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Abstract 
 

The class of Inverse Gaussian distributions is quite commonly used as a life-time model in reliability 
studies. The books by Chhikara and Folks [1] and Seshadri [2] present extensive discussions on classical 
inference for the parameters of Inverse Gaussian distribution. 
However, in this paper, we switch our attention to find its geodesic equation. We applied two different 
algorithms to solve some partial differential equations, where these equations originated from the Inverse 
Gaussian distribution. As expected, the two algorithms yield the same result. 
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1 Introduction 
 
The inverse Gaussian distribution is particularly important to probabilists and physicists due to its relation to 
Brownian motion. Balakrishnan N. and Chen W.W.S. [3] have completed the tremendous task of computing 
the means, variances and covariances of order statistics for all sample sizes up to twenty five and for many 
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choices of the shape parameter. The major reason for taking up this study is to make use of the tabulated 
values of means, variances and covariances of order statistics in order to derive the best linear unbiased 
estimators of the location and scale parameters based on complete as well as Type-II censored samples. 
Aside from the theoretical issues, the distribution has much to offer to the practicing statistician in many 
important areas of application. For example, the pioneering work of Tweedie [4] used the inverse Gaussian 
in a clinical trial study of the effect of a drug on the first passage time taken for a jejunal biopsy capsule, on 
leaving the stomach, to travel from the pylorus through the duodenum and into the jejunum. Working in 
collaboration with statisticians in the Clinical Cancer Research Institute in Liverpool, Tweedie studied the 
distribution of survival times in a series of patients who had been treated for cancer, and fitted the inverse 
Gaussian with considerable success. He also found that the antilognormal and Weibull were poor fits. In this 
paper, instead of studying all previously stated topics of interest, we switch to a new direction, by finding the 
geodesic equation of an inverse Gaussian distribution. We used two different algorithms to approach this 
purpose, and found that both algorithms reach the same result. In section 2, we list the fundamental tensor 
we need for later use. In section 3, we present two algorithms to show the process of deriving the required 
geodesic equation. In section 4, we repeat some more detail procedures on how the fundamental tensor has 
been derived. Six Christoffel symbols have been collected in the appendix. There are many related books 
published in this area of study, including Kass R.E. and Vos P.W. [5] and Amari S-I [6].  
    

2 List the Fundamental Tensor 
 
The standard or canonical form of the two-parameter Inverse Gaussian distribution has the probability 
density function given by,  
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It is known that, in this form of the distribution, u  is the mean and 
v

u3

 is the variance, Furthermore, 
v

u
 is 

the square of the coefficient of variation. From the equation above, we derive the metric tensor components 
for this distribution as follows, 
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Using the results above, we can easily derive the required basic tensor metric and Christoffel symbols as 
follows: 
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3 The Geodesic Equation 
 
One method to find the geodesic equation of the Inverse Gaussian distribution is by solving a triply of partial 
differential equations given in the appendix (see Struik, D.J. or Grey, A [7,8]). We seek its solution as 
below. To avoid confusion, we will only index those formulas that we will use later, and we will ignore the 
others:  
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And the first fundamental form of distance function is given   
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It needs only two out of the three equations above to find the geodesic equation. We will choose equations 
(1) and (3). To simplify the notation, we let 
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Dividing the equation (4) by p, and integrating on both sides with respect to p, we get 
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 Where we choose C=ln A 
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From equation (3), we see that the first fundamental form of Inverse Gaussian Model is given by: 
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Hence,    (6)                                               2
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Put (5) and (6) together we get 
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By taking the square root of equation (7) 
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Integrating both sides, we get 
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Where A, B are arbitrary constants. 
 
Alternatively, we can find the geodesic equation of the Inverse Gaussian distribution by solving one partial 
differential equation. This idea originated from French mathematician Darboux’s theory. A detailed proof 
has been given in Chen [9,10]. From section 2, we know that the coefficient of the first fundamental form of 

 1=Ζ∇ is given by,   
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To solve the partial differential equation above, we may use the separable variable method as follows: 
  

By multiple above equation vu2 3
, we derived 
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Break this into two parts, we get 
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The general solution of the geodesic equation combined (8) and (9), hence we get  
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Applying the Darboux Theory, we finally find that the geodesic equation of Inverse Gaussian Distribution is 
given by 
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Where A and B are arbitrary constants. This result is the same as the previous one. 
 

4 Deriving the Basic Tensor 
 
The probability density function of two parameters of the Inverse Gaussian distribution is given by 
 

2
2

3

2
2

2

1

3

u)-(y 
2u

v
 -))y(2ln -(ln v

2

1
v)u,lnf(y,

0y                       )u)-(y
2u

v
exp(-)

2
( ),,(

y

yy

v
vuyf

π

π

=

>=
   

 
From the equation above, we derive the metric tensor components for the distribution as follows, 
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For the next step, we need to find the expectation of these second order partial derivatives. The answer is 
almost straightforward, and we just list them below: 
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5 Conclusion and Remarks  
 
Geodesic equation interested both mathematician and statistician. The history of geodesic equation begins 
with John Bernoulli’s solution of the problem of the shortest distance between two points on a convex 
surface in year 1697~ 1698. His answer was that the osculating plane must always be perpendicular to the 
tangent plane. The name “geodesic equation” in its present meaning is, according to Stackel, due to J. 
Liouville, Journal de mathem 9. 1844, p401. To better understand the application in statistics, we will use 
the following example. Let us assume the most common and elementary situation as the first course in 
elementary statistics. We wish to test the hypothesis 

010 0 vv H  versus vv H ≠=  with unknown parameter 

u. If mXX ......1  is a random sample of size m from an IG(u,v) distribution, the maximum likelihood 

estimators are 
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As we can see that Rao distance test is similar to geodesic equation. 
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Appendix 
 
We list the six well known Christoffel Symbols as follows. For a detailed derivation, see Struik [7] or Grey 
[8]. 
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In general, the solution of the geodesic equation depends upon  a pair of partial differential equations as seen 
below:  
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