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Abstract
Based on an assumption of multivariate normal priors émampeters of multivariate regression model,
ion

this study outlines an algorithm for application of traditioBalyesian method to estimate regresg
parameters. From a given set of data, a Jackknife sarhfgast squares regression coefficient estimates
are obtained and used to derive estimates of the mearr \@@utocovariance matrix of the assumed

multivariate normal prior distribution of the regression pastars. Driven to determine whether Bayesjian

methods to multivariate regression parameter estimatiesent a stable and consistent improvement pver
classical regression modeling or not, the study resultzatelithat the Bayesian method and Least
Squares Method (LSM) produced almost the same estimattdsefoegression parameters and coefficient
of determination (to 4.dp) with the Bayesian method havindlenstandard errors.
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1 Introduction

In recent years Bayesian methods have become widespreadny domains including computer vision,
signal processing, and information retrieval and genome aaalysis. The availability of fast computers
allows the required computations to be performed in reasotiatge and thereby makes the benefits of a
Bayesian treatment accessible to an ever broadening raagplications [1].

Bayesian inference allows informative priors so thatrgknowledge or results of a previous model can be
used to inform the current model. Bayesian inference Isemaaoid problems with model identification by
manipulating prior distributions. Classical Statisticgerence with any numerical approximation algorithm
does not have prior distributions, and can become stuck in regidiet density, causing problems with
model identification.

Bayesian inference considers the data to be fixed, whichesfar real life data, and parameters to assume
values within a specified range according to a prioritistion. LSM considers the unknown parameters to
be fixed, and the data to be random. Estimation is nadbanly on the data at hand, but together with
hypothetical repeated samples of similar data. The Bayespproach delivers the answer to the right
question in the sense that Bayesian inference provides answaeditional on the observed data and not
based on the distribution of estimators or test stegistver hypothetical samples not observed [2].

Clearly, Bayesian methods have become widespread in manwgins. Studies by [3,4] apply Bayesian
method of moments (BMOM) which does not assume likelifoodtions and prior density. In their study,
[3] demonstrated how the BMOM can be employed to analgizanpetric and semiparametric models. Also,
[4] carried out Bayesian analysis of regression er{btdocused on using Bayesian inference with assumed
multivariate normal prior to estimate missing data and tteiariance matrix in choice conjoint experiment.
[6] provided Bayesian interpretations for White's (errdngteroskedastic consistent (HC) covariance
estimator, and various modifications of it, in linearremgion models. For existing literature on Bayesian
data analysis, readers can refer to the work by [7] oye8an theory for normally distributed random
variables.

The least squares estimation procedure has beenrupeablems that arise in many scientific investigations
involving the study of observations whose theoretical madues are known functions of parameters which
are to be estimated ([8,9,10], etc). Suppdsé,, ..., 6, and let the available data consistiabbservations

Y1, V2, -, Vo With the expected valugdy;) = h;(0,,6,,...,0;,),i = 1,2, ...,n. The least squares estimates
are the values @, 6,, ..., 8 that minimize= ¥, [y; — E(y;)]? ; which are often obtained by solving the

equations% =0,i=1,2,..,k.
L
This paper seeks to compare the results from a céd$dM approach to that of a Bayesian approach.

2 Model Specification

The multiple linear regression model of a response Martabndk predictor variableX;, X,, -+, X, for a
sample size of is given by

Y, = Bo+ BiXyi + BoXoi + o+ BirXi + & i=12-,n (€Y)

=ﬁ,Xi +€l' (2)
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where B = (Bo, BB+ B ) s Xi = (1, X1, Xy, -+, Xii) ' @nde;~ N(0,0%),

The multiple regression assumes that the errors are indepenttémistributed according to the normal
distribution with zero mean and a constant variance dertgted. As a consequence of this, coupled with
the assumption of fixed,, X,, -+, X, andB,, B1, B2 -+, Bx; theY;s are also independent with each having a
normal distribution with mean and variance given respecti@ek; ands? (i = 1,2,---,n). The least
squares estimator foB = (By, B, B2+, Bx) is given by = (X’X)"1 X'Y ; X is ann X k matrix with ith
row X; andY = (Y,,Y,, ..., Y,) [8].

However if the components @ can assume values within a given range based on a pricbutisin
instead of fixed parameters as in LSM of estimating ¢yeession parameters, then the conditional density
function for each of th&'s is given by

fOilB.X) = FXO” 1y 2 0 ®3)

The conditional joint density function df;,i = 1,2, -+, n is given by;

1 X yi—B'x)?
fOIBX) = [z e 22Oy = (e V) €))

Now suppose the random vectfrhas a multivariate normal distribution with mean vego=
(o, e, o, -+, 1g)" @and covariance matriX ; that isB = ( By, B1, B2, Br) ' ~ Nes1 (1, Z); then the joint
density function ofy and the coefficientsp is given by;

no_1yn o, plxy2 —(k£1 -
FOIBX;) = (2ro?) se s 00" o () (g asze-i/2-'a o0

= Ke 20_221 1(3’1 ﬁ’X) __{2?1‘111(;81 H1)2+221¢1(B1 Hz)(ﬁ] H})alj} (5)

where, K = (2no?)™2 (21‘[) (5 )|2| 1/2

Now let,
— 1yn 2 _ 1 k 2
V= ey i:l(yl. B'Xy) 1(% Bo — 1ﬁiji)
1
=Xyl ;ﬁo +;Z YRV [/)70 1 Yi + 2o X B Xyl
2 —
+ ;Z’,L& §=j+12?:1/>’j/>’s i Xsi (6)

Also,let W = (B —w)'s™ (B — 1)
Z;'(:O ajj (Bj ”j) + sz 0 Is{ j+1 %js (ﬁ] - Hj)(ﬁs —u), T = (aij)
:Zﬁo ajj(ﬁjz —2u;B; + Mj) + 22?2(} Zs=j+1 ajs(ﬁjﬁs — usBj — ujps + Hj#s)
= X0 B} = 2Xf=0 ;B + Xico ajj 1F + 2 X0 Xijur GisBiBs —  2X[20 X< ju1 s HsBj —
2 Zﬁ:ol Z}s€=j+ ajsiiPs + 2 Zﬁ:ol E}s€=j+1 AjstjHs (7)

So that,

VW = (Gt o) 4 B [+ ]

23, ZS ol 2 ik =2z ]

_221 1[ X]lyl+vj]ﬁ]+R (8)
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wherev; = Z{-‘zl ajiy, j=0,1,2,-,k, a;=as forj#s andR is a constant term independent of
Bj, G =0,1,2,,k).

Clearly,

V+W =Q(B)is a quadratic form of the matmg1 in B = (Bo,B1, B2+, Br)' - Therefore the posterior
distribution ofp is of the form

f(Bly,X) = Ke®) ©
Hence it follows the multivariate normal distributiontkvimean vector given by

o = =34C o)
where Xz is a(k + 1) X (k + 1) matrix with an inverscE,;1 = (m;;) whose elements are given as;

Moo = 75+ ago, j = 1,23,k

mj = ﬁz;;lxﬁ +ajo, j=1,23,,k

moj = =Xy X+ g, j = 1,23,k (11)
m;; = éZ?ﬂXilXﬂ +a; i #]

my = Y XE ag 1=1,23,k

andc is a column vector of ord€k + 1) with [** element given as;

1 n k
DT
0 [02 i:1yl i=o 0jHj

G =-2 [ﬁ Y X + 25 alj#j] » 1=1,23,k (12)
2.1 Estimation of g and X

To estimate the parameters of the prior distributiothefregression parameters, we used jackknife samples
as follows.

Let B, = Bov Biv Barr > Br) ;1 = 1,2 3,---,n be thel” jackknife estimate of the regression parameters
from a given dataset which consist of a response varfabled predictor variableX;, X,, -+, X,. Then

the estimate of the mean vectgr of the random vector B = (B, B1, B2 -, Bx)’ IS given as
= (o Ay, flz, = )

where
N 1 .
Ay =230 i j = 01,23,k (13)

and an estimate of the covariance matrig @iven by

Iy = ﬁ 11'1=1(ﬁj _ﬁj) (BJ _ﬁj), = (&U). (14)

The estimate of the standard error of itfecoefficient based on the Bayesian estimate is the sqoaref
thei*" diagonal element of;. That is
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se(B)=\a;, i=012..k (15)
3 Results

To compare the LSM and the Bayesian method, we usedoé data based on a sample of size 63 from [2].
The data include one response variable, Sales Pk faur predictor variables namely, Square Feet,
Rooms, Bedrooms, Age (See Appendix for data). The meltggression model in equation (1) was fitted to
the data to obtain the parameter ve@a@stimates through the Least Squares method.

Based on equations (13) and (14), jackknife estimates om#®n vector and covariance matrix of the
random vectop were computed from the same data as follows respectively

i = (11.3763, 0.0539, -13.3180, -0.3815, 5.8404) and

4.0974 -0.0009 -0.5721 -0.0022 -0.1996

| —0.0009 0.0000 -—0.0001 0.0000 —0.0004 |
£=[-05721 -0.0001  0.4854 0.0002 -0.1024
—0.0022  0.0000 0.0002 0.0002 -0.0014
—0.1996 -0.0004 -0.1024 -0.0014 0.1796

The inverse oF is given by,

16.4841 22011.8900 45.5908 641.2054 94.8122

[22011.8940 30094728.4200 61474.6287 860629.5473 128436.9868 |
£1=(a;)=| 455908 61474.6300  128.9556  1786.3398 265.1956
641.2054  860629.5500 1786.3398  31627.9544  3755.6499

94.8122 1284369900  265.1956  3755.6499 556.9152

Now based on the set of equations (11) an estimate of erjoo distribution of is given by,

3.8700 —0.0008 -—0.5503 -—0.0023 —0.1959]
—0.0008  0.0000 -0.0002 0.0000 -—0.0004

fﬁ =1-0.5503 -—0.0002 0.4782  0.0002 -—0.1003
—0.0023  0.0000 0.0002  0.0002 —0.0014I
l—0.1959 —0.0004 -0.1003 -0.0014 0.1747

Also from the set of equation (12), we have an estimfaiigeovectorC given as;

[ 1087.88807
[ 1495893.4600 |
C=| 3019.4140]
[ 40087.1390J
6369.1730

From equation (10), a Bayesian estimate of the paramettaryeis given as

11.3775

0.0539

fip =[-13.3181
— 0.3814

L s5.8407]

The estimates of the standard errors of the coefficievere also computed based on equation (15) and
compared with those of the least squares standard egsfsown in Table 1.
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3.1 Comparison of the LSM and Bayesian method

Table 1 shows the coefficient estimates and the corresposidindard errors for tHgeast Squares model
and the Bayesian Model.

Table 1. Estimates of the coefficient of the two models

Variable name L east squares Bayesian

Coefficients Standard error Coefficients Standard error
Intercept 11.3755 12.2752 11.3775 1.9672
Square. feet 0.0538 0.0085 0.0539 0.0015
Bedrooms -13.3119 6.2096 -13.3181 0.6916
Age -0.3813 0.1182 -0.3814 0.0126
Room: 5.847¢ 2.664¢ 5.840" 0.418(

The following table (Table 2) consists of variance resoltthe Least Squares model.

Table 2. Analysis of variance of the least squar es model

Df SS MS F Significance F
Regression 4 55155.70 13788.92429 34.351239 1.0778E-14
Residual 58 23281.77 401.4098083
Total 62 78437.4

The analysis of variance for the multiple regression mgoes an F statistics value df4.3512 with a
corresponding P-value df0778e~1* which is significant at 5% significance level. The carffint of
determination R?) value from the LSM is 0.7032 indicating 70.32% of the valitghin the response data is
explained by the predictor variables.

The sum of squares due to error (SSE) of the Bayesiaelns computed as follows,

63
Z(Yi —7,)* = 23281.7800

i=1
Now our total sum of squares 8T = ¥¢3,(Y, — ¥)" = 78437.4660.

The coefficient of determination of the Bayesian modgiven by

R2 =1 SSE ) 23281.7800
- SST 78437.4660
=0.7032

Clearly the coefficients of determinatioR? values) for the two models are almost the same.

4 Discussion and Conclusion

From Table 1, it can be seen that estimated coefficai® almost the same for the Least Squares model
and the Bayesian model. In estimating the coefficient térdenationR?, of the two fitted models, they
both reported almost the same values.
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This study reveals that, though the Least Squares méethost sufficient for estimating the coefficients of
the regression parameters, the Bayesian estimatesdeelc comparatively very small standard errors;
making the Bayesian method more robust. The use of addifitiormation provided by the assumption of
multivariate normal prior distribution of th&'s accounted for the smaller standard errors of the Bayesia
estimates.

Future studies may consider using Bootstrap estimatebdoparameters of the prior distributiong&nd
consider a smaller data set to see whether same redlliltcour. It is anticipated that same finding will
result in these situations. The main contribution of th@sk is to provide a means of using traditional

Bayesian methods to estimate parameters of multiple sggre coefficients under the assumption of
multivariate normal prior distribution as against the existingiation methods.
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Appendix A: Data used for the analysis

No Sales Square Bed Age Rooms No Sales Square Bed Age Rooms
price feet room price feet room
1 53.£  100¢ 2 35 5 33 63 105¢ 2 24 5
2 49 1290 3 36 6 34 60 1728 3 26 6
3 50.5 860 2 36 8 3B 34 416 1 42 3
4 49.¢ 917 3 41 5 36 52 104C 2 9 5
5 52 1204 3 40 6 37 75 1496 3 30 6
6 55 1204 3 10 5 38 93 193¢ 4 39 8
7 80.5 1764 4 64 8 39 60 1904 4 32 7
8 86 1600 3 19 7 40 73 1080 2 24 5
9 69 1255 3 16 5 41 71 1786 4 24 8
10 149 3600 5 17 10 42 83 1503 3 14 6
11 46 864 3 37 5 43 90 173¢€ 3 16 7
12 38 720 2 41 4 44 83 1695 3 12 6
13 49.5  100¢ 3 35 6 45 11t 218¢ 4 12 8
14 105 1950 3 52 8 46 50 888 2 34
15 1525 2086 3 12 7 47  55.2 1120 3 29 6
16 85 2011 4 76 9 48 61 140( 3 33 5
17 60 1465 3 102 6 49 147 2165 3 2 7
18 58.f  123¢ 2 69 5 50 21cC 235¢ 4 15 8
19 101 1736 3 67 7 51 60 1536 3 36 6
20 294 1296 3 11 6 52 100 1972 3 37 8
21 12t 199¢ 3 9 7 53 44°t 112 3 27 5
22 879 1874 2 14 5 54 55 1664 3 79 7
23 80 158( 3 11 5 55 534 92t 3 20 5
24 94 1920 3 14 5 56 65 1288 3 2 5
25 74 1430 3 16 9 57 73 1400 3 2 5
26 69 1486 3 27 6 58 40 1376 3 103 6
27 63 1008 2 35 5 59 141 2038 4 62 12
28 67.5 128 3 20 5 60 68 157z 3 29 6
29 35 1134 2 74 5 61 139 1545 3 9 6
30 1425 2400 4 15 9 62 140 1993 3 4 6
31 922 1701 3 15 5 63 55 1130 2 21 5
3 6

32 56 1020 16

Data from Bowerman and O’Connell, (1997)
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