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Abstract

A quantum field theory has been constructed, in which leptons are bound by electromagnetic
forces. Using severe boundary conditions, in particular several constraints on the rotation velocity,
a precision test has been possible, in which the needed 7 parameters are determined by many more
constraints. Since arbitrary adjustment parameters are excluded, absolute values of radii, rotation
velocities and binding energies are obtained, possible only in a fundamental theory, which must
be close to the final lepton theory. The resulting masses are obtained with uncertainties much
smaller than 1 %.

The results show a very special structure of charged and neutral leptons.

1. Charged leptons: The deduced radii due to electric and magnetic binding are different by many
orders of magnitude. In particular, the large electric root mean square radius of the electron of
about 103 fm is almost of the same size as electron wave functions in light atoms, whereas the
magnetic radius of 2.5 ·10−10 fm is consistent with a ”point” particle needed to describe electron-
hadron scattering.
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2. Neutrals: The acceleration term gives rise to dynamically generated neutral particles of ”hole”
structure, which can be identified with neutrinos. Their masses are 2 · 10−8 eV, 17 eV and 12
MeV for νe, νµ and ντ , respectively.

The full calculations together with the underlying fortran source code can be viewed at
https://h2909473.stratoserver.net or https://leptonia-etc.de.

Keywords: Bound state formalism of leptons; all parameters constrained by a maximum number of
conditions; very different electric and magnetic radii of charged leptons; neutral particles
identified with neutrinos.

2010 Mathematics Subject Classification: 81T10, 46N50, 81P10, 83C47.

1 Introduction

The study of particle- and astrophysics is the only way to get information of the evolution of the
universe. Since experimental facts on this subject are scarce, a correct picture can be obtained
only, if the known conservation laws of physics are respected, relativity (coupling between space
and time) is included in the formalism and astrophysical observations and particles properties are
described accurately. In addition, we have to require that such a fundamental theory couples to the
vacuum and is based on first principles.

Although efforts have been made in the past to construct such a theory, the sheer number of
conditions appeared to be impossible to meet. Instead, effective field theories have been developed [1],
combined in the Standard Model of particle physics (SM), see e.g. in ref. [2], which has been very
successful in describing the wealth of data on electroweak interactions and the strong interaction in
the perturbative regime at high energies. Because of its good performance, it could be argued that
a fundamental theory should have a rather similar structure. This, however, cannot be the case,
because in the SM a large number of more than 20 parameters are needed, which had to be adjusted
to experimental data. These parameters comprise coupling parameters of three different fields with
corresponding coupling constants, further 15 masses of basic particles, as leptons (concerned here),
which are taken in the SM as point particles without inner structure. It is evident that the structure
of these particles cannot be understood in this model. Also, serious obstacles are that the radial
degree cannot be accessed and relativity and gravity cannot be included in this framework.

It should also be mentioned that extensions of the Standard Model have been constructed based on
the very special SU(3)*SU(2)*U(1) symmetry structure of the SM, from which new particles have
been predicted, as supersymmetric partners of known particles, axions, magnetic monopoles and
other new particles. However, none of this additional particles could be detected experimentally,
which attests our general concern that extensions of effective theories are questionable.

For the description of the universe gravitational theories have been discussed, mainly based on
Einstein’s theory of gravitation. These cosmological models describe the expansion of the universe,
but show important shortcomings: Energy conservation is violated and the matter-antimatter
non-equilibrium in the universe cannot be explained. Further, they require [3] the existence of
dark matter (for which no evidence has been found in astrophysical studies and particle physics
experiments) and dark energy, an unknown form of energy, which is not understood at all. Further,
these classical models cannot be related to particle physics, for which a quantum description is
needed.

Alternatively, efforts have been made to describe gravitation by string theories [4], which are
extremely complex with hundreds of parameters and thus do not allow quantitative predictions.
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What we really need is a basic theory of quantum structure, which can describe in a consistent
way all properties of observed particles (also the radial properties) as well as the characteristics
of gravity. Since massive particles can be considered as bound states of nature, such a theory
should have a bound state structure. In addition, this description should take into account that
nature develops from the highest degree of simplicity to more and more complex forms, which
means that such a theory must have the most simple form possible. The consequences are that the
corresponding Lagrangian must be as simple as possible and all wave functions, interactions, but
also expectation values of radii and momenta should be of simple form. This requirement facilitates
the construction of such a theory.

By generalising a successful bound state approach applied to hadron scattering from nuclei and
hadronic systems [5], a theoretical framework has been developed, which satisfies all the above
requirements [6]. It has a special (super-) symmetric structure of a fermion bound state, in which
a second bound state of bosons is embedded. This particular structure leads to a dynamically
generated confinement potential, which is needed in meson spectroscopy [7], and allows creation
of particles out of the vacuum of fluctuating boson fields during overlap of bosons, see ref [8].
Further, this model generates the right fermion properties, which include static and dynamical
terms. However, it is not clear, whether the boson bound state component is just needed to get the
right binding of fermions, or allows also the existence of pure boson bound states, ”glare-balls”, in
which fermions are missing (analog to ”glueballs” discussed in quantum chromodynamics).

This bound state description has been applied to the description of atoms, hadrons and leptons [8, 9],
but also to gravitation [6, 10]. Applied to the universe, this model [6] explains the genesis of the
universe in a smooth way with creation of particles out of the vacuum1 , accumulation of a large
mass, which became unstable and collapsed, leading to complete annihilation of antimatter. This
gave rise to heating and expulsion of the surrounding matter to open space. In this picture also the
accelerated expansion of the universe is explained [11]: at small radii gravitation is strong enough
to reduce the expulsion of matter, whereas at large distances from the center gravitation is reduced,
leading to an increased expansion. In this picture neither dark matter nor dark energy is needed.

Although this formalism allows an understanding of fundamental physics, further quantitative tests
are needed. This is possible for systems, for which a maximum number of boundary conditions can
be applied. Leptons are specially suited for such a test, because these particles are very stable and
do not mix with hadrons of similar mass. In addition, the present model may allow to understand
their intrinsic structure (not possible in the Standard Model, as mentioned above). Further, leptons
exist also in the form of charge neutrals (neutrinos). The structure of these particles is also not
known and their mass could not be measured. One can hope that the present analysis solves this
problem.

Following the general formalism developed in ref. [6], some details are discussed, in particular on the
generation of the radial degree of freedom, relativity and magnetic binding. Then, deduced wave
functions, momenta and binding energies are discussed by applying a maximum set of boundary
conditions.

2 Structure of the Underlying Bound States

For a fundamental theory we demand a Lagrangian of the most simple form. This is realized by a
Lagrangian similar to that of quantum electrodynamics (QED), but with additional boson operators

L =
1

m̃2
(Ψ̄Dν) iγ

µDµ (DνΨ) − 1

4
FµνF

µν , (2.1)

1In this process only mass in form of binding energy is generated.
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where m̃ is a mass parameter and Ψ massless charged fermion fields, Ψ = Ψ+ and Ψ̄ = Ψ−.
Vector boson fields Aµ with coupling g to fermions are contained in the covariant derivatives Dµ =
∂µ − igAµ. The second term of the Lagrangian represents the Maxwell term with Abelian field
strength tensors Fµν given by Fµν = ∂µAν − ∂νAµ, which gives rise to both electric and magnetic
coupling.

By inserting Dµ = ∂µ − igAµ and DνD
ν = ∂ν∂

ν − ig(Aν∂
ν + ∂νA

ν) − g2AνA
ν , the Lagrangian

L gives rise to a number of terms, which contain boson and fermion fields and/or their derivatives
up to third order. From these terms two-body matrix elements can be derived, which can be
written by M = ψ(p′) K(q) ψ(p), where ψ(p) are fermion wave functions ψ(p) = 1

m̃3/2Ψ(p1)Ψ(p2)
of scalar or vector structure (coupling of Ψ(p1) and Ψ(p2) to spin 0 or 1). Further, K(q) =

1

m̃2(n+1) γµγ
ν [On(q)On(q)], where On(q) are cubic terms containing boson fields and/or derivatives

obtained from the Lagrangian (2.1). These matrix elements are given explicitly in ref. [6]. The γ-
matrices can be removed in the known way by adding a matrix element with interchanged indices.

It is very important to get access to the radial degree of freedom. To achieve this, a reduction of
the fermion and boson fields by one dimension is needed, which requires that the 4-component p4
of the fermion 4-momentum p is constant. For a bound state this is indeed the case, because p4 can
be related to the binding energy. This leads to energy-momentum conservation, one of the most
important boundary conditions discussed below. Then, the momenta can be converted to radii by
Fourier transformation.

Boson wave functions can be defined in a similar way byW (q) = 1
m̃
Aµ(q)A

ν(q). Again, the momenta
(for bosons only 3-momenta) can be reduced by one dimension, requiring that the three-component
q3 is constant (related to a boson binding energy). Fourier transformation leads then also to a
conversion of the boson momenta to radii.

Concerning relativity, for a bound state as described above, there is only a simple space-time relation
trot = 2π < r2 >1/2 /vrot, where trot and trot are the rotation time and velocity and < r2 >1/2 the
average radius of the system. Since the radius and the rotation velocity can be calculated, relativity
is established.

For magnetic binding the resulting binding energy components are given by

Eng = 4π

∫
r2dr Mng(r) = 4π

∫
r2dr ψs,v(r) Vng(r) ψs,v(r)(v/c) (2.2)

with potentials

V2g(r) =
α2(2s+ 1)(~c)2

8m̃

(d2ws(r)
dr2

+
2

r

dws(r)

dr

) (v/c)

ws(r)
, (2.3)

where s=0 for scalar and s=1 for vector states, and

V3g(r) =
α2(~c)
m̃

∫
dr′ ws,v(r

′) vv(r − r′) ws,v(r
′)(v/c) (2.4)

with fermion and boson wave functions ψs,v(r) and ws,v(r) and an interaction vv(r) ∼ −α(~c) wv(r).
It should be noted that in the spectroscopy of mesons [7] an empirical ”confinement” potential with
an almost linear rise to large radii was required to describe the levels of excited mesons. This
potential can be identified with V2g(r), also responsible for the creation of particles out of the
vacuum during overlap of boson fields [8].

The kinetic energies are given by

ETng =
4π

2

∫
r3dr Tng(r) =

4π

2

∫
r3dr ψs,v(r) V

T
ng(r)

dψs,v(r)

dr
(v/c) (2.5)

with

V T1g(r) =
α(2s+ 1)(~c)3

4m̃2

(d2ws(r)
dr2

+
2

r

dws(r)

dr

)
(v/c) (2.6)
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and

V T2g(r) =
2α2(~c)2

m̃
ws,v(r)ws,v(r)(v/c) . (2.7)

Finally, there is an acceleration term

∆E1g =
4π

2

∫
r4dr B1g(r) =

4π

2
α(~c)

∫
r4dr ψs,v(r) ws,v(r)

d2ψs,v(r)

dr2
(v/c)2 . (2.8)

For this term the density ψs,v(r)
d2ψs,v(r)

dr2
cancels out and cannot contribute to the binding energy.

Therefore, the total (fermion) mass is given by Mf = −(
∑
n En + ETn ).

For bosons the corresponding binding energy scales with the number N of bosons

Eg = 2π

∫
rdr Mg(r) = 2πNα2

∫
rdr ws,v(r) vv(r) ws,v(r)(v/c) (2.9)

whereas the kinetic energy is given by

EgT =
2π

2

∫
r2dr T g(r) = 2πN

α2(~c)
4

∫
r2dr ws(r)

1

r

dws(r)

dr
(v/c) . (2.10)

Finally there is also a contribution from acceleration

∆Eg =
2π

2

∫
r2dr Bg(r) = 2πN

α2(~c)
8

∫
r2dr ws(r)

d2ws(r)

dr2
(v/c) . (2.11)

For leptons of (qq̄)q or (qq̄)q̄ structure (q being massless elementary fermions) we can assume also a
three boson structure (N = 3). The total boson binding energy is given by Egtot = (Eg+ETg +∆Eg).

To summarize the most important features: The third order Lagrangian (2.1) gives rise to
a complete bound state description of particles with potential and kinetic energy, but also with
acceleration terms, specially important for the evolution of complex systems [6]. All elementary
fermions are massless, giving rise to a coupling to the vacuum. By generating the radial degree of
freedom by Fourier transformation of the corresponding momenta and extracting the rotation time
from the corresponding velocity, relativity (the coupling of space and time) is realized. To respect
the uncertainty principle, particle positions are used in the form of wave functions (or densities).
Further, severe boundary conditions can be defined, by which all relevant parameters of the model
can be determined. This leads to a description of particles solely bound by electromagnetic
interactions.

2.1 Boundary conditions

To be able to evaluate these energy components, the wave functions ψ(r) and w(r) have to be
determined, further the rotation velocity (v/c) and the coupling constant α. The wave functions
are fixed entirely by simple geometric constraints

ψs(r) ∼ ws(r) (2.12)

with a normalization 4π
∫
r2dr ψ2(r) = 1 for fermions and 2π

∫
rdr w2(r) = 1 for bosons. A second

constraint connects the potential V3g(r) to the boson wave function

|V v3g(r)| ∼ w2
s(r) . (2.13)

This condition requires simply that the interaction potentials cannot act at larger radii than the
density w2

s(r). Both constraints are fulfilled by a form of the scalar wave function

ws(r) = wso exp{−(r/b)κ} , (2.14)
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whereas the orthogonal wave function of vector structure is given by

wv(r) ∼ [ws(r) + βR
dws(r)

dr
] , (2.15)

where βR = −
∫
r2dr ws(r)/

∫
r2dr dws(r)

dr
.

Important to note, because of the different normalization of the fermion and boson wave functions
this form of wave functions should be valid for any basic system of two or more elementary particles.

From the potentials (2.3) or (2.4) a mass-radius constraint can be derived

Rat2g =
(~c)2(v/c)2

m̃2 < r2ws
>

= 1 , (2.16)

where < r2ws
> is the mean radius square of the boson wave function ws(r). This radius can be

related to the average rotation time of the system, giving rise to a space-time dependence required
from relativity.

In addition, for particles in the vacuum there is conservation of linear momentum

< q2f >
1/2 + < q2g >

1/2= 0 , (2.17)

where < q2f >
1/2 and < q2g >

1/2 are the root mean square momenta of the total fermion and boson
potentials. This condition gives rise to recoil corrections for bosons, which are rather small. To
determine these momenta, the corresponding density and potential functions Pf,g(r) are Fourier
transformed, Pf (q) = 4π(~c)

∫
r2dr sin(qr)/qr Pf (r) for fermions and Pg(q) = 2π(~c)

∫
rdr

sin(qr)/qr Pg(r) for bosons.

An essential condition is related to the reduction of the fermion and boson momenta by one
dimension, as discussed above. This leads to energy-momentum conservation

< q2f,g >
1/2 (v/c) = −Ef,g . (2.18)

Combined with relation (2.17) this requires also similar fermion and boson energies Ef = Eg. The
condition (2.18) is also imperative to establish full relativity, since only by this condition Fourier
transformation of the momenta to the radial degree of freedom is allowed and can connect to the
time of rotation.

The last two conditions connect the rotation velocity to the total kinetic energy of fermions and
bosons

(v/c)totf = 2 · 2

√
−(ET1g + ET2g)

2m̃
(v/c) (2.19)

and

(v/c)totg = 2

√
−(EgT + f∆Eg)

2m̃
(v/c) . (2.20)

The additional factor 2 in eq. (2.19) is due to the fact that the kinetic energies ET1g and ET2g are
deduced from the interaction with one particle pair, whereas the total kinetic energy is given by
the contribution from all three fermions. For bosons a significant fraction of the acceleration term
f∆Eg contributes to the rotation velocity (2.20), and f is determined by adjusting eq. (2.20) to
the fitted velocity (v/c), which should be the same for all four relations (2.16), (2.18) - (2.20).

3 Structure of Charged Leptons

Coming to the calculations of leptons, in a first analysis assuming magnetic binding only [9], the
dynamics has been taken from a Hamilton approximation, replacing simply V T (r) by the derivative
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of V (r). Differently, in the present analysis the full dynamics has been taken into account explicitly
with all terms specified above.

In the above formalism electric and magnetic binding is described within the same formalism (using
(v/c) = 1 in case of electric binding). For electric binding we have therefore only three parameters
for each lepton system, the slope and shape parameters b and κ, see eq. (2.14), and the coupling
constant α, whereas the description of magnetic binding requires adjustment of (v/c) as well. This
gives in total seven parameters for each lepton system. One other small adjustment was needed to
get full consistency: only for electrically bound electrons ET2g had to be increased by a factor of 1.2.
But this adjustment is needed to get a binding energy in full agreement with all other constraints.

If we count the number of constraints, for electric and magnetic binding there are two geometric
conditions on the shape of the wave functions, two bounds on linear momentum, two on energy-
momentum conservation, two mass-radius conditions and five relations on the rotation velocity
(v/c), in total more than 20 conditions. Further constraints arise, if one requires that the bound
state structure of all leptons is the same with one coupling constant α. This shows that not only all
model parameters are rigorously determined, in addition also a detailed check of the formalism is
possible. Only if all this matches precisely, a quantitative description becomes possible. Such hard
conditions could never be applied to any particle description and it possible only in a really basic
and fundamental theory.

Table 1. Parameters b and (v/c) (for κ = 1.375 and α = 2.158) and resulting fermion
radii and momenta, momenta multiplied with (v/c), and (fermion) masses for electric

and magnetic binding. All dimensions are in fm or MeV, respectively

System b (v/c) < r2f >
1/2 < q2f >

1/2 < q2f >
1/2 (v/c) massf

τ elec 2.547 10−1 1 0.290 1757 1757 1777
τ mag 9.60 10−3 3.77 10−2 1.093 10−2 46.60 1757 1777

µ elec 4.2834 1 4.876 104.5 104.5 105.7
µ mag 3.90 10−6 9.11 10−7 4.44 10−6 1.15 105 104.5 105.7

e elec 8.845 102 1 1.007 103 0.5053 0.5053 0.512
e mag 2.10 10−10 2.37 10−13 2.461 10−10 2.131 109 0.5052 0.511

Table 2. Fitted radial velocity (v/c) compared to that deduced from the mass-radius
constraint (2.16) and the total kinetic energies Etotkin = (Mv

2c
)2 of fermions and bosons,

see eqs. (2.19) and (2.20), using f = 0.71

system (v/c)fit mass-rad Etotkin(ferm) Etotkin(bos)

τ elec 1 1.000 1.001 1.000
τ mag 3.770 10−2 3.770 10−2 3.770 10−2 3.770 10−2

µ elec 1 1.000 1.000 1.000
µ mag 9.106 10−7 9.106 10−7 9.108 10−7 9.103 10−7

e elec 1 0.999 1.00* 1.000
e mag 2.371 10−13 2.371 10−13 0.2371 10−13 2.370 10−13

* ET2g increased by factor 1.2

Here we concentrate on the discussion of lepton s-states (two fermions in a relative s-state). Starting
with the parameters κ = 1.35 and α = 2.14 from previous analyses, we found that small adjustments
are needed. With slightly larger values, κ = 1.375 and α = 2.158, electric and magnetic binding
of all three systems are well described. Then b is the only parameter to be adjusted for electric
binding. For magnetic binding b and (v/c) had to be adjusted, with the best value of b consistent
with that deduced in ref. [9]. In table 1 the fitted values of b and (v/c) are given for all three systems
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in the first two rows, then follows the root mean square radius of the fermion wave function in the
3rd row. Resulting momenta < q2f >

1/2, < q2f >
1/2 (v/c) and final masses are given in the next

rows. In the last row one can see that the masses are well described within errors much smaller
than 1 %.

In the determination of the final parameters the rotation velocity (v/c) is very important, it enters
in all expressions of binding energies, but also in the mass-radius constraint (2.16). Therefore,
the additional constraints (2.19) and (2.20) are essential for a precise parameter determination:
the uncertainties in κ and α are strongly reduced with respect to previous analyses, and small
ambiguities between b and (v/c) are eliminated; further, the deduced (fermion) masses are very
close to the experimental values. The resulting rotation velocities (v/c) extracted from the different
conditions are given in table 2. They show very small differences, indicating that a very consistent
description in the present formalism is achieved.

Concerning the momenta in relation (2.17), the boson momentum < q2g >
1/2 is only about 2 %

smaller than < q2f >
1/2 for all three lepton systems. This shows that previous analyses were quite

reasonable, in which recoil effects have not been corrected. Taking a recoil correction 1+(< q2f >
1/2

− < q2g >
1/2)/ < q2g >

1/2 on the binding of bosons into account, very similar binding energies of
fermions Ef and boson Eg are obtained, as seen in table 3. Still, with a better fine tuning of the
parameters the small binding energy differences between fermions and boson binding of about 0.1
% might disappear completely. This shows also that the numerical uncertainties in the Fourier
transformations and integration limits due to radial and momentum cut-offs are very small.

Fig. 1. Radial dependence of the densities of the τ-lepton system. Upper part:
Densities of electric (dot-dashed line) and magnetic binding (solid line).

Upper middle part: Density of magnetic binding as in the upper part (solid line) in
comparison with that of the acceleration term ∆Eg2 (r) (dot-dashed line).

Lower middle part: τ-binding potential V3g(r) (solid line) in comparison with the
kinetic energy distribution EgT (r) (dot-dashed) and ∆Eg2 (r) (dashed line). Lower part:

Acceleration terms ∆Ef (r) and ∆Eg2 (r), given by dot-dashed and dashed lines,
respectively, representing neutral particle (τ-neutrino) energy distributions
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Table 3. Binding energies in MeV for the different lepton systems taking recoil
corrections rec = 1+ (< q2f >

1/2 − < q2g >
1/2)/ < q2g >

1/2 for bosons into account. The last

column shows the neutrino binding energies ∆Ef and ∆Eg2

system part. Epot Ekin ∆Ef Etot ∆E(ν)

τ elec fermions -949.1 -827.8 – -1777
bosons -802.1 -697.7 -278.0 -1778

τ mag fermions -949.3 -828.2 – -1777 -11.61
bosons -802.2 -697.7 -278.0 -1778 -11.31

µ elec fermions -56.44 -49.22 – -105.7
bosons -47.69 -41.48 -16.53 -105.7

µ mag fermions -56.45 -49.24 – -105.7 -16.68 10−6

bosons -47.70 -41.49 -16.53 -105.7 -16.32 10−6

e elec fermions -0.294 -0.218* – -0.512
bosons -0.231 -0.201 -0.080 -0.512

e mag fermions -0.273 -0.238 – -0.511 -2.10 10−14

bosons -0.231 -0.201 -0.080 -0.511 -2.10 10−14

* ET2g increased by factor 1.2

An interesting property of the present theory is that the radii of electric and magnetic binding
need to be very different, because (v/c) = 1 for electric and (v/c) < 1 for magnetic binding. This
is seen in the average radii in table 1. Further, electric and magnetic binding had to be tuned
separately to give the total binding energies, showing that there is no interference between these
different bindings. The fact that the velocities and densities of electric and magnetic binding are
not disturbed by each other confirms the assumption that elementary fermions and bosons need to
be massless.

The densities of electric and magnetic binding of the τ -lepton are shown in the upper part of fig. 1,
with a radial extent different by orders of magnitude. For the lighter systems these differences are
even larger. For the electron this result is in full agreement with the experimental information: The
large radius of the electric part is right between the proton radius of about 1 fm and atomic radii
in the order of 100 pm, see e.g. ref. [8]. Differently, in the analysis of electron-hadron scattering the
electron had to be considered as ”point” particle [12]. This is consistent with the present result of
an extremely small magnetic radius of about 2.5 · 10−10 fm.

In the second part of fig. 1 the radial dependence of the scalar density ψ2
s(r) of the τ -lepton is

compared to that of the acceleration term ψs(r) d
2ψ(r)/dr2. Both densities are orthogonal to each

other
∫
ψ2
s(r) ψs(r) d

2ψ(sr)/dr
2 = 0. Below one finds a comparison of the potential V s3g(r) with

the kinetic energy term ET2g(r) and the acceleration term ∆E1g(r), which are both shifted to larger
radii. The mean radii of the fermion and boson acceleration terms ∆ET1g(r) and ∆Eg(r) given in
the lower part are larger than that of the potential V s3g(r) by roughly a factor of two.

4 Dynamical Structure of Neutrinos

In addition to the charged leptons l±e,µ,τ = (e, µ, τ)± there are neutrinos νe,µ,τ and ν̄e,µ,τ , which
are directly related to the corresponding leptons, νl → l+ and ν̄l → l−. The structure of these
particles is up to now completely unknown; further their mass is relatively small and could not be
measured. Since neutrinos appear only in relation to charged leptons, they should be generated in
a valid lepton theory.
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For a neutral particle the integration of the charge density over full space must cancel out:
4πQ

∫
r2dr ψ2(r) = 0 (where Q is the electric charge). This is the case only for the acceleration

term ∆Ef , which does not contribute to the fermion binding energy of charged leptons. This term
scales with (v/c)2. Differently, the corresponding boson term ∆Eg participates to the boson binding
energy and scales with (v/c).

Fig. 2. Radial dependence of the densities similar to fig. 1 for the electron system
(upper part) and the distributions ∆Ef (r) and ∆Eg2 (r) (lower part) of the electron

neutrino

Assuming for bosons a second acceleration term with the same structure as eq. (2.11) but with a
rotation velocity (v/c)2

∆Eg2 = 2πN
α2(~c)

8

∫
r2dr ws(r)

d2ws(r)

dr2
(v/c)2 (4.1)

leads to a rather similar fermion and boson structure, as shown in the lower parts of figs. 1 and 2
for the tau and electron system. For the τ -system this yields mean radii < r2f,g >

1/2 (v/c) of 5.94
10−4 fm and 5.81 10−4 fm, respectively, which are significantly larger than the corresponding values
of the total system. After Fourier transformation and proper recoil correction the value of ∆Eg2 is
close to ∆Ef for all three lepton systems, see table 3. This points to the existence of a neutral
particle with a characteristic ”hole” structure (depression in the center), which can be identified as
neutrino.

The acceleration terms contain only wave functions, but not the interaction vv(r), indicating that
the neutrino is not bound to the charged lepton. Consequently, these particles can be considered as
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separate particles with the same rotation (v/c)2 for fermions and bosons. This is further supported
by the fact that the recoil correction rec(ν) ∼ 1.22 is significantly different from that for charged
leptons (rec ∼ 1.02). Remarkably, only half of the calculated recoil correction rec(ν)′ = 1 + 1/2(<
q2νf >

1/2 − < q2νg >
1/2)/ < q2νg >

1/2 is needed to get agreement between ∆Ef and ∆Eg2 , indicating
that the neutrino has also a kinetic energy, as expected for a bound state of nature. Indeed, if one
writes Eνkin = Mν

2
(v/c)2, where Mν = −∆E(ν), one finds that half of the binding energy (or mass)

is due to rotation Eνkin =Mν/2. This yields ∆E
f ≃ ∆Eg2 with errors of ≤ 0.5 %.

Comparing the present results with experimental information, the neutrino masses are consistent
with previous estimates,M(νe) < 2 eV,M(νµ) < 0.19 MeV andM(ντ ) < 18.2 MeV, see [2], but also
with the much more restrictive mass limit

∑
Mνi < 28 eV from astrophysical observations [13]. The

much heavier τ -neutrinos accompanying τ -leptons can be observed only in high energy experiments.

Since the neutrino binding energies in table 3 are different by many orders of magnitude, our results
disagree with the picture of ”neutrino oscillations”, in which one assumes that neutrinos can change
from one species to another, νa → νb, where νa and νb are one of the three neutrinos. This could
be possible only if the neutrino masses would be quite similar. This picture has been introduced to
solve the ”Solar neutrino” problem, the fact that the number of detected electron neutrinos from
the sun is much less than predicted. However, due to the extremely small νe mass a large fraction of
these neutrinos might be absorbed already in the sun and thus do not arrive at terrestrial detectors.

Although the above explanation of neutrinos is the only one possible in the present lepton theory,
one has to discuss, whether neutrinos might not be due to a completely different mechanism, as an
interference between two charge states of hadrons. Thinking of the decay of neutrons n → p e ν̄e,
neutrinos could be related to the structure of p or n. However, the fact that the neutron has
no charge may already indicate that it has an interference structure between two charged baryon
states. Therefore, it seems to be unlikely that in this process two neutral particles appear, neutron
and neutrino. A much stronger argument against such an interpretation is that in this picture the
muon neutrino should be related to Σ and Λ (or another charged-neutral baryon doublet BD) and
ντ to still another heavier baryon doublet BD′, but a relation of such baryon doublets to neutrinos
BD → (µ, νµ) and BD

′ → (τ, ντ ) could never be found (only the coupling of νl → l is established).
This makes such a picture unrealistic.

5 Summary

In the present bound state theory a quantitative description of leptons has been obtained, in
which not only the model parameters are well determined, moreover a strong reduction of the
uncertainties in the results is achieved by using a maximum set of boundary conditions. Since
arbitrary adjustment parameters are excluded, absolute values of radii, rotation velocities and
binding energies are obtained, possible only in a fundamental theory, which is definitively close to
the final lepton theory. Only marginal improvement might be possible by finding better criteria for
the extraction of the fermion and boson wave functions.

The further results are:

1. Electric and magnetic binding gives rise to strongly different lepton radii. For the electron this
explains an electric structure with radii in the picometer range, on the other hand the ”point”
structure needed in electron-hadron scattering.

2. The present theory provides a first consistent explanation of the nature of neutrinos. These
particles are due to the acceleration terms and are separate systems decoupled from their charged
partners. They satisfy all requirement of bound states of nature, leading to binding energies again
with uncertainties of < 1 %.
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Details of the calculations of radii, momenta, binding energies and rotation velocities, as well
as the underlying fortran source code can be viewed at https://leptonia-etc.de or
https://h2909473.stratoserver.net. Some details of the on-line calculations are given in the appendix.
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[7] Barbieri R, Kögerler R, Kunszt Z, Gatto R. Nucl. Phys. B. 1976;105:125. Eichten E, Gottfried
K, Kinoshita T, Lane KD, Yan TM. Phys. Rev. D. 1978;17;3090. Ebert D, Faustov RN, Galkin
VO. Phys. Rev. D. 2003;67:014027.

[8] Morsch HP. Unique structure of free particle bound states. Brit. J. Math. and Comp. Sc.
2016;17(6): 1-11. (open access)

[9] Morsch HP, Ghosh S. Chiral structure of particles bound by magnetic forces. J. Adv. Math.
and Comp. Sc. 2017;24(4): 1-11. (open access)

[10] Morsch HP. Origin of gravitation and description of galaxy rotation in a fundamental bound
state approach. Global J. Sci. Front. Research. A. 2018;18:4(1):25. (open access)

[11] Morsch HP. Decay (expansion) of the universe and stability of the Solar system in a
fundamental quantum description, To Phys. J. 2019;2:40. (open access)

[12] Hofstadter R. Nobel lecture; 1961. Kelly J. Nucleon charge and magnetization densities from
Sachs form factors. Phys. Rev. 2002;C66:065203. Bernauer JC, et al. Electric and magnetic
form factors of the proton. Phys. Rev. 2014;C90:015206.

[13] Thomas SA, Abdalla FB, Lahav O. Upper bound of 0.28 eV on neutrino masses from the
largest photometric redshift survey. Phys. Rev. Lett. 2010;105:031301.

129



Morsch; JAMCS, 36(3): 118-131, 2021; Article no.JAMCS.67290

[14] Morsch HP. Does the standard model of particle physics suffer from a mass problem? To
Phys. J. 2019;3:114. (open access)

Appendix: On-line calculations of the different lepton systems

Step 1: Open up webside https://h2909473.stratoserver.net or https://leptonia-etc.de.

Step 2: The button ”LEPTONS e µ τ” leads to the lepton page, where one can select by radio
buttons calculations for electron, muon or tau. Also in the table above the used parameters are
shown, on the left for electric binding, on the right for magnetic binding. The calculation starts by
clicking on the button ”calculate case”.

Step 3: The fortran program starts in main by confirming the selected case. With parameter
isch=1 it calculates electric binding and writes the corresponding parameters into the parameter
file fune(5).

Step 4: In subroutine para the arrays of radii R(I) and momenta q(I) are calculated and links are
made to the different subroutines density, folding, confine, dopfold, virial and virialg.

Step 5: In subroutine density the wave functions and densities are calculated and mean root square
radii are shown for bosons and fermions in the first line of the output page.

Step 6: In subroutine folding the folding potentials V3g(r) and the dynamical terms are calculated
with the corresponding radii given in the second line.

Step 7: The subroutine confine calculates the confinement potential V2g(r).

Step 8: In subroutine dopfold the fermion momentum distributions are calculated with root mean
square momentum given in the output line 4. The values of energy-momentum conservation for
bosons are given in output line 3, for fermions in line 5. The difference between these numbers
indicated that a recoil correction for bosons is needed with an amplitude given in line 6.

Step 9: The next four output lines are generated by the subroutine virial, which calculates all
components to the binding energy from the potentials V3g(r) and V2g(r) and the dynamic terms
calculated in subroutine folding. Below the fitted rotation velocities (v/c) are given, calculated from
different relations discussed in the text.

Step 10: Then the corresponding binding energies and velocities (v/c) are calculated by the
subroutine virialg and displayed under ”boson binding energies”.

Step 11: By change of the parameter isch to 2 all calculations start from the beginning with the
parameters for magnetic binding. Everything rests the same, only the binding energies of a neutral
particle (neutrino) are shown in addition, highlighted by pink color.

A full calculation compiled with gnu-fortran gfortran -o lept fortran.cgi lept fortran.cgi.f and run
with lept fortran.cgi on a Linux operating system takes only part of a second. The program has
been developed during many years; therefore it has not an effective structure and contains many
additional options, which are not used for this particular presentation.

To get access to the fortran source code - which is exactly the same for all three different leptons
cases - one clicks on the button ”view source code”.

If in addition an interested reader wants to check the calculations by himself, he can download the
source code, compile it with gfortran or another version of fortran and run it. Even by varying the
parameters he can try to find other solutions, which could belong to new bound states.

Final comment: Within the same formalism studies have been made for completely different
systems, mesons and vector bosons, see ref. [14]. With the present fortran program again a
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quantitative description of these systems is achieved. These calculations can be run by chosing
the button ”MESONS and HEAVY BOSONS” on the start page and following similar instructions
as for leptons. A third option ”VECTOR STATES” exists on the start page, which allows to run
calculations for vector states related to the mesons and heavy bosons discussed in ref. [14]. However,
for these states of much larger masses changes in the boson part are needed, which shall be discussed
in a future publication.
——————————————————————————————————————————————-
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