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Abstract

This paper studies the effects of Reynolds number omgbi#ating flow in convergent and divergent
channels. The nonlinear equations governing the flow are dscdwelytically by the method of
perturbation series solutions. Expressions for the velocéires wall shear stress are obtained and
analyzed graphically. It is found that increase in thgnRkls number increases the velocities and yall
shear stress. Similarly, it is seen that a flow sejmaraccurs in the radial velocity flow structure.
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1 Introduction

The human artery is infested by a number of diseasesngsi these is atherosclerosis, which involves the
hardening of the artery due to deposition of lipids (a dermeame for esters) on its internal walls. The

calcification of the lipids at the points of infectioratks to lose of distensibility at such points. Also, the
progressive encroachment of the plague on its internds$ wexlds to block the passage of blood to other
parts of the body. And, this imposes extra loads on the heesculature. To maintain the peripheral flow,

the heart enlarges itself, and thus, increasing the i@l of the pulse or pressure wave. More so, the
encroachment of the plague which may overlap leads to distat the tapered geometry of the artery to

other forms, such as the idealized locally constd@nd peristaltic geometries.

[1] investigated the fluid mechanical aspect of thésatile flow of an incompressible fluid through a

tapered, locally constricted and peristaltic channBteir model did not consider the flow behavior in the

regions before and after the peak of the stenos height, wtechilealized as the convergent and divergent
channels. Therefore, we are motivated to examine the lflelaviour in the convergent and divergent
channels using the same problem.

In part one of these studies, the effect of variationkerptessure wave amplitude and height of constriction
on the flow structures of blood in the region before andr dfie critical height of the constriction,
approximated by the convergent and divergent channels werdnexhnThe study did not consider the
effects of Reynolds number on the flow. Therefore, in thisehae shall investigate the effects of Reynolds
number on the flow.

Some work exists in literature on the flow of an incoaggible and viscous fluid in channels of varying
cross-sections. For example, [1] considered the pulsatingdlawNewtonian, and incompressible viscous
fluid in channels of varying cross-session using the gmation series expansion solutions which they
developed, and observed that flow separation occurs mealhetries; [2,3,4] and [5] studied the flow in
locally constricted and peristaltic channels; [6lved the Navier—Stokes and the energy equations by the
method of finite difference, and noticed the existencencdranular effect in the entry region for the pulsatile
part of the velocity and temperature; [7] solved the Blaatokes and energy equations numerically for the
laminar pulsating flow in a channel, and concluded that preajable heat transfer enhancement occurs in
the channel. Furthermore, [8] studied the unsteady three-dimenfiindianechanics analysis of blood flow

in a plagued artery with the aim of quantifying the effectess of plague removal modalities in the small
arteries using the method of numerical simulation, arsgved that the removal of the plague leads to an
increase in the flow rate of blood during the systole and déagiortions of the cardiac cycle; [9]
investigated a time-wise periodic pipe flow using nunargimulation approach, and identified a large-
periodic limit at which the flow is quasi-steady. M@ [10] considered the time-varying pipe flow driven
by a harmonically pulsating inlet velocity using the Mensmnsitional numerical simulation model, and
observed that the use of quasi-steady model for predid¢tingfully developed friction factor is not
applicable to higher frequency. They also noticed that baekficcurs near the walls as the flow transits
from deceleration to acceleration. Even so, [11] examihedrtfluence of heat and chemical reactions on
blood flow through an anisotropically tapered and elasteryawith overlapping stenosis, and found among
others, that the coupling number, tapering angle, maxitmeight of stenosis, Sorret number and Brinkman
number tend to increase the axial velocity higher for thetbl@an fluid than for the micro-polar fluid; [12]
considered the MHD flow of an incompressible viscous flhidugh convergent and divergent channels
using the homotopy perturbation method, and noticed that the behafidhe homotopy perturbatiom
method is in good agreement with the numerical simulations.

This paper presents an analytic model on the effect afiétéy number on the velocity and wall shear stress
structures of the oscillatory flow in convergent and djeet tubes.

The paper is organized in the following format: sectionv2githe methodology; section 3 holds the results
and discussion, while section 4 presents the conclusions.
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2 M ethodology

The problem examined the flow of blood in axi-symmetriovewgent and divergent channels. These
channels approximate the region before and after the criticat of the constriction caused by the stenosis
of the artery. Due to the plague, the region of the arfigcted becomes rigid and therefore, loses its
distensibility. Let (R,€, X) and (u,v,w) be the polar cylindrical orthogonal coortiisaand vector
components, respectively, and assuming the flow is syrualembout thed - axis, then for a two-
dimensional situation, the coordinates and vector componeatseduced to (R, 0, X) and (u, 0, w)
respectively, such that the continuity, momentum andggregjuations governing the flow become:

1ldu 6u ou _ 1)
ROR aR OX

ou, Ou, ou_ @H}au lou_u  0du 2
6'[ aR OX oR dR® ROR R* oXx?

ow, Ow,  ow_ 13p (3%, 19w, d%w o
o OR  aX p0X oR2 R AR 0)(2

wherep the density, p the pressumd,the kinematic viscosity of the fluid, artdis the time. R=0 is the
centre or symmetric axis of the tubR = qj( X, t) which is an arbitrary function of X and t is the cross

sectional radius of the tub&, is the characteristic radius of the tube, and t idithe.

The boundary conditions are:

MHw = 0, g—;= 0 at R=0 (4)

(ii) by the no-slip condition at the wall of the tube

u(@, =0 at R=g(X 19 (5)
(i) the flux across a cross—section of the tube isgpilesd as:

aD(X,t) 21T Iﬂ
| dR| Rud=2rmy, 1+ ke ™) (6)

0

wherel//, is a constant, k is the amplitude of the pulse whichssumed to be small, afds the frequency
of oscillation.

To eliminate the pressure terms in equations (2)(8phave take the partial derivatives of equations (&) a
(3) with respect to R and X respectively, then subtrgdtie first result from the second one, we have
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Also, the pressure expression in the axial directionbeaobtained from equation (3), as
op _ (0°w 1 ow 0°w) (ow ow  ow
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Introducing the stream functiom, vorticity Q, and non-dimensionalized variables, respectively, into

equations (7) and (8), we have

)
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Equation (13) shows that the pressure field is of oéerAIso, the O € terms are neglected for being
g
small.

Furthermore, the wall shear stress is expressed as

T, = pUQ (see [5]) giving us

10°p 1 dp
7, =—+—— 14
Y ror? r?or ()

The boundary conditions become:
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=0 , 5¢ i(}a_(aj:( at r=0 (15)
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=1+ ke'T ?;p—( at r=s(x, T) (16)
r
Where
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are the stream functions and vortices terms, and

r:B ,xzal, T = ft, ga(r,x,T):i,
a, a, v,
a)(rxT)—— Re= Yo 1 =—— B at,—il

Y, au au S

are the non-dimensionalized variables, where Re is tgadRs number of the flow; is a dimensionless

number for the frequency of oscillation, T is the dimensi&mtéene is the height of constrictiong, o are
the dimensionless stream function and vorticity, respelgti Also, we assume that the cross—section of

the tube in the model vary in the axial direction, and fbictv we take a(X, t) =a,S (e X/an, t)
r= Ro (1+ & (X,t)) , 0 <r <1,0 < x <1where sis an arbitrary function of X; a is the variation

a
in the r along the axial directiofj < & = TO <<1is a small dimensionless parameter that characterizes

the slow variation in the channel radius; L defines tenael characteristic lengtis. = O corresponds to a
tube with constant radius. Asincreases from zero the variationgéf in the axial direction depends upon

& X instead of X.

We shall seek for perturbation series solutions aboutnia#l parameteg of the form:

f=f0 4k 10 +g( fO 4+ k& _f(l))+... (19)

where fn representsv and@. This enables us to linearize the problems and make tiiaetable.

Therefore, substituting equation (19) into equations (@), (15) and (16), we have the zeroth order terms
as
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(28)

52, +}aw(1)_} ey _Re 0¢(0) aw(°)+6¢(°) w(o)_ ow©
or oX oX r or

arz r or r r

250 1000 [XZ ) 2} 0. Rean(o) 0035 00
r

r a & a &

009 (00®@ 5O 550 (3,©@ ,©
- - - - ] @

arz ror

()4 or r 1) or r

with boundary conditions
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The analyses show that the non-steady parts of theswwtre very negligible.

The solutions of equations (20) - (35) are

Skt

2

P = /]SI—()[l (As)-1,(r)+1,(ar)] (37)

=
o) __ Al (ar)
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where | (Ar), I1(Ar), 12 (A1), I,(As), k(As) and } (As) are the modified Bessel function of order zero, one and

two, respectively.

Similarly, the geometries under consideration are: dmvergent channgd= €

/2 and divergent channel

3 Results and Discussion

The effects of Reynolds number on the flow behaviour of blodtie regions before and after the stenos
critical height, and which are approximated as convergentigadgdnt channels as shown in Fig. 1 of part

10
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one of these studies are considered. The problem sheaivghe flow structure depends on variation in the
Reynolds number. For this, Figs. 1-6 show the computatiesalts for the velocities and wall shear stress
for various values of Reynolds number and constant values of pHrameters, using Mathematica
computational software. For realistic values ofn/@s A=2, k=0.03,¢=0.05, Re 10, 100, 500, 1000 the
profiles show that the increase in the Reynolds number pesducommensurate increase in the velocities
and wall shear stress.

In the regions before the plague, that is, in the upstrdeaflow is laminar, Poiseuille and fully developed.

Therefore, the Reynolds number is moderate. But towardpeh& of the constriction, that is, in the

convergent channel whose geometry narrows down exponentiallynehtéal force rises such that the

Reynolds number and the momentum increase On the othey inathe divergent channel whose geometry
widens away exponentially from the peak, the inertialdarast drop. This must be followed by a drop in
the Reynolds number and momentum, and subsequently the esaaitil other factors of the flow must

drop. This is supposed to be the case in the divergent dhdimeeefore, the increase in the velocities and
wall shear stress in the divergent channel, possibly, dmildlie to the influence of the flow situations in the
convergent region on it. And, these account for the observataited in Figs.1-6.

Furthermore, a flow separation is seen in the radial vgléioiv structure at K 0.3 in both convergent and
divergent regions (see Figs. 2 and 3). This is in consenaith [1], which showed that separation virtually
occurs in the flow. The occurrence of this special feaatrsuch point could be due to adverse flow
conditions there. According to [1], the flow separation is thuthe viscous effects at such point. And, until
the point r< 0.3, where the radial velocity drops to zero, it increasdbe Reynolds number increases. After
this point, theflow pattern changes such that the velocity decreaseg &efynolds number increases.

More so, the increase in the axial velocity arising fthmincrease in the Reynolds number tends to cushion
the effects of arbitrary increase in the pulse amplitude leeight of constriction which decrease the axial
velocity.
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20000

Axial velocity

0 0.2 0.4 0.6 0.8 1 1.2

axial distance (r)

=0=10 =f=100 =X=500 =X= 1000

Fig. 1. Axial velocity-Reynolds number profilein a convergent channel

1500

1000

500

Axial velocity
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Fig. 2. Axial velocity-Reynolds number profilein a divergent channel
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Fig. 3. Radial velocity-Reynolds number in a conver gent channel
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Fig. 4. Radial velocity-Reynolds number profilein a divergent channel

1200
1000
800
600
400
200
0
0 0.2 0.4 0.6 0.8 1 1.2

radial distance(r)

Wall shear stress

== 10 =f=100 =)=500 =x=1000

Fig. 5. Wall shear stress-Reynolds number profilein a conver gent channel
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Fig. 6. Wall shear stress-Reynolds number profilein a divergent channel
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4 Conclusions

The oscillatory flow of an incompressible viscous dliuhrough axi-symmetric convergent and divergent

channels is examined for the effects of Reynolds numberoV¥éll analysis indicates that the increase in

the Reynolds number tends to increase the velocities angshesdt stress. Furthermore, the increase in the
axial velocity due to the increase in Reynolds number temdashion the adverse effects of pulse amplitude
and height of constriction on it.
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