
 

British Journal of Mathematics & Computer Science 
  

15(1): 1-14, 2016, Article no.BJMCS.23222 
 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 

_____________________________________ 
*Corresponding author: E-mail: wiaokuyade@gmail.com, tamunoimi.abbey@uniport.edu.ng; 
  
 

Oscillatory Blood Flow in Convergent and Divergent Channels, 
  Part 2: Effects of Reynolds Number 

 
W. I. A. Okuyade1* and T. M. Abbey2      

 
     1Department of Mathematics, University of Port Harcourt, Port Harcourt, Nigeria.  

     2Department of Physics, Applied Mathematics and Theoretical Physics Group, University of  
Port Harcourt, Port Harcourt, Nigeria.  

 
Authors’ contributions 

 
This work was carried out in collaboration between authors WIAO and TMA. Author TMA designed the 
study, wrote the protocol and supervised the work. Author WIAO wrote the introduction and solved the 

problem under the guidance of author TMA. Author TMA did the programming for the results while author 
WIAO managed the analyses of the study. Author WIAO wrote the first draft of the manuscript, managed the 

literature searches and edited the manuscript. Both authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/BJMCS/2016/23222 
Editor(s): 

(1) Kai-Long Hsiao, Taiwan Shoufu University, Taiwan. 
Reviewers: 

(1) J. Prakash, University of Botswana, Botswana. 
(2) John Abraham, University of St. Thomas, Minnesota, USA. 

(3) Nityanand P. Pai, Manipal University, India. 
Complete Peer review History: http://sciencedomain.org/review-history/13476 

 
 
 

Received: 21st November 2015 
Accepted: 30th December 2015 
Published: 27th February 2016 

_______________________________________________________________________________ 
 

Abstract 
 

This paper studies the effects of Reynolds number on the oscillating flow in convergent and divergent 
channels. The nonlinear equations governing the flow are solved analytically by the method of 
perturbation series solutions. Expressions for the velocities and wall shear stress are obtained and 
analyzed graphically. It is found that increase in the Reynolds number increases the velocities and wall 
shear stress. Similarly, it is seen that a flow separation occurs in the radial velocity flow structure. 
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1 Introduction  
 
The human artery is infested by a number of diseases. Amongst these is atherosclerosis, which involves the 
hardening of the artery due to deposition of lipids (a generic name for esters) on its internal walls. The 
calcification of the lipids at the points of infection leads to lose of distensibility at such points. Also, the 
progressive encroachment of the plague on its internal walls tends to block the passage of blood to other 
parts of the body. And, this imposes extra loads on the heart musculature. To maintain the peripheral flow, 
the heart enlarges itself, and thus, increasing the amplitude of the pulse or pressure wave. More so, the 
encroachment of the plague which may overlap leads to distortion of the tapered geometry of the artery to 
other forms, such as the idealized locally constricted and peristaltic geometries. 
 
[1] investigated the fluid mechanical aspect of the pulsatile flow of an incompressible fluid through a 
tapered, locally constricted and peristaltic channels. Their model did not consider the flow behavior in the 
regions before and after the peak of the stenos height, which are idealized as the convergent and divergent 
channels. Therefore, we are motivated to examine the flow behaviour in the convergent and divergent 
channels using the same problem.  
 
In part one of these studies, the effect of variations in the pressure wave amplitude and height of constriction 
on the flow structures of blood in the region before and after the critical height of the constriction, 
approximated by the convergent and divergent channels were examined. The study did not consider the 
effects of Reynolds number on the flow. Therefore, in this model we shall investigate the effects of Reynolds 
number on the flow.  
       
Some work exists in literature on the flow of an incompressible and viscous fluid in channels of varying 
cross-sections. For example, [1] considered the pulsating flow of a Newtonian, and incompressible viscous 
fluid in channels of varying cross-session using the perturbation series expansion solutions which they 
developed, and observed that flow separation occurs in all geometries; [2,3,4] and [5] studied the flow in 
locally constricted and peristaltic channels; [6] solved the Navier–Stokes and the energy equations by the 
method of finite difference, and noticed the existence of an annular effect in the entry region for the pulsatile 
part of the velocity and temperature; [7] solved the Navier–Stokes and energy equations numerically for the 
laminar pulsating flow in a channel, and concluded that an appreciable heat transfer enhancement occurs in 
the channel. Furthermore, [8] studied the unsteady three-dimensional fluid mechanics analysis of blood flow 
in a plagued artery with the aim of quantifying the effectiveness of plague removal modalities in the small 
arteries using the method of numerical simulation, and observed that the removal of the  plague leads to an 
increase in the flow rate of blood during the systole and diastole portions of the cardiac cycle; [9] 
investigated a time-wise periodic pipe flow using numerical simulation approach, and identified a large-
periodic limit at which the flow is quasi-steady. More so, [10] considered the time-varying pipe flow driven 
by a harmonically pulsating inlet velocity using the Mente transitional numerical simulation model, and 
observed that the use of quasi-steady model for predicting the fully developed friction factor is not 
applicable to higher frequency. They also noticed that backflow occurs near the walls as the flow transits 
from deceleration to acceleration. Even so, [11] examined the influence of heat and chemical reactions on 
blood flow through an anisotropically tapered and elastic artery with overlapping stenosis, and found among 
others, that  the coupling number, tapering angle, maximum height of stenosis, Sorret number and Brinkman 
number tend to increase the axial velocity higher for the Newtonian fluid than for the micro-polar fluid; [12] 
considered the MHD flow of an incompressible viscous fluid through convergent and divergent channels 
using the homotopy perturbation method, and noticed that the behaviour of the homotopy perturbatiom 
method is in good agreement with the numerical simulations.  
 
This paper presents an analytic model on the effect of Reynolds number on the velocity and wall shear stress 
structures of the oscillatory flow in convergent and divergent tubes.  
 
The paper is organized in the following format: section 2 gives the methodology; section 3 holds the results 
and discussion, while section 4 presents the conclusions. 
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2 Methodology 
 
The problem examined the flow of blood in axi-symmetric convergent and divergent channels. These 
channels approximate the region before and after the critical point of the constriction caused by the stenosis 
of the artery. Due to the plague, the region of the artery affected becomes rigid and therefore, loses its 
distensibility. Let (R, θ , X) and (u,v,w) be the polar cylindrical orthogonal coordinates and vector 

components, respectively, and assuming the flow is symmetrical about the θ - axis, then for a two-
dimensional  situation, the coordinates and vector components are reduced to (R, 0, X) and (u, 0, w) 
respectively, such that the continuity, momentum and energy equations governing the flow become:      
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where ρ the density, p the pressure, υ  the kinematic viscosity of the fluid, and t  is the time. R=0 is the 

centre or symmetric axis of the tube; ( , )oR a X t= , which is an arbitrary function of X and t is the cross-

sectional radius of the tube; oa  is the characteristic radius of the tube, and t is the time. 

 
The boundary conditions are: 
 

        (i) w  0,  0
R
u∂= =

∂     
at   R=0                                                    (4) 

 
 (ii)  by the no-slip condition at the wall of the tube 

 

( , ) 0ou a t =
   

at   ( , )oR a X t=                                    (5) 

 
 (iii)  the flux across a cross–section of the tube is prescribed as:  

 

o
0 0

( , ) 2
θ 2 ψ  (1    ) 

oa X t
i tdR Rud k e

π βπ= +∫ ∫                                            (6) 

 

where oψ  is a constant, k is the amplitude of  the pulse which is  assumed to be small, and β is the frequency 

of oscillation. 
 
To eliminate the pressure terms in equations (2) and (3) we take the partial derivatives of equations (2) and 
(3) with respect to R and X respectively, then subtracting the first result from the second one, we have 
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Also, the pressure expression in the axial direction can be obtained from equation (3), as       
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Introducing the stream function ψ, vorticity Ω, and non-dimensionalized variables, respectively, into 
equations (7) and (8), we have 
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Equation (13) shows that the pressure field is of order 
ε
1

. Also, the O (ε)2  terms are neglected for being 

small. 
 
Furthermore, the wall shear stress is expressed as 
 

Ω= ρυτ w     (see [5]) giving us 
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The boundary conditions become: 
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are the stream functions and vortices terms, and 
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are the non-dimensionalized variables, where Re is the Reynolds number of the flow, η  is a dimensionless 

number for the frequency of oscillation, T is the dimensionless time, ε is the height of constriction, φ , ω  are 
the dimensionless  stream function and  vorticity, respectively.  Also, we assume that the cross–section of 

the tube in the model vary in the axial direction, and for which we take a(X, t) = sao   (ε oaX , t) ,

)),(1(0 txfRr ε+= ,  0   ≤  r   ≤ 1, 0   ≤  x   ≤ 1 where s is an arbitrary function of X; a is the variation 

in the r along the axial direction; 10 <<=<
L

aoε  is a small dimensionless parameter that characterizes 

the slow variation in the channel radius; L defines the channel characteristic length. 0=ε  corresponds to a 
tube with constant radius. As ε increases from zero the variation of ψ  in the axial direction depends upon 

 Xε  instead of X. 
 
We shall seek for perturbation series solutions about the small parameter ε of the form: 
 

( ) ( ) ( ) ( )( )1 1 ...o oiT iTf f ke f f ke fε= + + + +                             (19) 

 

where nf  represents ω  andφ . This enables us to linearize the problems and make them tractable. 

 
Therefore, substituting equation (19) into equations (11), (12), (15) and (16), we have the zeroth order terms 
as 
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The analyses show that the non-steady parts of the solutions are very negligible. 
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(47) 

 
where Io (λr), I1(λr), I2 (λr), Io(λs), I1(λs) and I2 (λs) are the modified Bessel function of order zero, one and 
two, respectively.  
 

Similarly, the geometries under consideration are: the convergent channel / 2xs e−= , and divergent channel  
/ 2xs e= . 

 

3 Results and Discussion 
 
The effects of Reynolds number on the flow behaviour of blood in the regions before and after the stenos 
critical height, and which are approximated as convergent and divergent channels as shown in Fig. 1 of part 
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one of these studies are considered. The problem shows that the flow structure depends on variation in the 
Reynolds number. For this, Figs. 1–6 show the computational results for the velocities and wall shear stress 
for various values of Reynolds number and constant values of other parameters, using Mathematica 
computational software. For realistic values of T=π/4, λ=2, k=0.03, ε=0.05, Re 10, 100, 500, 1000 the 
profiles show that the increase in the Reynolds number produces a commensurate increase in the velocities 
and wall shear stress. 
 

In the regions before the plague, that is, in the upstream, the flow is laminar, Poiseuille and fully developed. 
Therefore, the Reynolds number is moderate. But towards the peak of the constriction, that is, in the 
convergent channel whose geometry narrows down exponentially, the inertial force rises such that the 
Reynolds number and the momentum increase On the other hand, in the divergent channel whose geometry 
widens away exponentially from the peak, the inertial force must drop. This must be followed by a drop in 
the Reynolds number and momentum, and subsequently the velocities and other factors of the flow must 
drop. This is supposed to be the case in the divergent channel. Therefore, the increase in the velocities and 
wall shear stress in the divergent channel, possibly, could be due to the influence of the flow situations in the 
convergent region on it. And, these account for the observations noticed in Figs.1–6. 
 
Furthermore, a flow separation is seen in the radial velocity flow structure at r ≤ 0.3 in both convergent and 
divergent regions (see Figs. 2 and 3). This is in consonance with [1], which showed that separation virtually 
occurs in the flow. The occurrence of this special feature at such point could be due to adverse flow 
conditions there. According to [1], the flow separation is due to the viscous effects at such point. And, until 
the point r ≤ 0.3, where the radial velocity drops to zero, it increases as the Reynolds number increases. After 
this point, the flow pattern changes such that the velocity decreases as the Reynolds number increases. 
 
More so, the increase in the axial velocity arising from the increase in the Reynolds number tends to cushion 
the effects of arbitrary increase in the pulse amplitude and height of constriction which decrease the axial 
velocity. 

 

 
 

Fig. 1. Axial velocity-Reynolds number profile in a convergent channel 
 

 
 

Fig. 2. Axial velocity-Reynolds number profile in a divergent channel 
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Fig. 3. Radial velocity-Reynolds number in a convergent channel 
 

 
 

Fig. 4. Radial velocity-Reynolds number profile in a divergent channel 
 

 
 

Fig. 5. Wall shear stress-Reynolds number profile in a convergent channel 
 

 
 

Fig. 6. Wall shear stress-Reynolds number profile in a divergent channel 
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4 Conclusions 
 
The oscillatory flow of an incompressible viscous fluid through axi-symmetric convergent and divergent 
channels is examined for the effects of Reynolds number. The overall analysis indicates that the increase in 
the Reynolds number tends to increase the velocities and wall shear stress. Furthermore, the increase in the 
axial velocity due to the increase in Reynolds number tends to cushion the adverse effects of pulse amplitude 
and height of constriction on it. 
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