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Abstract

Graph compositions play an important role in the generalization of both ordinary compositions

of positive integers and partitions of finite sets. Graph compositions of certain classes of graphs,

like trees, cycle graphs, wheels, etc have been found using generating functions and recurrence

relations. In this paper, we use different combinatorial techniques, to count the number of graph

compositions of uniform four q-fans.
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1 Introduction

The notion of graph composition was introduced in [1]. In this paper various formulas, generating
functions and recurrence relations for composition counting functions are given for several families
of graphs. Graph compositions play an important role in the generalization of both ordinary
compositions of positive integers and partitions of finite sets.

This work is extended further to bipartite graphs, some operations on graphs like unions of graphs
and 2-sum of graphs, see [2], [3], [4]. In [5] the terminology of graph composition is explored further,
but under a new term, comppartition. In [6] it is shown that the number of graph compositions is
equal to the total number of flats of the cycle matroid.

For basic notation and terminology of graph theory, we refer the reader to [7]. The number of
compositions for the following graphs: Tn, a tree on n vertices, Pn, a path with n vertices, Sn, a
star graph on n vertices, Kn, a complete graph on n vertices, Cn, a cycle graph on n vertices, Wn,
a wheel on n vertices, Ln, a ladder graph on 2n vertices and Km,n, a complete bipartite graph is
given in [1]. In particular, it is shown that C(Tn) = C(Pn) = C(Sn) = 2n−1, where C(G) is the
number of graph compositions of the graph G.

There are several equivalent ways of defining a matroid, we refer the reader to Oxley [8]. Let G
be a graph with ω(G) connected components and let E be the set of edges in G. Define a rank
function r such that if X ⊆ E then r(X) = |V (G[X])| − ω(G[X]). It it easy to show that r is a
rank function of a matroid on a set E. This matroid is called the cycle matroid of G and is denoted
by M(G). The closure operator is another function associated with a matroid. Let X be a rank r
subset of E, then the closure of X denoted by cl(X) is the largest rank r subset of E containing
X. In particular, cl(X) = {x ∈ E : r(X ∪ x) = r(X)}. A flat of a matroid M(E) is a set A ⊆ E for
which cl(A) = A. A flat of rank zero is called an empty flat.

The relationship between graph compositions and flats of cycle matroids was established in the
following theorem, for details we refer to [6]

Theorem 1.1. Let G be a labelled graph with vertex set V (G) and edge set E(G). Let Co(G) be
the set of all distinct compositions of G such that C(G) = |Co(G)| and let F(M(G)) be the set of
all distinct flats of M(G). Then C(G) = |F(M(G))|.

As a consequence of Theorem 1.1 we get the following result in Corollary 1.2, which is the main
tool of this work.

Corollary 1.2. Let G be a labelled graph with vertex set V (G) and edge set E(G). Then

C(G) =

|E(G)|∑
k=0

|δk|

where |δk| is the number of compositions of G of size k.

Theorem 1.1 opened a new way of looking at the methods of counting the number of graph
compositions. One of the combinatorial techniques explored, is the principle of inclusion and
exclusion, see [9].

This paper is a continuation of exploring some combinatorial techniques to count the number of
graph compositions. We define a certain class of graphs and count the number of graph compositions
for this class of graphs.
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2 Fans

In this section we define an n-fan, and we extend this definition to a new class of graphs and give
some of its characteristics. Recall that Pn is a tree which is a path on n vertices.

We define a n-fan to be the vertex join of a path on n vertices. We shall call an edge of an n-fan
which is not on the path, Pn, a join edge. We define a uniform nq-fan to be an n-fan such that
each join edge is subdivided into q edges. We shall denote a uniform nq-fan by Fnq . The following
Proposition follows from the definition of a uniform nq-fan.

Proposition 2.1. Let Fnq denote a uniform nq-fan. Then

1. |V (Fnq )| = nq + 1

2. |E(Fnq )| = n(q + 1)− 1.

Proposition 2.2. Let G be a uniform nq-fan. Then there are subgraphs of G isomorphic to
C2q+1, C2q+2, · · · , C2q+n−1.

3 Graph Compositions of a Uniform 4q-fan

In this section we give the number of graph compositions of a uniform 4q-fan. It is shown in [6,
Theorem 1.1] that the number of graph compositions of a graph G is equal to the number of closed
sets of G, where closed sets are the flats of the cycle matroid of G. Thus we only have to count the
number of closed sets of different sizes of a uniform 4q-fan.

Let G be a graph on n vertices with c connected components. The rank of G, denoted r(G), is
defined to be r(G) = n− c. A closed set X of size k, is the largest rank-r subgraph of G containing
X.

We denote the set of all closed sets of size k by δk. Thus the number of all closed sets of size
k is represented by |δk|. For a uniform 4q-fan, different values of k give different formulae where
0 ≤ k ≤ 4q + 3. The following trivial Lemma 3.1 is the implication of the result stated in [1].

Lemma 3.1. Let Pn be the path of order n. Then any subset X of Pn is closed in Pn.

The following Lemma 3.2 is trivial but plays a very important role in the proofs of the other lemmas
and hence the foundation for the proof of the main theorem.

Lemma 3.2. Let Cn be the cycle graph of order n and X ⊆ Cn. X is a non-closed subset in Cn iff
|E(X)| = n− 1.

Proof. Without loss of generality, let V (Cn) = {v1, v2, · · · , vn−1, vn} and
E(Cn) = {{v1, v2}, {v2, v3} · · · , {vn−1, vn}, {vn, v1}}.

Assume X is a non-closed subset in Cn. Then there exists, a larger subset of Cn, say Y containing
X with r(X) = r(Y ). It is clear that all proper subsets of Cn are paths or union of paths contained
in a certain path Pn. Thus by implication of Lemma 3.1, there is no subest Y ∼= Pt containing X
with r(X) = r(Y ) except when X ≡ Y. Thus the only subset which can contain X is Cn and the
only subsets of Cn with the same rank as Cn are the subsets X ∼= Pn. i.e we get r(X) = r(Pn) =
n− 1 = r(Cn). Then |E(X)| = E(Pn)| = n− 1.

Assume |E(X)| = n − 1, E(X) ⊂ E(Cn), say E(X) = {{v1, v2}, {v2, v3} · · · , {vn−1, vn}}. Then X
has one component and n vertices. Therefore the rank, r(X) = r(Cn) = n− 1, hence by definition
X in a non-closed set because X has rank n− 1 but Cn = X ∪ {an} is larger and contains X and
has also rank n− 1.
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Lemma 3.3. Let G be any graph on n vertices and let a cycle Cm be a subgraph of G where m ≤ n.
Then any subgraph X ⊂ G containing m − 1 edges only of Cm and other edges not in Cm is a
non-closed subset.

Proof. Let E(G) = {e1, e2, · · · , em−1, em, a1, a2, · · · , at} such that n > m. Let E(Cm) = {e1, e2, · · · , em−1, em} ⊂
E(G) and let

E(X) = {e1, e2, · · · , em−1, a1, a2, · · · , al} ⊂ E(G) where l ≤ t. Then it follows that r(X) =
r(X ∪ {em}), thus X is not the largest rank-r subgraph containing X. Therefore X is a non-closed
subset.

Corollary 3.4. Let G be a graph such that Cn ⊂ G and is the smallest cycle in G. Then any subset
X such that |E(X)| ≤ n− 2 is closed in G.

Proposition 3.1. Let G be a uniform 4q-fan. Then G has exactly

(1) 3 subgraphs isomorphic to C2q+1,

(2) 2 subgraphs isomorphic to C2q+2,

(3) 1 subgraph isomorphic to C2q+3.

Unless otherwise stated, in the remainder of the paper, we use the diagram in Fig. 1 and the
notation introduced in Notation 3.5.

Fig. 1. A general 4q-fan

Notation 3.5. Consider a general F4q , a general 4q-fan as shown in Fig. 1. Denote the three
subgraphs isomorphic to C2q+1 of the graph F4q , as

Ct1 ={a11, a12, · · · , a1q, b, a21, a22, · · · , a2q},
Ct2 ={a21, a22, · · · , a2q, c, a31, a32, · · · , a3q},
Ct3 ={a31, a32, · · · , a3q, d, a41, a42, · · · , a4q}.
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Denote the two subgraphs isomorphic to C2q+2 of the graph F4q , as

Ct4 ={a11, a12, · · · , a1q, b, c, a31, a32, · · · , a3q}
Ct5 ={a21, a22, · · · , a2q, c, d, a41, a42, · · · , a4q}.

Denote the one subgraph isomorphic to C2q+3 of the graph F4q , as

Ct6 ={a11, a12, · · · , a1q, b, c, d, a41, a42, · · · , a4q}.

We are now in a position to count the number of closed sets of a uniform 4q-fan, F4q . Closed sets of
different sizes k have different formulas, hence we give the formulas for each k ∈ {0, 1, 2, · · · , 4q+3}.
By applying Corollary 3.4 and Proposition 3.1, we get Proposition 3.2.

Proposition 3.2. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q . Then for 0 ≤ k ≤ 2q − 1, we have

|δk| =

(
4q + 3

k

)
.

Corollary 3.6. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed sets
of size k of F4q . Then for 0 ≤ k ≤ 2q − 1

2q−1∑
k=0

|δk| =
2q−1∑
k=0

(
4q + 3

k

)
.

Proposition 3.3. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q . Then for k = 2q

|δk| =

(
4q + 3

2q

)
− 3

(
2q + 1

2q

)(
2q + 2

k − 2q

)
.

Proof. We have

(
4q + 3

2q

)
subsets of size 2q of F4q . But out of these subsets, some subsets are

closed and some are non-closed subsets. Hence we remove the non-closed subsets of size 2q. By
Lemma 3.1 we have 3 subgraphs isomorphic to C2q+1, 2 subgraphs isomorphic to C2q+2 and one
subgraph isomorphic to C2q+3. The only cycle which will affect the closed sets of size 2q is C2q+1,

since by Lemma 3.2 any 2q element subset of C2q+1 ⊂ F4q is non-closed. Thus we have 3

(
2q + 1

2q

)
non-closed subsets to remove with respect to the 3 subgraphs isomorphic to C2q+1.

To ease the computations at each stage, we state the following Lemma.

Proposition 3.4. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k ≥ 2q + 1 of F4q . Then

|δk| =

(
4q + 3

k

)
− 3

(
2q + 1

2q

)(
2q + 2

k − 2q

)
− 2

(
2q + 2

2q + 1

)(
2q + 1

k − (2q + 1)

)

−

(
2q + 3

2q + 2

)(
2q

k − (2q + 2)

)
+Hk(q).

where Hk(q) counts the number of repeats of non-closed sets which have been removed more that
once.
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Proof. We have

(
4q + 3

k

)
subsets of size k of F4q . But out of these subsets, some subsets are closed

and some are non-closed subsets. Hence we remove the non-closed subsets of size k from the total.
By Lemma 3.1 we have 3 subgraphs isomorphic to C2q+1, 2 subgraphs isomorphic to C2q+2 and one
subgraph isomorphic to C2q+3. We start by removing the non-closed subsets with respect to cycle
C2q+1. By Lemma 3.3 any subset X which contains exactly 2q elements of C2q+1 is non-closed. To
form a non-closed subset X, take a 2q element subset of C2q+1 and choose the other k−2q elements
from the remaining elements of F4q which are not in C2q+1. Thus with respect to the 3 cycles, we

have 3

(
2q + 1

2q

)(
2q + 2

k − 2q

)
non-closed subsets to remove from the total. Similarly, with respect to

the 2 cycles isomorphic to C2q+2 and 1 cycle isomorphic to C2q+3, we have 2

(
2q + 2

2q + 1

)(
2q + 1

k − 2q − 1

)

and

(
2q + 3

2q + 2

)(
2q

k − 2q − 2

)
non-closed subsets respectively.

If we denote the following numbers as

α =

(
4q + 3

k

)
,

β1 = 3

(
2q + 1

2q

)(
2q + 2

k − 2q

)
= (6q + 3)

(
2q + 2

k − 2q

)
,

β2 = 2

(
2q + 2

2q + 1

)(
2q + 1

k − (2q + 1)

)
= (4q + 4)

(
2q + 1

k − (2q + 1)

)
,

β3 =

(
2q + 3

2q + 2

)(
2q

k − (2q + 2)

)
= (2q + 3)

(
2q

k − (2q + 2)

)
.

then Proposition 3.4 simplifies to Corollary 3.7.

Corollary 3.7. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed sets
of size k ≥ 2q + 1 of F4q . Then

|δk| = α− β1 − β2 − β3 +Hk(q).

Thus from this point, we only need to find the number Hk(q) for different values of k ≥ 2q + 1.

Proposition 3.5. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q , where |δk| = α− β1 − β2 − β3 +Hk(q). Then for 2q + 1 ≤ k ≤ 3q − 1

Hk(q) = 0.

Proof. We need to show that the non-closed sets removed with respect to Ct1 , Ct2 and Ct3 in the
terms β1, β2 and β3 are distinct. Assume that there is a non-closed subset X which has been
removed twice in the term β1. Without loss of generality, then X has 2q edges in Ct1 and 2q edges
in Ct2 or Ct3 . This is only possible if Ct1 ∩ Ct2 or Ct1 ∩ Ct3 are non-empty, since the number of
edges is less than or equal to 3q − 1 < 4q. There is no non-closed subset which has been removed
with respect to Ct1 and Ct3 in the term β1, since Ct1 ∩ Ct3 = ∅. By Notation 3.5 we know that
|E(Ct1) ∩ E(Ct2)| = q. Assume that X have 2q edges in Ct1 such that q of these edges are in
Ct1 ∩Ct2 , then we need only 1 ≤ j ≤ q − 1 edges in Ct2 to form a non-closed set of size k. Thus X
can only contain q + q − 1 edges at most of Ct2 which is a contradiction.
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Assume that there is a non-closed subset X which has been removed twice in the term β2, without
loss of generality, then X has 2q + 1 edges in Ct4 and 2q + 1 edges in Ct5 . Thus if X has 2q + 1
edges in Ct4 then only 0 ≤ j ≤ q − 2 can come from Ct5 . But |E(Ct4) ∩ E(Ct5)| = 1, hence X can
have at most q − 1 from Ct5 , which is a contradiction.

Assume that there is a non-closed subset X which has been removed in the terms β1 and β2, without
loss of generality, then X has 2q edges in Ct1 and 2q+ 1 edges in Ct4 or Ct5 . It is clear that this is
only possible if Ct1 ∩ Ct4 or Ct1 ∩ Ct5 are non-empty. By Notation 3.5 |E(Ct1) ∩ E(Ct4)| = q + 1
and |E(Ct1) ∩ E(Ct5)| = q. Assume that X has 2q edges in Ct1 such that q + 1 of these edges are
in Ct1 ∩ Ct4 , then we need only 1 ≤ j ≤ q − 1 edges in Ct4 to form a non-closed set of size k.
Thus X can only contain q + 1 + q − 1 = 2q edges at most of Ct4 . Similarly, X can only contain
q + q − 1 = 2q − 1 edges at most of Ct5 which is a contradiction.

Similarly, if we assume that there is a non-closed subset X which has been removed in the terms
β1 and β3 or in the terms β2 and β3, we get contradictions.

Corollary 3.8. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed sets
of size k of F4q . Then for 2q + 1 ≤ k ≤ 3q − 1

3q−1∑
k=2q+1

|δk| =

3q−1∑
k=2q+1

[(
4q + 3

k

)
− (6q + 3)

(
2q + 2

k − 2q

)]

+

3q−1∑
k=2q+1

[
−(4q + 4)

(
2q + 1

k − (2q + 1)

)
− (2q + 3)

(
2q

k − (2q + 2)

)]
.

We need the following lemma for the proof of Proposition 3.6.

Lemma 3.9. Let X ⊂ F4q such that |E(X)| = 3q and let |E(X) ∩ E(Ct6)| = 2q + 2. (i.e all the
edges of Ct6 , except one, are contained in E(X). ) Then

(i) E(X) can not contain any 2q edges of Ct1 or Ct3 .

(ii) E(X) can not contain any 2q + 1 edges of Ct4 or Ct5 .

Proof. 1. Let X ∩ Ct6 = Y . Thus |E(Y )| = 2q + 2. Let G16 = Ct1 ∩ Ct6 and G36 = Ct3 ∩ Ct6 .
Then it is clear that |E(G16)| = q+1 = |E(G36)|, G16∩G36 = ∅ and Ct6 = G16∪G36∪{c}. But
X = Y ∪Xp whereXp ⊂ F4q−Ct6 , thus Ct6∩Xp = ∅. Hence, |E(X)| = |E(Y )|+|E(Xp)| = 3q
and |E(Xp)| = q − 2.

Now we find the maximum number of elements of Ct1 contained in X. Assume that G16 ⊂ X
and that all the q− 2 elements of Xp are taken from Ct1 −G16. Then the maximum number
of elements in X from Ct1 is |E(G16)|+ |E(Xp)| = q + 1 + q − 2 = 2q − 1.

2. Similar to proof of part (1).

Proposition 3.6. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q , where |δk| = α− β1 − β2 − β3 +Hk(q). Then for k = 3q

Hk(q) = 2

(
q + 1

q

)(
q + 1

q

)
+ 4

(
q

q − 1

)(
q + 1

q

)
.

Proof. Some subsets of these subsets have been deducted more than once in the terms β1, β2 and
β3. We show how to get each term of Hk(q) separately.
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1. We consider non-closed subsets of size 3q which have been removed twice in the term β1.
Consider two intersecting cycles of size 2q+1, say cycle Ct1 and cycle Ct2 . Then Ct1 ∩Ct2 =
{a21, a22, · · · , a2q}, and we denote it as G12. We denote any q element subset in Ct1 − G12

as G1 and any q element subset in Ct2 − G12 as G2. Hence any 3q element subset of the
form G12 ∪ G1 ∪ G2 has been removed twice, hence we need to add it back once. But

|E(Ct1) − E(G12)| = 2q + 1 − q = q + 1, thus we have

(
q + 1

q

)
subsets with q elements,

G1. Similarly we have |E(Ct2) − E(G12)| = 2q + 1 − q = q + 1, and

(
q + 1

q

)
subsets with

q elements, G2. We do similar counting for the the other intersecting cycles Ct2 and Ct3 .

Hence we add back 2

(
q + 1

q

)(
q + 1

q

)
.

2. We consider non-closed subsets of size 3q which have been removed in the terms β1 and β2.
It is clear that |E(Ct4)∩E(Ct1)| = |{a11, a12, · · · , a1q, b}| = q+ 1. Take a 3q element subset
where 2q+1 elements are in Ct4 such that q+1 elements of these are in Ct4 ∩Ct1 , the other
q elements are in Ct4 − Ct1 and the remaining q − 1 elements in G12. Thus we have taken
2q elements from Ct1 , since by definition G12 ⊂ Ct1 . Then this is equivalent to a 3q element
non-closed subset removed in the term β1 in which 2q elements were taken from Ct1 and
other q elements outside Ct1 , specifically in Ct4 − Ct1 , thus we need to add it back. There

are

(
q

q − 1

)
ways of choosing the q − 1 elements of G12 and

(
q + 1

q

)
ways of choosing the

elements Ct4 −Ct1 . But we can swap Ct1 and Ct2 forming a 3q element non-closed subset in
which 2q elements were taken in Ct2 and other q elements outside Ct2 specifically in Ct4−Ct2 .

Thus we have 2

(
q + 1

q

)(
q

q − 1

)
subsets with respect to Ct4 and similarly with respect to

Ct5 . Hence we add back 4

(
q + 1

q

)(
q

q − 1

)
to the total.

3. Applying Lemma 3.3, any subgraph of size 3q which contains exactly 2q + 2 edges of
cycle Ct6 is non-closed. Now we count these non-closed sets. Without loss of generality
consider the 3q element subsets with exactly 2q+2 elements in Ct6 . It is clear that there are(
2q + 3

2q + 2

)(
2q

q − 2

)
subsets of size 3q of this form. By applying Lemma 3.9, it is clear that

there are no subsets of size 3q of this form which have already been removed in the term β1

or β2.

Corollary 3.10. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed sets
of size k of F4q . Then for k = 3q

|δk| =

(
4q + 3

k

)
− (6q + 3)

(
2q + 2

k − 2q

)
− (4q + 4)

(
2q + 1

k − (2q + 1)

)

− (2q + 3)

(
2q

k − (2q + 2)

)
+ (q + 1)(6q + 2).
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Proposition 3.7. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q where |δk| = α− β1 − β2 − β3 +Hk(q). Then for 3q + 1 ≤ k ≤ 4q − 1

Hk(q) = (6q2 + 8q + 2)

(
q + 1

k − 3q

)
+ (6q + 4)

(
q + 1

k − (3q + 1)

)

+ (6q2 + 12q + 4)

(
q

k − (3q + 1)

)
+ (6q + 6)

(
q

k − (3q + 2)

)
.

Proof. The proof will cover all possible cases of non-closed sets removed more than once. There
are five possible ways of removing a non-closed set more than once. We denote Cti ∩ Ctj by Gij .
We summarize the choices of edges of the non-closed subsets X of size k in the rows of the tables
and each row can be read, without loss of generality, as

Cti −Gij Ctj −Gij Gij F4q − (Cti ∪ Ctj ) Cti Ctj

X q q q k − 3q ⇒ 2q 2q

Let X be a non-closed set with q elements in Cti −Gij , q elements in Ctj −Gij , q elements in Gij

and k− 3q elements in F4q − (Cti ∪Ctj ). Then there are exactly 2q elements in Cti and exactly 2q
elements in Ctj .

1. We consider the non-closed sets removed more than once with respect to cycles Ct1 , Ct2 and
Ct3 . Without loss of generality, we start with the pair {Ct1 , Ct2}.

Ct1 −G12 Ct2 −G12 G12 F4q − (Ct1 ∪ Ct2) Ct1 Ct2

X q q q k − 3q ⇒ 2q 2q

X q + 1 q + 1 q − 1 k − (3q + 1) ⇒ 2q 2q

Thus any subgraph of size k of this form is removed twice as a non-closed set with respect
to Ct1 and with respect to Ct2 , since both cycles are of length 2q + 1 but have exactly 2q
elements in this subgraph. One can easily check that this subgraph has not been removed
again with respect to any other cycle. Similarly, we get the same result if we consider a pair
of cycles {Ct2 , Ct3}.

Thus the number of repeated non-closed sets of this form is

2

[(
q + 1

q

)(
q + 1

q

)(
q

q

)(
q + 1

k − 3q

)
+

(
q + 1

q + 1

)(
q + 1

q + 1

)(
q

q − 1

)(
q + 1

k − (3q + 1)

)]
.

2. We consider the non-closed sets removed more than once with respect to cycle Cti where
i ∈ {1, 2, 3} and cycle Ctj where j ∈ {4, 5}.

(a) Without loss of generality, we start with the pair {Ct1 , Ct4}, where G14 = Ct1 ∩ Ct4 .

Ct1 −G14 Ct4 −G14 G14 F4q − (Ct1 ∪ Ct4) Ct1 Ct4

X q − 1 q q + 1 k − 3q ⇒ 2q 2q + 1

X q q + 1 q k − (3q + 1) ⇒ 2q 2q + 1

Thus any subgraph of size k of this form is removed twice as a non-closed set with
respect to Ct1 and with respect to Ct4 since the cycle Ct1 has length 2q + 1 but have
exactly 2q elements in this subgraph and the cycle Ct4 has length 2q + 2 but have
exactly 2q + 1 elements in this subgraph. One can easily check that this subgraph

9
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has not been removed again with respect to any other cycle. Similarly, we get the
same result if we consider the pairs of cycles {Ct2 , Ct4}, {Ct2 , Ct5}, {Ct3 , Ct5}. Thus
the number of repeated non-closed sets of this form is

4

[(
q + 1

q + 1

)(
q

q − 1

)(
q + 1

q

)(
q + 1

k − 3q

)
+

(
q + 1

q

)(
q

q

)(
q + 1

q + 1

)(
q + 1

k − (3q + 1)

)]
.

(b) We consider the remaining pairs {Ct1 , Ct5}, {Ct3 , Ct4}. Without loss of generality, we
start with the pair {Ct1 , Ct5}, where G15 = Ct1 ∩ Ct5 .

Ct1 −G15 Ct5 −G15 G15 F4q − (Ct1 ∪ Ct5) Ct1 Ct5

X q q + 1 q k − (3q + 1) ⇒ 2q 2q + 1

X q + 1 q + 2 q − 1 k − (3q + 2) ⇒ 2q 2q + 1

We get similar results for the pair {Ct3 , Ct4}. Thus the number of repeated non-closed
sets of this form is

2

[(
q + 1

q

)(
q + 2

q + 1

)(
q

q

)(
q

k − (3q + 1)

)
+

(
q + 1

q + 1

)(
q + 2

q + 2

)(
q

q − 1

)(
q

k − (3q + 2)

)]
.

3. We consider the non-closed sets removed more than once with respect to cycle Cti where
i ∈ {1, 3} and cycle Ct6 . Thus we consider the pairs of cycles {Ct1 , Ct6}, {Ct3 , Ct6}.

Ct1 −G16 Ct6 −G16 G16 F4q − (Ct1 ∪ Ct6) Ct1 Ct6

X q q + 2 q k − (3q + 2) ⇒ 2q 2q + 2

X q − 1 q + 1 q + 1 k − (3q + 1) ⇒ 2q 2q + 2

Thus using a similar argument from part (1) of the proof, the number of repeated non-closed
sets of this form is

2

[(
q

q

)(
q + 2

q + 2

)(
q + 1

q

)(
q

k − (3q + 2)

)
+

(
q

q − 1

)(
q + 2

q + 1

)(
q + 1

q + 1

)(
q

k − (3q + 1)

)]
.

4. We consider the non-closed sets removed more than once with respect to cycle Ctj where
j ∈ {4, 5} and cycle Ct6 . Thus we consider the pairs of cycles {Ct4 , Ct6}, {Ct5 , Ct6}.

Ct4 −G46 Ct6 −G46 G46 F4q − (Ct4 ∪ Ct6) Ct4 Ct6

X q − 1 q q + 2 k − (3q + 1) ⇒ 2q + 1 2q + 2

X q q + 1 q + 1 k − (3q + 2) ⇒ 2q + 1 2q + 2

Thus using similar aurgument from part (1) of the proof, the number of repeated non-closed
sets of this form is

2

[(
q

q − 1

)(
q + 1

q

)(
q + 2

q + 2

)(
q

k − (3q + 1)

)
+

(
q

q

)(
q + 1

q + 1

)(
q + 2

q + 1

)(
q

k − (3q + 2)

)]
.

Adding the number of repeated non-closed sets of different forms gives the result.

10
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Corollary 3.11. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed sets
of size k of F4q . Then for 3q + 1 ≤ k ≤ 4q − 1

4q−1∑
k=3q+1

|δk| =

4q−1∑
k=3q+1

[(
4q + 3

k

)
− (6q + 3)

(
2q + 2

k − 2q

)]

+

3q−1∑
k=2q+1

[
−(4q + 4)

(
2q + 1

k − (2q + 1)

)
− (2q + 3)

(
2q

k − (2q + 2)

)]

+ (6q2 + 8q + 2)

q−1∑
j=1

(
q + 1

j

)
+ (6q + 4)

q−2∑
j=0

(
q + 1

j

)

+ (6q2 + 12q + 4)

q−2∑
j=0

(
q

j

)
+ (6q + 6)

q−3∑
j=0

(
q

j

)
.

Proposition 3.8. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q . Then for k = 4q

|δk| =
1

3
(2q3 + 3q2 + 7q).

Proof. It is easy to show that there is no closed set of size 4q which does not contain a cycle,
therefore it makes sense to count the number of closed sets based on cycles and union of cycles of
F4q . Recall from Notation 3.5, the definition of cycles Ct1 , Ct2 , · · · , Ct6 .

First, we consider the closed sets of size 4q with exactly one cycle. We start with closed sets
which contain Ct1 . Recall Ct1 has 2q + 1 edges, thus, the only possibilities of closed sets of size
4q is to choose q − 1 edges in the set {a31, a32, · · · , a3q} of q edges and choose q edges in the set

{a41, a42, · · · , a4q, d} of q + 1 edges. Hence we have

(
q

q − 1

)(
q + 1

q

)
closed sets with respect to

cycle Ct1 . Similarly, with respect to Ct3 .

For cycles Ct2 , Ct4 , Ct5 , Ct6 , any choice of 2q − 1, 2q − 2, 2q − 2 and 2q − 3 edges not in the cycle,
respectively, added to the respective cycle, will be non-closed. Thus we have 2q(q + 1) closed sets
which contains a single cycle.

Secondly, we consider the closed sets with different unions of cycles Ct1 , Ct2 , Ct3 , Ct4 , Ct5 of size
less than or equal to 4q. But there are only two distinct unions satisfying the condition, since

Ct1 ∪ Ct2 = Ct1 ∪ Ct2 ∪ Ct4 = Ct1 ∪ Ct4 = Ct2 ∪ Ct4 ,

Ct2 ∪ Ct3 = Ct2 ∪ Ct3 ∪ Ct5 = Ct2 ∪ Ct−5 = Ct3 ∪ Ct5 .

Thus it is enough to show for the closed sets containing Ct1 ∪Ct2 and the ones containing Ct2 ∪Ct3 .
Consider the closed sets containing the union Ct1 ∪ Ct2 . Recall that Ct1 ∪ Ct2 has 3q + 2 edges,
hence the only possibility of closed sets of size 4q is to choose q − 2 edges in the remaining q + 1

edges, {a41, a42, · · · , a4q, d}. Thus we have

(
q + 1

q − 2

)
choices. Similarly, if we choose the 3q+2 edges

in Ct3 ∪ Ct2 . Hence we have

2

(
q + 1

q − 2

)
=

1

3
q(q + 1)(q − 1).

11
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Finally, we consider the closed sets which contain the union of Ct6 with other cycles of size less
than or equal to 4q. There are two distinct unions satisfying this condition, since

Ct1 ∪ Ct6 = Ct5 ∪ Ct6 ,

Ct3 ∪ Ct6 = Ct4 ∪ Ct6 .

Thus, it is enough to count the closed sets containing Ct1 ∪Ct6 and the ones containing Ct3 ∪Ct6 .
Recall that Ct1 ∪Ct6 has 3q+3 edges, hence the only possibility of closed sets of size 4q is to choose

the remaining q − 3 edges in {a21, a22, · · · , a2q}. Thus we have

(
q

q − 3

)
choices. Similarly, if we

choose 3q + 3 edges of Ct3 ∪ Ct6 . Thus we have

2

(
q

q − 3

)
=

1

3
q(q − 1)(q − 2).

Therefore, the total number of closed sets of size 4q is

2q(q + 1) +
1

3
q(q + 1)(q − 1) +

1

3
q(q − 1)(q − 2) =

1

3
(2q3 + 3q2 + 7q).

Proposition 3.9. Let F4q be a uniform 4q-fan with q ≥ 1. Let δk represent the set of all closed
sets of size k of F4q . Then for 4q + 1 ≤ k ≤ 4q + 3

|δk| =


2q2 k = 4q + 1,

0 k = 4q + 2,

1 k = 4q + 3.

Proof. The cases k = 4q + 2 and 4q + 3 are obvious. Thus, we only consider the case k = 4q + 1.
We follow a similar argument given in the proof of Proposition 3.8. There are no closed sets of

size 4q+1 with exactly one cycle, 2

(
q + 1

q − 1

)
closed sets with unions of smaller cycles, smaller than

Ct6 and 2

(
q

q − 3

)
closed sets with unions of other cycles with Ct6 . Therefore, the total number of

closed sets of size 4q + 1 is

2

(
q + 1

q − 1

)
+ 2

(
q

q − 3

)
= 2q2.

We are now in a position to state the main theorem of this paper.

Theorem 3.12. Let F4q be a uniform 4q-fan with q ≥ 1. The number of graph compositions of F4q

is given by

C(F4q ) = 24q+3 − (34q + 23)22q + (18q2 + 46q + 22)2q −
[
4q3 + 12q2 + 16q + 6

]
.

12



Mphako-Banda et al.; BJMCS, 15(1), 1-15, 2016; Article no.BJMCS.24264

Proof. By Corollary 1.2

C(G) =

|E(G)|∑
k=0

|δk|

=

4q−1∑
k=0

|δk|+
4q+3∑
k=4q

|δk|. (3.1)

Now we treat the sums separately. We start with
∑4q−1

k=0 |δk|, applying Proposition 3.3 and Corollaries {3.6,
3.8, 3.10, 3.11}.

4q−1∑
k=0

|δk| =

2q−1∑
k=0

|δk|+ |δ2q|

+

3q−1∑
k=2q+1

|δk|+ |δ3q|+
4q−1∑

k=3q+1

|δk|

=

2q−1∑
k=0

(
4q + 3

k

)
+

(
4q + 3

2q

)
− 3

(
2q + 1

2q

)(
2q + 2

0

)

+

3q−1∑
k=2q+1

[(
4q + 3

k

)
− (6q + 3)

(
2q + 2

k − 2q

)]

+

3q−1∑
k=2q+1

[
−(4q + 4)

(
2q + 1

k − (2q + 1)

)
− (2q + 3)

(
2q

k − (2q + 2)

)]

+

(
4q + 3

3q

)
− (6q + 3)

(
2q + 2

q

)

− (4q + 4)

(
2q + 1

q − 1)

)
− (2q + 3)

(
2q

q − 2)

)
+ (q + 1)(6q + 2)

+

4q−1∑
k=3q+1

[(
4q + 3

k

)
− (6q + 3)

(
2q + 2

k − 2q

)]

+

4q−1∑
k=3q+1

[
−(4q + 4)

(
2q + 1

k − (2q + 1)

)
− (2q + 3)

(
2q

k − (2q + 2)

)]

+ (6q2 + 8q + 2)

q−1∑
j=1

(
q + 1

j

)
+ (6q + 4)

q−2∑
j=0

(
q + 1

j

)

+ (6q2 + 12q + 4)

q−2∑
j=0

(
q

j

)
+ (6q + 6)

q−3∑
j=0

(
q

j

)
.

Putting like terms together we get

13
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4q−1∑
k=0

|δk| =

4q−1∑
k=0

(
4q + 3

k

)
− (6q + 3)

2q−1∑
i=0

(
2q + 2

i

)

− (4q + 4)

2q−2∑
i=0

(
2q + 1

i

)
− (2q + 3)

2q−3∑
i=0

(
2q

i

)

+ (6q2 + 8q + 2)

q−1∑
j=1

(
q + 1

j

)
+ (6q + 4)

q−2∑
j=0

(
q + 1

j

)

+ (6q2 + 12q + 4)

q−2∑
j=0

(
q

j

)
+ (6q + 6)

q−3∑
j=0

(
q

j

)
+ (q + 1)(6q + 2).

= 24q+3 −
[
8 + 21q + 24q2 + 10q3 +

q

3
(2q2 + 1)

]
− (6q + 3)22q+2

+
[
12q3 + 36q2 + 39q + 12

]
− (4q + 4)22q+1 +

[
8q3 + 20q2 + 20q + 8

]
− (2q + 3)22q +

[
4q3 + 8q2 + 5q + 3

]
+ (6q2 + 8q + 2)2q+1

−
[
6q3 + 26q2 + 26q + 6

]
+ (6q + 4)2q+1 −

[
3q3 + 11q2 + 18q + 8

]
+ (6q2 + 12q + 4)2q −

[
6q3 + 18q2 + 16q + 4

]
+ (6q + 6)2q

−
[
3q3 + 6q2 + 9q + 6

]
+
[
6q2 + 8q + 2

]
= 24q+3 − (6q + 3)22q+2 − (4q + 4)22q+1 − (2q + 3)22q + (6q2 + 8q + 2)2q+1

+ (6q + 4)2q+1 + (6q2 + 12q + 4)2q + (6q + 6)2q +
[
6q2 + 8q + 2

]
−

[
8 + 21q + 24q2 + 10q3 +

q

3
(2q2 + 1)

]
+
[
12q3 + 36q2 + 39q + 12

]
+

[
8q3 + 20q2 + 20q + 8

]
+
[
4q3 + 8q2 + 5q + 3

]
−
[
6q3 + 26q2 + 26q + 6

]
−

[
3q3 + 11q2 + 18q + 8

]
−
[
6q3 + 18q2 + 16q + 4

]
−
[
3q3 + 6q2 + 9q + 6

]
= 24q+3 − (6q + 3)22q+2 − (4q + 4)22q+1 − (2q + 3)22q + (6q2 + 14q + 6)2q+1

+ (6q2 + 18q + 10)2q −
[
4q3 + 15q2 + 18q + 7 +

q

3
(2q2 + 1)

]
= 24q+3 − (34q + 23)22q + (18q2 + 46q + 22)2q −

[
4q3 + 15q2 + 18q + 7

]
− 1

3
(2q3 + q).

We now consider the second sum and we apply Proposition 3.8 and Proposition 3.9 to get

4q+3∑
k=4q

|δk| =
1

3
(2q3 + 3q2 + 7q) + 2q2 + 1.

Adding

4q−1∑
k=0

|δk|+
4q+3∑
k=4q

|δk| we get the result.

4 Conclusion

In this paper, we have used the principle of inclusion and exclusion to count the number of graph
compositions. What other combinatorial techniques can be used in counting graph compositions?
Is the number of graph compositions an evaluation of a certain graph polynomial?
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