack. Even so, moderate and severe stenoses lead to head losses, which can reduce blood 
supply to the arteries, and imposes an extra load on the heart musculature [3]. In an attempt to maintain the 
peripheral flow, the heart enlarges itself and also increases the amplitude of the pulse or pressure wave in the 
arteries [6]. Subsequently, this produces abrupt rise in the flow variables or hydraulic pump, otherwise called 
shock waves [7]. Furthermore, studies have shown that a stenos artery produces distinct sounds called 
‘arterial murmurs’ or bruits, which can be heard externally. The sounds provide a non-invasive means of 
detecting patients with carotid artery stenosis [4]. More so, the calcification of these lipids leads to loss of 
distensibility of the artery at the region of infection, and is assumed rigid. Similarly, the presence of the 
constriction leads to the evolvement of other geometric forms that change the flow pattern. The plagues may 
be at one or many points. It may overlap at such points, too. Research workers idealized the evolving new 
geometries as locally constricted when a point only is affected, and is overlapped [4,8]; peristaltic when 
many point are plagued and overlapped [9-11].  
 
Rao and Devanathan [12] examined the fluid mechanical aspect of the pulsatile flow of an incompressible 
viscous fluid through channels of varying cross-sections. They did not consider the roles of other flow 
characteristics.  Therefore, the aim of this study is to examine some of the flow characteristics using the 
same model and the perturbation series solutions, which they developed. 
 
Much has been done on the pulsating flow in both uniform and varying cross-sectioned non-uniform 
channels, which in general, approximate the normal and stenosed arteries. [12] investigated the pulsating 
flow of an incompressible viscous fluid in tubes of varying cross-sections using the perturbation series 
solutions, which they developed, and found that flow separation occurs in the wall shear stress structure for 
all geometries; [13] demonstrated the explicit dependence of the overall heat transfer on pulsatile frequency, 
and found that, for a constant wall temperature boundary condition, the resulting Nusselt number showed 
periodic axial change, which could enhance heat transfer. [14-16] conducted some experiments on the heat 
transfer rate, and showed that it increases with pulsatitility. Moreover, [17] solved the Navier–Stokes and the 
energy equations using a finite difference method and developed an asymptotic series for the dynamic and 
thermal quantities. Their model shows the existence of an annular effect (Richardson effect) in the entry 
region for the pulsatile part of the velocity and temperature; [18] studied numerically the pulsating flow in a 
channel, and concluded that an appreciable heat transfer enhancement occurs in the channel. Likewise, [19] 
studied the heat transfer in a fully developed pulsatile flow in a channel using numerical method, and noticed 
that changes in the Nusselt number are predominant in the entrance, but with minor changes in the 
downstream. They also noticed that oscillation might produce heat transfer enhancement, which may reduce 
at different axial location in the channel. [20] investigated experimentally, the heat transfer characteristics of 
a pulsating flow in pipes, and observed that there is a critical frequency at which there is an increase in the 
steady value of heat transfer for fluids of Prandtl number near unity; for values less than unity the Nusselt 
number increases as the Prandtl number decreases, whereas the reverse occurs for Prandtl number above 
unity. [21] examined the thermal effects on the pulsatile flow in tubes with varying cross-section using the 
vorticity-stream function and perturbation series expansions, and showed that the amplitude of the pulse, 
height of constriction and Reynolds number of the flow increase the temperature and heat transfer rates in 
convergent and divergent channels.  
 
Blood is an intelligent fluid that behaves sensitively to geometrical configurations. Therefore, a study of its 
flow must take cognizance of its peculiar characteristics for which some modeled its flow as Newtonian, and 
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others non-Newtonian. [22] examined the steady fully developed flow of blood in an atherosclerotic blood 
vessel with rigid permeable wall, and saw that the increase in the permeability of the blood vessel reduces 
the resistance due to stenosis. [2] investigated the effects of overlapping stenosis on the flow characteristics 
of blood under the assumption that blood is Newtonian, and noticed that the impedance increases with the 
increasing catheter size and stenosis height. [23] considered the oscillatory blood flow in convergent and 
divergent channels analytically using the perturbation series expansions, and noticed that the increase in the 
pulse amplitude and height of constriction reduce the axial velocity and axial pressure but increase the radial 
velocity and wall shear stress; flow separation occurs in the radial velocity and pressure structures in both 
channels when the height of the constriction is increased. [24] examined analytically the effects of Reynolds 
number on the oscillating flow in convergent and divergent channels using the method of perturbation series 
solutions, and observed that increase in the Reynolds number increases the velocities and wall shear stress; a 
flow separation occurs in the radial velocity flow structure. [25] studied the non-Newtonian effects on Low-
Density Lipoprotein transport across an artery using four rheological models, and noticed that non-
Newtonian effects on mass transport are negligible for a healthy intramural pressure value; non-Newtonian 
effects increase slightly with intramural pressure; Newtonian assumption is valid for mass transport at low 
Reynolds numbers.  
 
The effects of magnetic field on blood flow in diseased arteries have been studied. [1] examined the effect of 
heat transfer on blood flow in a diseased artery analytically using the closed-form solutions, and found that 
the height of constriction of the artery, magnetic field and the heat transfer affect the velocity and 
temperature distributions. The model investigated a stenosed-artery patient under feverish condition. [26] 
studied the flow of blood in multi-stenosed arteries using a vorticity-stream function and finite difference 
scheme, and showed that magnetic field modifies the flow patterns, increases the heat transfer rate and the 
thermal boundary layer thickness. [4] investigated the effect of thermal radiation and magnetic field on the 
stenosed-arterial blood flow, and observed that magnetic field decreases the blood velocity; the increase in 
thermal radiation absorption increases the blood temperature. [27] considered analytically the effect of heat 
and mass transfer on the MHD oscillatory flow in an asymmetric wavy channel in the presence of chemical 
reaction and heat source using the method of regular perturbation, and found that the heat transport of a 
system is strongly increased in oscillatory flow than in the ordinary condition.  
 
The geometrical configuration of a flow system has a great influence on the flow patterns. Based on this, a 
number of research works have been carried out specifically on peristaltic flow. [28] investigated the 
peristaltic transport of a fluid of variable viscosity under zero Reynolds number and long wavelength 
approximation, and saw amidst others, that at zero flow rates the pressure rise reduces as the fluid viscosity 
reduces; the difference between two corresponding values of the pressure rise increases as the amplitude 
ratio increases; for a given zero pressure rise, the flow rate appreciates as the viscosity of the fluid decreases. 
[29] studied the peristaltic transport of a non-Newtonian fluid in both uniform and non-uniform channels 
under zero Reynolds number and long wavelength approximation. Comparing their results with those of the 
Newtonian fluid model, they observed that at zero flow rate and for a flow behavior index less than one the 
value of the pressure rise is smaller for the non-Newtonian fluid; at zero flow rate the pressure rise reduces 
as flow behaviour index drops from one; an increase in the wavelength decreases in pressure rise but 
increases the non-Newtonian effects. [30] developed an unsteady Newtonian model of blood flow through a 
multi-stenosed artery in the presence of variable viscosity and body acceleration, and computed the flow 
patterns for the shear rates and pressure drop. Moreover, [31] studied the peristaltic transport of non-
Newtonian fluid in a diverging tube with different wall waveforms using Fourier series, and observed that 
reflux occurs near the tube wall; the amplitude ratio, power law indices, and shape of the peristaltic waves 
influences the thickness and shape of the reflux region. [32] developed fluid–solid interaction model of a 
transient peristaltic transport, and revealed that an increase in the amplitude ratio increases the axial velocity; 
a rise in the non-Newtonian fluid index reduces the velocity and wall shear stress; the increase in the 
amplitude of the propagating wave increases the reflux. [33] considered the peristaltic transport of Carreau-
Yasuda fluid in a curved channel under the influence of slip condition using a numerical approach, and 
observed, amongst others, that a rise in the velocity slip parameter reduces the peristaltic flow and weakens 
the pumping zones; the fluid velocity is higher under the no-slip situation. [34] investigated the electro-
kinetically modulated peristaltic transport of non-Newtonian fluids through a narrow confinement 
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comparable to a deformable tube, and saw that at zero flow rate the viscosity ratio strongly influences the 
pressure rise; at lower occlusion values the effect of electro-osmosis on the pressure rise is strongly 
manifested; applied electric field damps the reflux. [35] investigated the effects of homogeneous-
heterogeneous reactions on peristaltic transport of third order fluid in a channel with convective boundary 
conditions in the presence of Hall current and Joule heating using the lubrication approach, and noted that 
the temperature of the fluid decays due to increase in Biot number. More so, they found that the effects of 
Hartman number and Hall parameter are quite opposite on temperature profile; the homogeneous and 
heterogeneous reaction parameters have opposite effects on concentration profile.  
 

Similarly, the effects of plague removal on the arterial blood flow have been investigated. [36] examined the 
effects of plaque removal (or debulking) in small arteries in a three-dimensional fluid model using 
experimental and numerical simulation for both Newtonian and non-Newtonian cases, and observed that the 
removal of the plaque leads to an increase in the rate of blood flow during the systole and diastole streams of 
the cardiac cycle; the shear stress on the arterial wall is higher for a debulked artery than for a plaque-
narrowed one. [37] investigated the time-varying pipe flows driven by a harmonically pulsating inlet 
velocity using the modified Menter model of numerical simulations, and noticed that the use of a quasi-
steady model for the prediction of fully developed friction factors is not applicable for higher frequencies;  
backflow occurs near the wall as the flow transits from deceleration to acceleration; the amplitudes of the 
pressure oscillations generated by the imposed velocity variations increase as the frequency increases. [38] 
investigated the role of plaque removal on blood flow in a popliteal artery using experimental and numerical 
approaches, and observed that the removal of plaque increases the blood flow rate through the artery; there is 
a major reduction of pressure loss through the lesion. Even so, [39] studied analytically the transport of Low-
Density Lipoprotein through an arterial wall under hyperthermia conditions using a four-layer model, and 
had results that are in excellent agreement with existing numerical and analytical literature data under 
isothermal conditions. [40] considered blood flow through arteries under atherectomy situation using an 
unsteady computational fluid dynamic solver, and found that the atherectomy procedure tends to increase the 
flow through the stenotic zone. 
 

In this paper, we examine the effects of variation in the amplitude of the pressure wave, height of 
constriction of the tube, and Reynolds number on the flow characteristics in a peristaltic channel using the 
asymptotic series expansion developed by [12]. 
 

The paper is organized in the following formats: section 2 is the methodology, section 3 holds the results and 
discussion, and section 4 gives the conclusion. 
 

2 Methodology 
 
We consider the problem of peristaltic transport with viscous dissipation in a multi-stenosed artery. Its 
formulation is based on the following assumptions: that blood is incompressible and Newtonian, thus 
allowing the use of the Navier-Stokes equations; arteries are rigid due to the deposition of plagues on them; 
the viscosity of blood varies with temperature; the plagued arteries are infinite axi-symmetrical cylinders 
with varying cross-sections; the role of the free convective force is insignificant. More so, we assumed the 
flow is fully developed and pulsating with a prescribed periodic frequency  and time average volume flux 

Q at the entrance of the tube. If ( , ,X R ) and ( , ,u v w ) are the polar cylindrical orthogonal coordinates 

and vector components, respectively, assuming the velocity is symmetrical about the  - axis, the problem 

becomes two-dimensional with ( RX ,0, ) and ( ,0,u w ). Defining R=0 as the centre or symmetric axis of 

the tube; ( , )oR a X t , an arbitrary function of X and t as the cross-sectional radius of the tube; oa  as the 

characteristic radius of the tube, and t as the time, then, the continuity, momentum and energy equations 
governing the flow are:  
 

w
1

        0 
R R

u w

X

 
  

 
                             (1) 
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    
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                 (2) 

               

 

2 21 p 1
u    

2 2t X R R R RX R

w ww w w w
w



 
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 
 

      
      

     
                  (3) 

 
2 2

2 2

1o

p

kT T T T T T
u w

t X R C R R R X

      
      

      
                  (4) 

 
with the boundary conditions: 
 

(i)   T 0w  0,  0,    
R

w



 


    at   R=0                       (5) 

 

(ii)  there is no tangential motion at the wall of the tube such that: 
 

( , ) 0ow a t  ,  wTT    at   ( , )oR a X t                                    (6) 
 

(iii)   the cross–sectional flux of the tube is given as:  
                  

)1(2
2

0

),(

0

ti
o

tXa

keRUddR
o 

                    (7) 

 

where 
 

2 2 2 2

2
p

w w u w u

C R R X X R





            
            

            

 

 
and is the thermal dissipation function or the rate of dissipation of mechanical energy per unit mass of the 

fluid due to shear viscosity; ρ is the density; p is the pressure;   is the kinematic viscosity of the fluid; T is 

the temperature of the fluid; ok is the thermal conductivity of the arterial wall; pC  is the specific heat 

capacity at constant pressure of the fluid, and t  is the time.  ψ0 is a constant, k is the amplitude of  the pulse, 
which is  assumed small, and β is the frequency of oscillation. 
 

For simplicity, we eliminate the pressure terms from equations (2) and (3) by taking the 
R




 of equation (2) 

and 
X




of equation (3), then subtracting the first result from the second one, we have 

 

             

u w u u w w u w

t R X X R X R R X

             
         

             
= 

2 2

2 2 2

1 1u w u w u w u w

X R X R R X R R R X R R X

                  

              
                  

             (8) 
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Fig. 1. A physical model of a peristaltic channel 
 
 Introducing the stream function , vorticity , respectively i.e. 
 

1 1
u ,  w  

RR R X

  
  

 
                       (9) 

 

u w

R X

 
  

 
 

2 21 1 1
 

2 2 2R XR RR R

    
  

 
                               (10)         

 
into equations (4) and (8), we have   
            

2

1 1

t R X R R R X R X

        
  

     
= 

2 2

2 2 2

1

X R R R R

      

   
   

            (11) 

          

2 2

2 2

1 1 1

Pr

T T T T T T

t R X R R R X R R R X

           
     

        
+

2 22 2

2

4 1 1

pC R X R R X R X X R

          
              

+

22 2 2 2

2 2 2 2 2

2
2

pC R X R R X X R

           
   
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+
2 2

2 2 2 2

1
2

pC R R R R R R

        
  

    
   (12) 

 
with the boundary conditions as  
 

0,   
1

0,
R X





  

2

2 2

1 1
0,

R R R R

  
 

 
  0T     at   R = 0                           (13) 

 

0,
R





   1 ,i t

o ke    wT T  at   ,R a X t               (14) 

 
Furthermore, we assume the cross–section of the tube in the model vary in the axial direction, for which we 

take a (X, t) = sao (ε oaX , t), )),(1(0 txfRr  ,  0 ≤ r ≤ 1 where s is an arbitrary function of x; 

10 
L

ao  is a small dimensionless parameter that characterizes the slow variation in the channel 

radius;  ao is the constant characteristic radius of the tube; L is the characteristic length of the channel, and 

x

R
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0  corresponds to a tube with constant radius. As ε increases from zero, the variation of   in the axial 

direction depends upon  x  instead of X. 
   
Similarly, introducing the following non-dimensionalized variables  
 

               , ,   T  βt, 
R X

r x
a a
o o

   , 
ψ
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ψ ,

o
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3a
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ψ
o
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
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     

              Pr ,o

p

k

C
    o,  a

2
a

sa
o





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w

T T
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




 
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2

4( )
o

o w o

H
k T T a








 

 
where Re is the Reynolds number of the flow, Pr is the Prandtl number,   is a dimensionless number for the 

frequency of oscillation; T is the dimensionless time; ε is the height of constriction; ϕ, ω and θ are the 
dimensionless stream function, vorticity and temperature, respectively into equations (10) - (14) 
respectively, we have  
 

2

2 2

1 1

r r r r

 


 
 

 
                                                                                       (15) 
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   
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 = 

2
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r r r r r

 


 
 

 
              (16) 
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 
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+ 
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1 2H

r r r r r r r

          
     

        

   (17) 

 
where the O(ε)2  terms are neglected for being small. 
 
with the boundary conditions: 
 

21 1
0  ,  0 ,     0,  0

2 2r rr rx

  


  
     

 
 at  r = 0                 (18) 

    

,   = 1iT 1  k e 0,
r


 


  


     at   r = s(x, T)                      (19)       

 
Equations (15)-(17) are non-linear and highly coupled. To linearize them, we seek for perturbation series 
solutions about a small parameter ε. In particular, we use the form developed by [15], which is of the form: 
         

      
        1 1 ...o oiT iTf f ke f f ke f                (20) 

 

where nf  represents ,   and  . 

 
Substituting equation (20) into equations (15) – (20), we have:  



 
 
 

Okuyade; ARJOM, 5(2): 1-18, 2017; Article no.ARJOM.31459 
 
 
 

8 
 
 

for zeroth order 
 

      
 o  = 

(o) (o)21 1
  

2r r rr

    
  

          (21) 

 

     

(o) (o)21 1( )
2

o
r r rr

 


    
  

        (22) 

 

    

2 (o) (o)
1 1 (o)

    0  
2 2r r rr

 


 
  



                     (23) 

 

    

(o) (o)2
1 12 (o)

λ      0
2 rr rr

 


   
    

  
         (24) 

                          

 

         2
2 2 2

2 2 2 2 2

1 1 2
o o o o o

H

r r r r r r r r r r

              
                    

    (25) 

        

   
 

               2 2 2 2 2

12 2 2 2 2 2 2

1 1 1o o o o o o o o o o
o H

r r r r r r r r r r r r r r

       


             
                     

 

              (26) 

where   λ2 = iη 
 

with boundary conditions 
 

       

(o) (o)
= 0

(o) (o)
 0

(o)(o)
1 1

  0
r

(o)(o)
1 1

 0

 

x r x

r r r r r r

 

 

 





   



 
 

  


  

        
     

    



        at r = 0     (27)                
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(o)(o)

(o)(o)
 0

(o)(o)
1

1,  0

 

r r



 


  

 



 




    



   at    r = s                               (28) 

 

and for the first 

 

(1) (1)21 1(1)
                   

2r r r r

 


    
  

                             (29)  

 




















rrrr

)1(

2

)1(2
)1( 11 



 

               (30) 

 

(1)(1) (1) (o) (o) (o) (o) (o)2 ωω 1 ω 1 Re
  

2 r r rr r r x x r r

    
  

           
          

     (31) 

 

(o)(1) (1) (o) (o) (o)2
1 1 Re2 (1)

λ  
2 2r r r r x r xr r

     


                      
 


(o)(o) (o) (o) (o) (o)

  
rx r r x r

        
         

      
   

            (32) 

                 

           1 12 2

2 2

1 Re Pr o o o o

r r r r x r r x

         
   

        
 

               1 1 1 12 2 2 2

2 2 2 2 2 2

2 1 1o o o oH

r r r r r r r r r r r

                 
               

                        (33)  
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
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    

     

       o o o o

r x r x

     
  
    

 

               1 1 1 12 2 2 2

2 2 2 2 2 2 2

2 1 1o o o oH

r r r r r r r r r r r

                 
              

x 

               1 1 1 12 2 2 2

2 2 2 2 2 2

1 1 1o o o o

r r r r r r r r r r r

                  
                     

                        (34) 

  
with boundary conditions 
 

(1)(1)
  0

(1) (1)
  0

(1)(1)
1 1

  0

(1)(1)
1 1

   0

 

r x r x

r r r r r r

 

 

 


  



   



 
 
 


  

        
     

   



      at r = 0                             (35) 

 

 (1)(1)

 (1)(1)

(1)(1)
  0

0

= 0

 

r r



 


  

 



 




   


 at    r = s                            (36) 

 
The solution of the zeroth order equations (21) - (28) are: 
 

 
2 4

2 ...o r r

s s


   
     
   
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          (42) 

 
while those of the first order equations (29) - (36) are: 
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where Io (r), I1(r), I2 (r), Io(s), I1(s) and I2 (s) are the modified Bessel function of order zero, one, and 
two, respectively. It is worthy to note that equations (44) and (46) are developed from [12] solutions, p. 206.                               
 

3 Results and Discussion 
 
The model in Fig. 1 shows the transport of blood through a peristaltic channel, an idealized multi-stenosed 
artery. We examined the flow characteristics in the channel. The problem shows that the flow structure 
depends mostly on the variations in the amplitude of the pulse wave, height of constriction and Reynolds 
number. Figs. 2–6 show the profiles of the computational results for the axial pressure, radial and axial 
velocities and temperature for various values of the amplitude (k), height of constriction (ε) and Reynolds 
number (Re). The computation was done with Maple 12 computational software. For realistic constant 
values of H(x)=1; Pr=0.7; T=π/4; λ=2, and varied values of  k = 0.01, 0.03, 0.05, 0.07; ε = 0.01, 0.03, 0.05, 
0.07; Re= 10, 100, 500, 1000 the profiles show that the  
 

 Increase in the amplitude decreases the axial pressure, axial and radial velocities, and temperature;  
 Increase in the height of constriction increases the axial pressure but decreases the axial and radial 

velocities, and temperature; 
 Increase in the Reynolds number tends to decrease the axial and radial velocities and temperature 

but has no significant effect on the pressure. 
 

 
 

Fig. 2. Pressure–amplitude (k) profiles 
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Fig. 3. Radial velocity–amplitude (k) profiles 
 

 
 

Fig. 4. Pressure-height of constriction (ε) profiles 
 

 
 

Fig. 5. Radial velocity-height of constriction (ε) profiles 
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Fig. 6. Radial velocity-Reynolds number (Re) profiles 
 
In a normal artery, blood flow is laminar, Poiseuille and fully developed. But due to stenoses, the arterial 
channel is blocked either moderately or severely. For this, the heart enlarges itself to maintain peripheral 
flow. The enlargement of the heart leads to an increase in the amplitude of the pulse or pressure wave. More 
so, the increase in the amplitude empowers the flow variables in the direction of the increase, which in this 
case, is in the radial direction. An increase in the pulse wave gives rise to an increase in the size of the 
amplitude, which consequently, increases the strength of the flow variables in that direction.  In extreme 
cases, this leads to abrupt rise in the flows variables, otherwise called shocks. However, the result in Fig. 3 
shows that the radial velocity decreases as the amplitude increases. This is a negative result. Possibly, it 
could be due to the effect of geometric configuration of the channel. On the other hand, the increase in the 
amplitude of the pulse wave will reduce the strength of flow variables in the axial direction, as seen in Fig. 2. 
This result strongly agrees with [23], though a case of convergent and divergent channels.  
  
As said above, the arterial blood flow is laminar, Poiseuille and fully developed. The arterial blood moves 
with the velocity with which it is released from the heart. As it approaches the region of the constriction, the 
flow pattern changes. Moreover, the rise in the constriction height determines the channel configuration, size 
of the available opening at the point of the plague, and the flow axial pressure situation. The overall analysis 
shows that the increase in the height of constriction increases the axial pressure (see Fig. 4) but decreases the 
radial velocity (see Fig. 5).  
 
Similarly, in the upstream, that is, the region before the plague, the flow is laminar and Poiseuille, therefore; 
its Reynolds number is moderate. However, towards the peak of the constriction, that is, in the convergent 
section whose geometry rises exponentially, the inertial force rises and consequently, the Reynolds number 
and the momentum rise. On the other hand, in the divergent section whose geometry enlarges exponentially 
from the peak, the inertial force drops. This must be followed by a drop in the Reynolds number and  
momentum. Subsequently, the flow variables must drop. The weakened flow variables here may not rise in 
the next convergent section of the channel. Consequent upon this, the strength of the flow variables may be 
on the downward trend. This could account for what is seen in the radial velocity (Fig. 6). This is also a 
negative report. 
 
The drop in the pressure and velocity has some complex physiologic, clinical or health implications on the 
patient. The arteries are the vehicles through which nutrients are conveyed to other parts of the body. 
Therefore, the drop in the pressure and velocity levels of the flow reduces their availability in the body, 
which may lead to cell starvation.  
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4 Conclusion 
 
We considered the peristaltic transport with viscous dissipation effect through a multi-stenosed artery.  
 
The analyses of results show that an increase in the amplitude decreases the axial pressure and radial 
velocity; an increase in the height of constriction increases the axial pressure but decreases the radial 
velocity; an increase in the Reynolds number decreases the radial velocity but has no significant effect on the 
axial pressure. This study tends to report negative results. Furthermore, it is observed that the reduction in 
pressure and velocity has some attendant clinical implications on the atherosclerotic patient.  
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